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Abstract

these genomes.

Background: Comparison of complete genomes of Bacteria and Archaea shows that gene content varies
considerably and that genomes evolve quite rapidly via gene duplication and deletion and horizontal gene
transfer. We analyze a diverse set of 92 Bacteria and 79 Archaea in order to investigate the processes governing
the origin and evolution of families of related genes within genomes.

Results: Genes were clustered into related groups using similarity criteria derived from BLAST. Most clusters
contained genes from only one or a small number of genomes, and relatively few core clusters were found that
spanned all genomes. Gene clusters found in larger numbers of genomes tended to have larger numbers of genes
per genome; however, clusters with unusually large numbers of genes per genome were found among both
narrowly and widely distributed clusters. Larger genomes were found to have larger mean gene family sizes and a
greater proportion of families of very large size. We used a model of birth, death, and innovation to predict the
distribution of gene family sizes. The key parameter is r, the ratio of duplications to deletions. It was found that the
model can give a good fit to the observed distribution only if there are several classes of genes with different
values of r. The preferred model in most cases had three classes of genes.

Conclusions: There appears to be a rapid rate of origination of new gene families within individual genomes.
Most of these gene families are deleted before they spread to large numbers of genomes, which suggests that
they may not be generally beneficial to the organisms. The family size distribution is best described by a large
fraction of families that tend to have only one or two genes and a small fraction of families of multi-copy genes
that are highly prone to duplication. Larger families occur more frequently in larger genomes, indicating higher r in
these genomes, possibly due to a greater tolerance for non-beneficial gene duplicates. The smallest genomes
contain very few multi-copy families, suggesting a high rate of deletion of all but the most beneficial genes in

Background

There are now a large number of completely sequenced
genomes of Bacteria and Archaea that can be used to
study evolution at the whole-genome level. Comparison
of sets of genes across genomes reveals that gene con-
tent varies quite substantially between even fairly closely
related species. For example, the number of genes in a
typical genome of Escherichia coli and Shigella is around
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5000, but when 20 of these genomes are compared,
there are only around 2000 ‘core’ genes found in all gen-
omes [1]. Similar results are found with Streptococcus[2]
and Prochlorococcus[3]. When diverse groups of
genomes are compared, the set of core genes falls to
very low numbers. It was estimated that the ‘extended
core’ of bacterial genes (i.e. those present in 99% of
sequenced genomes) contained only 250 genes [4]. A
study aimed at constructing a universal phylogenetic
tree [5] found only 31 genes present as clear ortholo-
gues in all genomes.
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These studies also show that newly sequenced gen-
omes almost always contain genes that have no detect-
able homologues in existing genomes. The size of the
pan-genome (i.e. the set of genes found in at least one
of the genomes considered) increases rapidly with the
number of genomes studied, and it is often believed that
the pan-genome would increase indefinitely if new gen-
omes continued to be added to the data. Rapid gain and
loss of genes during genome evolution has important
consequences. At the small scale, gain and loss of a few
specific genes can explain why some microbial strains
are pathogenic and close relatives are not. At the large
scale, rapid changes in gene content make the use of
phylogenetic methods for Bacteria and Archaea difficult,
and given that genes can also be transferred horizontally
between unrelated organisms, the very existence of an
evolutionary tree for Bacteria and Archaea is question-
able [6]. Our aim in this paper is therefore to use quan-
titative comparative methods across a wide range of
genomes in order to better understand the processes
giving rise to change in gene content.

Gene duplication has long been recognized as a
mechanism by which organisms adapt [7]. A duplicate
copy of an existing gene can be maintained in the gen-
ome if it evolves a new or more specialized function, or
it can be lost through pseudogenization and eventual
gene deletion. Families of two or more paralogous genes
are common in most genomes, which testifies to the
important role played by gene duplication in expansion
of genome size and acquisition of new functional genes.
Gene families can also arise by evolutionary innovation
within a genome, e.g. a new open reading frame could
form within a non-coding region, or an existing gene
could undergo sequence divergence, insertions/deletions
or domain reshuffling to such an extent that it would
no longer be classed as part of its original family. The
insertion of genes via horizontal gene transfer is also an
important mechanism of change in gene content. This
could start a new gene family if the recipient genome
did not already contain a homologous sequence, or it
could add to an existing family.

The relationships among sets of genes within and
across genomes are potentially very complex. Similar
sequences can arise by speciation (orthologues), duplica-
tion (paralogues) or horizontal transfer (xenologues).
Disentangling these alternatives would be difficult with-
out manual sequence analysis of each case, and would
then be somewhat subjective. In this paper, we deliber-
ately want to keep sequence analysis methods as simple
as possible. Therefore, we use simple objective criteria
based on BLAST to cluster genes into related groups.
The procedure is automated and easily reproducible,
and can be repeated many times with different cluster-
ing parameters in order to check the sensitivity of the
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outcome. The procedure does not assign detailed
evolutionary relationships among the sequences in each
cluster, although it assumes that all sequences in a clus-
ter are descended from a common ancestor by one
means or another.

Gene clusters contain genes from one or more gen-
omes. For each cluster, let k be the number of genomes
that contain at least one gene from this cluster. An
important quantity is G(k), the number of clusters that
contain genes from k genomes. This is sometimes called
the gene frequency spectrum. G(k) has been measured
in several experimental data sets [1-4], and shows a U-
shaped distribution, with many genes present in only a
small number of genomes, a moderate number of core
genes present in (almost) all genomes, and fewer genes
at intermediate values of k. Modelling the distribution of
clusters across genomes is complex because it depends
on the branching process that generates the sample of
genomes, as well as on the processes of gain and loss of
genes from a given genome. We are only aware of one
theoretical model that attempts to explain this shape [8].

We will use ‘family’ to denote a group of genes from
one genome that are within one cluster. The mean size
of families in a cluster, 7, is usually between 1 and 2,
but there are a significant number of clusters with 5 as
large as 10 or more. We show that gene clusters that
are more widely spread across genomes tend to have
larger gene families. However, clusters with very high 7
are found at both low and high values of k. We also
analyze the data by genomes. We define 1 as the mean
family size within a genome. This is again between 1
and 2, but there are a significant number of families as
large as 10 or more in most genomes. We show that n
and the proportion of large families increase with the
size of the genome.

Previous studies have shown that F(n), defined as the
number of families of # genes in one genome, is distrib-
uted approximately as a power law [9,10], with most
families found as singletons and only a few families with
large numbers of genes. A number of mathematical
models have been constructed to explain this [9,11-18].
It is substantially easier to model F(n) than G(k) because
it only depends on gain and loss of genes from one gen-
ome. These models are formulated in different ways.
While there is as yet no consensus on the minimal pro-
cesses needed to reproduce the gene family size distri-
butions observed in Bacteria and Archaea, there are
signs that heterogeneity of evolutionary rates among
gene families (e.g. selection acting on multiple classes of
genes) may be required to explain the shapes of these
distributions [16-18]. Here we infer the presence of mul-
tiple classes of genes in the genomes of Bacteria and
Archaea using a birth, death, and innovation model
[13,19]. Each class represents a set of genes with a



Collins et al. BMC Bioinformatics 2011, 12(Suppl 9):514
http://www.biomedcentral.com/1471-2105/12/5S9/S14

different ratio of duplication to deletion rates, perhaps
due to the effects of natural selection.

Methods

Clustering

Complete nucleic acid and translated proteome
sequences were obtained from the NCBI Genomes data-
base for 92 Bacteria from over a dozen phyla (Additional
File 1, Table 5), sequenced as part of the Genomic
Encyclopedia of Bacteria and Archaea [20], and 79
Archaea (Additional File 1, Table 6). Genes encoded on
plasmids associated with each genome sequence were
also included, and were treated as part of the genome.
BLAST databases were created for each genome with all
amino acid sequences encoded by each genome, and all-
against-all searches were performed using blastp (v.
2.221). For each pair of genomes, each inter- and intra-
genome peptide sequence was used as a query against
every other peptide sequence. A direct link was counted
between two genes if both BLAST E-values were less
than a specified cutoff value, E.,;, and if the length of
the locally aligned region found by BLAST was longer
than a fraction f,,;, of the length of both sequences.
Sequences were grouped into clusters using the single-
link cluster procedure, i.e. sequences are part of the
same cluster if there is a direct link between them or if
there is a chain of direct links that connects them.
These clustering methods, similar to those used by
NCBI’s blastclust program, were implemented with cus-
tom Perl scripts that are available from the authors.

Definitions

For each cluster, let g be the number of genes in the
cluster and let k be the number of genomes that contain
at least one gene from this cluster. The mean family

size in the cluster is defined as 7 = g/ k. Let G(k) be

the number of clusters that contain genes from k gen-
omes. The total number of clusters is Gror = ;G(k)
and the mean number of genomes contributing to each

cluster is k= sz(k) / Gior . The number of clusters
%

that contain genes from one genome only is G(1). These
are ‘ORFans’ with no detectable homologues in other
genomes. The number of clusters that have at least one
gene in every genome is G,

For each genome, let N, s be the total number of
genes in the genome, and let F,,, be the total number of
families with at least one gene in that genome. The

mean family size in the genome is 11 = N g5 / Fioy . Let

F(n) be the number of families of # genes in a genome.
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It follows that Fior = ZF(”) , and N gones = Z”F(") .
n

n
It is of interest to consider the number of single gene
families F(1) and the number of large (n > 5) families,

Flarge = z F(n) .

n=5

Quantitative models to predict the distribution of gene
family sizes

In this section we describe mathematical models to pre-
dict the number of gene families in one genome. We
will use lower case f(n) to indicate the predictions of the
model and upper case F(n) to indicate the observed
data. We will use Maximum Likelihood methods to fit f
(n) to F(n) as closely as possible.

We consider a birth and death process in which the
number of genes can increase or decrease by one gene
at a time. Let A,, be the rate of transition from n to n +
1, and let J,, be the rate of transition from n to n — 1.
These rates are defined for # > 1. The total number of
families is not fixed. Let there be a rate # of innovation
of new gene families with #n = 1, which could occur via
de novo origin of a gene within a genome or by acquisi-
tion of a gene by horizontal transfer. This is assumed to
be independent of the number of families already pre-
sent in the genome. Families are lost if a deletion occurs
in a single gene family, which occurs at rate J;f(1). In
the stationary state, the rates of gain and loss of families
are equal; hence

f@)y=u/é. 1)

In the stationary state, the rate of change from # to u
— 1 balances the rate of the reverse change. Therefore, f
(n)d,, = fin — 1)A,,_1, from which we obtain

(- f(l)ﬁ( o ) )

The basic model that we will use in this paper will be
termed BDI1, where BDI denotes birth, death and inno-
vation. This is similar to models proposed by Karev et
al. [13] and Wojtowicz and Tiuryn [17]. It is supposed
that there is a constant duplication rate A and a con-
stant deletion rate J per gene, so that the birth and
death rates are 1, = nA and J, = nd. From Eq. (2), the
stationary distribution for model BDI1 is

n-1

_ur
f(n)—5 — (3)

where r =% is the ratio of duplication to deletion
rates. It is usetul to define the function
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ln(l - r)

S(r) = 2 r (4)

The total number of families can then be written as

ftol =m (5)

and the mean family size can be written as

—_ 1% _ 1
m =g 20 = s ©)

Fig. 1 shows 7n as a function of r. This is close to 1
for small r and diverges as r approaches 1. Note that the
total number of families is proportional to u, but the
shape of the distribution and the value of 17 depend
only on r and not on u. The optimal value of r can be
estimated by Maximum Likelihood methods, as follows.

The proportion of families that are expected to have »
genes according to the model is

_fn) _
In =

This result has also been given by Wojtowicz and
Tiuryn [17]. The logarithm of the likelihood of obser-
ving the data according to the model is

1 n-1
S(r) o n @

InL="3 F(n)lng,, (8)
n=1

To find r for each data set, we used the Nelder-
Mead optimization method in R [21] to find the max-
imum value of InL. It can be shown by substituting
the ¢, from Eq. (7) and taking the derivative

Figure 1 Mean family size (ﬁ) in the BDI1 model as a function of
r, the ratio of duplication to deletion rates (/).
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dinL

dr
is such that the mean family size, 7, given by the
model (see Eq. (6)) is equal to the mean family size in
the data, Ngeyes/Frorr Once r is known, it is possible to
choose u/d so as to make the total number of families
predicted by the model (f;,; in Eq. (5)) equal to the
observed number, F,,,.

In summary, the BDI1 model has two independent para-
meters, r and u/d. These parameters can be chosen so that
the mean family size and the total number of families are
exactly equal to their values in the data. Having done this,
there are no further parameters to adjust the shape of the
distribution. It will be shown that the shape is not fitted
well by the BDI1 model, so we consider several more gen-
eral models in the following section.

=0 that the maximum likelihood solution for r

More general models

We define model BDIK such that there are K classes of
genes, each of which behaves as model BDI1. Each class, &,
has an independent value of ry. The frequency of families
in the genome in class k is &, and these frequencies must
sum to 1. Model BDIK thus has 2K — 1 free parameters.
The stationary ¢, distribution for model BDIK is

K
w=2,&a
k=1

A multi-class model of this form has also been consid-
ered by Wojtowicz and Tiuryn [17]. A more general
birth, death and innovation model (GBDI) proposed by
Karev et al. [13] is defined such that A, = A(n + a); J,, =
o(n + b). It is straightforward to obtain

n-1

where (k) — S (Tk) rkn )

=q, rn- IH( (m""a) (10)

m+1+Db)

for n > 1, and g; can be obtained by normalizing the
distribution. This model has three relevant parameters
for the shape: r, 4, and b. A particular case of this
model is where r = 1. This has been called the second-
order balanced model by Karev et al. [13]. Note that the
distribution still converges when r = 1, provided b >a.
In this case it can be shown that the distribution is
approximately a power law, ¢, ~ n~**=® for large n.

As it has been argued [9,18] that data of this type can
be well represented by a power law, we further consider
the simple power law distribution

=S

where the exponent 7 is the only free parameter.

(11)
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Results

Properties of gene clusters and families

Properties of clusters generated using different values of
E.,, and f,,;, are shown for the Bacteria and Archaea
data sets in Tables 1 and 2. Although we changed the
E.,; values by many orders of magnitude and varied the
minimum length criterion considerably, the most impor-
tant properties of the clusters did not change very
much. In the Bacteria, the total number of clusters G;,,
decreased by about a factor of two from the most strin-
gent to the least stringent clustering criteria. The num-
ber of core clusters, G,,,., increased as the stringency of
clustering was reduced, and was always much less than
Gyor In each case, G(1) was large and thus ORFan clus-
ters comprised a relatively large fraction of G,,, (typi-
cally around 80%). The majority of clusters were only
found in a small number of genomes, so that }, was
small (around 2).

Properties of the family size distribution also varied to
some extent with clustering parameters, although the
main points do not depend on the choice of parameters.
The quantities Fyo;, F(1), Fjae, and 71 were calculated
for each genome and the figures shown are averages
over genomes. The majority of families were single gene
families, i.e. F(1) was close to F,,;, and n was less than
2 for all choices of the clustering parameters. However,
there were significant numbers of large families in all
cases, even for the most stringent clustering parameters.
This confirms that some genes are indeed frequently
duplicated, and large families are not simply an artifact
of the clustering technique. The final column of Tables 1
and 2, 1,,,,, is the number of genes in the largest family
in any one genome. Although the precise value of #,,,,
depends on the clustering parameters, it is always very
much larger than 1. Thus the F(n) distribution contains
a tail of large families that is very different from typical
families of only 1 or 2 genes.
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The results for the Archaea were similar to those for
Bacteria. The parasitic species Nanoarchaeum equitans
has a genome size less than half the size of any of the
other Archaea, and the presence of this species signifi-
cantly affected the clustering statistics. Therefore the
results quoted in Table 2 were calculated for 78 Archaea
excluding N. equitans.

Variation of gene family size with genome size

For the more detailed analysis in the remainder of the
paper, we used one representative set of clustering para-
meters: E,,; = 1e-20, f,,.;, = 0.7. The genomes in the two
data sets vary in terms of the number of genes they
encode. The range in Archaea is 536-5113 genes and in
Bacteria, it is 1353—-8975 genes. We wished to determine
whether there were any variations in the family size dis-
tribution correlated with the number of genes. The
mean family size per genome (1) displayed a significant
increasing trend with Ny, (Fig. 2a), with Archaea hav-
ing a significantly greater slope (0.087 per thousand
genes) than Bacteria (0.047 per thousand genes). By
definition F,, = Ngms /1, so F,, also increases with
Ngenes» but slightly less than linearly, as shown in Fig. 2b.
There was no difference between the number of large
gene families in Archaea compared to similarly-sized
Bacteria (Fig. 3a). The fraction of large gene families
Fiargel Fror increases with Fy,, and tends towards a plateau
at 2-3% for large genomes (Fig. 3b). The x—intercept is
at about 1200 families, suggesting a minimum threshold
genome size below which large gene families are absent
or very rare.

Archaea typically have smaller genomes than Bacteria,
but in both taxonomic groups larger genomes tend to
have larger gene families. This is not bound to be the
case, it could simply have been that larger genomes had
a larger total number of families and that the mean
family size stayed the same. The fact that the mean

Table 1 Properties of gene clusters from Bacteria. Notation is defined in the Methods section.

Clustering parameters

Distribution of clusters across genomes

Distribution of family sizes across genomes

Ecur fin Grot G(1) Geore E Fot F(1) Fiarge n Nmax
1e-30 0.8 151049 128755 56 1.78 2928 2682 89 1.18 150
1e-30 0.7 143623 121073 68 1.84 2877 2614 9.5 1.20 182
1e-30 0.6 139204 116677 81 1.88 2838 2566 10.5 1.21 189
1e-20 0.8 129357 108673 66 1.97 2765 2470 120 124 187
1e-20 0.7 119492 98717 79 2.07 2689 2372 134 1.28 189
1e-20 0.6 113318 92701 96 213 2625 2295 13.2 1.31 31
Te-10 0.8 109361 91573 78 213 2537 2199 17.6 1.35 189
1e-10 0.7 96666 79084 98 2.29 2408 2043 19.5 142 200
1e-10 0.6 88270 71113 119 240 2301 1921 20.1 148 452

Te-5 0.8 101042 84903 88 2.15 2365 2016 233 1.45 214

Te-5 0.7 86857 71156 107 233 2203 1832 252 1.55 500

Te-5 0.6 77111 62136 123 243 2038 1667 259 1.68 791
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Table 2 Properties of gene clusters from Archaea. Notation is defined in the Methods section.

Clustering parameters

Distribution of clusters across genomes

Distribution of family sizes across genomes

Ecur frmin Gror G(1) Geore E Fior F(1) Flarge n Nmax
1e-30 0.8 66742 51882 66 2.38 2036 1867 34 1.14 80
1e-30 0.7 63590 48690 77 246 2009 1830 37 1.16 81
1e-30 06 61928 47109 83 251 1989 1807 4.0 1.17 20
1e-20 0.8 55885 42059 84 2.72 1946 1738 45 1.19 82
1e-20 0.7 51670 37875 105 2.88 1905 1684 50 1.22 91
1e-20 0.6 49379 35751 120 2.96 1875 1646 52 1.24 106
1e-10 0.8 46648 34801 105 3.01 1798 1548 6.9 1.29 94
Te-10 0.7 41153 29612 132 3.26 1722 1455 9.2 1.35 106
Te-10 0.6 37747 26530 157 343 1661 1382 10.6 140 156

Te-5 0.8 42850 32258 120 3.05 1677 1411 12.2 1.39 95

Te-5 0.7 36653 26571 140 333 1565 1291 16.7 148 129

Te-5 0.6 32574 23042 156 3.50 1463 1187 19.1 1.59 197

family size increases with genome size means that gene
duplication plays a significant role in the evolution of
genome size. The steeper slope in mean family size
within the Archaea may indicate that gene duplication
plays a somewhat more prominent role in genome
expansion than in Bacteria, or that Archaea preferen-
tially discard duplicate genes during genome contrac-
tion. In both Bacteria and Archaea, genome size is
influenced both by innovation of new families and by
duplication of genes within a family.

Relationship between gene family size and the number of
genomes in which the family is found

As defined in the Methods section, k is the number of
genomes that have at least one gene in a given cluster,
and G(k) is the number of clusters that contain genes
from k genomes. The G(k) distributions are shown for
Bacteria and Archaea in Figures 4(a) and 5(a). As
expected, these are U-shaped distributions with large
numbers of clusters in only one or a small number of
genomes, fewer clusters with intermediate k, and a sub-
stantial number in all or almost all genomes. The peak
of core genes on the right of the U is relatively small in
both datasets because the genomes are very diverse and
there are few core genes. We intend to investigate the
factors determining the shape of G(k) in more detail in
future work. However, at this point, we wish to focus on
the relationship between the mean family size, 5, within
each cluster and the number of genomes, &, in which
the cluster is found.

In Figures 4(b) and 5(b) we plot 5 as a function of k
for the representative data sets. Each point represents
one cluster. For the smaller k there are many points
superimposed, as the 7 values are always rational frac-
tions. The solid line shows the average 5 for all clusters
with the same k. In both cases, this shows a steady
increase from very slightly more than 1 for k = 1, to

about 2 for the core clusters. We conclude that almost
all ORFan genes are in single gene families, but genes
that are present in larger numbers of genomes have a
greater probability to be part of multi-gene families in a
given genome, i.e. more widespread genes are more
likely to be duplicated. Nevertheless, the mean 5 is
only around 2 or less, even for large k, which means
that there are many core genes that also exist as single
gene families.

It is clear from looking at the points for the individual
clusters in Figures 4(b) and 5(b) that there are some
clusters with 5 values much larger than the mean.
These unusual clusters are found both at high and low
k. Clusters with high k and high 7 are presumably core
clusters containing large gene families in all genomes,
whereas clusters with low k and high 7 are probably
the result of recent rapid duplication within a closely
related group of genomes. To investigate this in more
detail, we looked at the annotation of the genes in the
clusters with large ;. Additional File 1, Table 7 and
Additional File 1, Table 8 list the clusters with the lar-
gest p in Bacteria and Archaea. The most frequent
Genbank annotation of the genes in each cluster is
given in the tables. It was found that the core cluster
with the maximum 7 consisted of genes annotated as
ABC transporters in both cases. ABC transporters have
a wide range of related functions and are known to be
widespread in many genomes [22]. We found that there
were many separate clusters in our analysis that con-
tained genes annotated as ABC transporters, covering a
wide range of substrate specificities. These genes are
rapidly evolving and duplicating and appear to be diver-
sifying fast enough to cause the initiation of many new
clusters of sequences that are not grouped together
according to the criteria we used for clustering.

Additional File 1, Table 7 and Additional File 1, Table
8 also show the high ;; genes that were present in only
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Figure 2 a) Mean family size (ﬁ) against genome size (Ngenes) for genomes of 92 Bacteria () and 79 Archaea (°), both clustered at £, = 1e-20
and fi, = 0.7. Analysis of variance showed a significant effect of Nyenes o0 71 (F(1, 167) = 42154, p << 0.001) and a significant interaction
between Ngene; and taxa group (F(1, 167) = 28.27, p << 0.001), indicating that the slopes for Bacteria and Archaea were significantly different.
Least-squared linear regressions are thus shown separately for Bacteria (dashed line, 7 =1.114 + 0.0000469 X Ngenes ) and Archaea
(solid line, 1 =1.015 + 0.0000866 X Ngenes ). (b) Total number of families (F,oy) against Nyenes for Bacteria and Archaea, clustered as
above. Lines are the regressions from (a), defined by the relation F,, = Ngenm /n.
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Figure 3 (a) Number of large gene families (F,,4) against total number of gene families (F,,) in the genomes of 92 Bacteria (W) and 79 Archaea
(), both clustered at £.,; = 1€-20 and f,;, = 0.7. Analysis of variance showed a significant effect of Fio; 0N Figrge (F(1, 167) = 1181.8, p << 0.001)
but not of taxa group. The least-squared linear regression is thus shown for the combined Bacteria and Archaea dataset (solid line, Figrge = =354
+0.0298 X Fyoy); the x-intercept for this line is at f, = 1186. (b) Fraction of large gene families (Figge/Fror) @gainst Fiy, clustered as above. Line is
the regression from (a), divided by F.
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families with n > 20. Hence the apparent spike in these distributions.
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Figure 6 Maximum Likelihood fits of five models to the mean family size distribution F(n) in genomes from (A) 92 Bacteria and (B) 79 Archaea
clustered at £, = 1e-20 and f,,,;, = 0.7. BDI3 is the best fit for the constituent genomes. As there are few families larger than n = 20, the data
point at n = 20 shows the sum of all families with n > 20, and the theory points at n = 20 show the sum of the predicted frequencies of all
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a single genome. It was found that many of these genes
were transposable elements. As these genes are not
widely distributed, we presume they have arisen recently
and are duplicating rapidly due to their own transposase
activity, even if they are not beneficial to the organism.
This contrasts with genes like the ABC transporters,
that may not be duplicating particularly rapidly, but
which are presumably maintained in the genome in
multiple copies because of their beneficial function to
the organism. It also appears that there are a few speci-
fic genomes in which highly-duplicated, highly-localized
genes are over-represented, e.g. among the Bacteria,
Haliangium ochraceum DSM 14365 and Bacillus tusciae
DSM 2912, and within the Archaea, Methanospirillum
hungatei JE-1 and Sulfolobus solfataricus P2. In the case
of Haliangium ochraceum, one of the largest genomes
we investigated (9.4 MB), many copies of a cluster of 6
ORFan genes are concentrated into a small region of
the genome, flanked variously by mobile elements like
transposases and prophage-associated genes, possibly
indicating recent duplication events that are out of equi-
librium with the rest of the genome.

Family size distributions

The quantitative models defined in the Methods section
were fitted to the data using numerical methods to opti-
mize InL. Figure 6 shows the mean F(n) distribution for
the Bacteria and the Archaea and the fits of the various
models. Model BDI1 gave a poor fit to the data, overes-
timating the frequency of families in the range 2-5 and
underestimating the frequency of large families by many
orders of magnitude. Models BDI2 and BDI3 gave much

better fits; hence it is clearly useful to introduce more
than one class of gene. The fit for BDI4 appeared very
similar to BDI3 and is not shown. The generalized
model, GBD], fit noticeably better than BDII, but still
considerably underestimated the frequency of large
families. The power-law fit performed similarly to mod-
els BDI2 and BDI3 at the least restrictive clustering
parameters but provided poorer fits as clustering
became more strict.

To select the best fitting model in a more principled
way, Akaike’s Information Criterion (AIC) was used
[23]. This is defined as AIC = 2(-InL + number of free
parameters). The model with the smallest AIC is to be
preferred because it has a high likelihood without over-
fitting the data. The AIC can be applied when fitting

Table 3 Fitting parameters for gene clusters from
Bacteria using the BDI3 model.

Ecur fonin o033 & & & 4] r I3
1e-30 08 0848 0767 0203 0030 0102 0709 0969
1e-30 07 0837 0726 0246 0028 0110 0722 0978
1e-30 06 0891 0753 0233 0014 0138 0804 0991
1le-20 08 0870 0771 0205 0024 008 0680 0963
1e-20 07 0837 0753 0224 0023 0106 0706 0972
1le-20 06 08380 0764 0222 0014 0130 0761 0985
le-10 08 0880 0823 0161 0016 0082 0649 0961
le-10 07 0891 0799 0183 0018 008 0650 0962
le-10 06 0935 0817 0172 0011 0106 0710 0979

1e-5 08 0761 0850 0136 0013 0064 0607 0957

1e-5 07 0826 0841 0146 0013 0070 0623 0962

1e-5 06 0837 0827 0159 0015 0070 0614 0962
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Table 4 Fitting parameters for gene clusters from
Archaea using the BDI3 model.

Ecur foin oo & & & 4] 2 3
1e-30 08 0545 0829 0160 0011 0063 0544 0936
1e-30 07 0597 0810 0179 0011 0064 0546 0939
1e-30 06 0646 0824 0.166 0010 0072 0578 0951
1e-20 08 0506 0767 0218 0015 0073 0553 0932
1e-20 07 0584 0749 0237 0014 0075 0575 0945
1e-20 06 0582 0761 0227 0012 0087 0610 0954
1e-10 08 0595 0741 0241 0018 0094 0649 0943
le-10 07 0481 0716 0260 0024 0103 0659 0945
le-10 06 0532 0715 0263 0022 0120 069 0954

Te-5 08 0519 0721 0231 0047 0303 0661 0924

Te-5 07 0684 0687 0251 0062 0108 0655 0935

Te-5 06 0873 0718 0236 0046 0141 0727 0961

each genome individually because the families in one
genome are assumed to be independent. However, it
cannot be applied to fitting the mean data because
families from the same cluster in different genomes are
phylogenetically related and are not independent. We
applied the AIC analysis to each of the genomes in each
of the two sets separately. Model BDI3 was the best fit-
ting model for 85% of the 92 Bacteria genomes under
each of the 12 clustering regimes. Model BDI2 was sub-
stantially worse, fitting best in only 8% of cases. Model
BDI1 was never the best fitting model for any of the
Bacteria, nor was the GBDI model. A simple power law
was occasionally the best fit (7%). Model BDI4 was
always a poor choice by AIC, indicating that the four-
class model was over-fitting the data.

The 79 archaeal genomes were most commonly fit
best by model BDI3 (60% of clusterings), which was
selected much more frequently than BDI2 (18%). Only
the reduced genome of N. equitans was ever best fit by
BDI1. Model BDI4 was very rarely the best fit for
Archaea; GBDI was never the best fit. A simple power
law was the best fit for a number of Archaea (22% of
clusterings).

Having established that the preferred model is BDI3,
we show the fitted parameters for this model in Tables
3 and 4 for Bacteria and Archaea, respectively. The col-
umn fzpy3 shows the fraction of the individual genomes
for which the BDI3 model was the preferred model
according to AIC. The & and r; columns show the best
fit parameters to the average F(n) for all the genomes in
each set. During the fitting procedure, the r values were
constrained so that r; <ry <r3. The fitted parameters
were qualitatively similar independent of clustering
parameters chosen or dataset examined. There is always
a large fraction of genes in class 1: ] is between 73 and
85% in Bacteria. The corresponding values of r; are
around 0.1. From Fig. 1 it can be seen that n is very
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close to 1 in this range of r. Thus, these genes are
almost always in single-gene families. Class 2 genes have
frequency between 14% and 25%, with r, in the range
0.6-0.8. The corresponding # is between 1.5 and 2.
These genes are also usually in fairly small families.
Only 1-3% of genes fall in class 3, and these have r3 =
0.95 or greater, which corresponds to # around 6 or lar-
ger. The conclusions for Archaea are similar to those
for Bacteria, although the mean value of r; is lower than
for Bacteria, indicating that the largest families are not
quite so large.

From these results, it can be seen that in order to
explain the large number of single-gene families seen in
the data, it is necessary to have a large fraction of genes
with relatively small values of r. If r is small, the prob-
ability of generating very large gene families is very low.
This is the reason why model BDI1 cannot fit the data
with only a single class of genes. The data contains a
significant number of large gene families. The fitting
procedure shows that this is best explained by having a
fairly small fraction of genes with an r that is substan-
tially larger than that for the majority of genes.

As the sizes of genomes differ within each data set, we
wish to look at the F(n) distributions in individual gen-
omes. For both the Bacteria and Archaea, we chose the
smallest and largest genomes and a third genome with
size close to the median. Figure 7 show the data and the
fits to model BDI3 for each of these genomes. The two
large size genomes both contain many large families
with # > 10. The two medium-sized genomes each con-
tain a handful of large families. The smallest bacterium
in our data, Atopobium parvulum, with 1353 genes,
contains one family of 12 and one of 20, with the rest
being 6 or fewer. The smallest archaeon, N. equitans,
with only 536 genes contains no families with n > 2.
These show that there are significant differences among
organisms in the distribution of family sizes. Large
families are rare or absent in small genomes.

Discussion and conclusions

The aspect of our data that has previously been studied
most frequently is the distribution of family sizes within
one genome, F(n). It was shown by Huynen and van
Nimwegen [9] that this distribution has a tail of large
families that dies away slowly with n; hence it resembles
a power law rather than an exponential. This has since
been confirmed by many authors and several mathema-
tical models have been proposed to explain it. There are
three qualitatively different explanations: (i) family sizes
are in constant expansion; (ii) the distribution is station-
ary and second-order balanced; (iii) the distribution is
stationary and there are multiple classes of genes. We
will compare these explanations and explain why we
favour case (iii).
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Figure 7 Maximum Likelihood fits of model BDI3 to the family size distribution F(n) in genomes of (A) 3 Bacteria and (B) 3 Archaea, clustered at
Ecye = 1€-20 and f,;, = 0.7. The selected taxa are the smallest, median, and largest genomes in the clustered datasets; genome size, as number
of protein coding sequences, is shown in parentheses following each taxa name.
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By ‘stationary’ we mean that the number of families of
any given size is not varying with time on average in
any one genome. This can occur in the models used
here if r < 1, i.e. if duplication is less frequent than dele-
tion. Under these circumstances, families do not grow
indefinitely and are bound to become extinct eventually.
The rate of innovation of new families balances the
extinction rate. In contrast, if duplication is more fre-
quent than deletion, then both the total number of
genes per genome and the number of genes in indivi-
dual families increase with time. The models of Yanai et
al. [11], Qian et al. [12] and Kamal et al. [16] are exam-
ples of explanation (i). These show that if family sizes
are in constant expansion, then the shape of F(n) can
converge to a power law after the expansion process has
been in operation for some time. However, there is con-
siderable variation in genome sizes in the data, and gen-
omes can increase or decrease in size relatively easily
over the time scale of diversification of Bacteria and
Archaea. There are many examples of parasitic or endo-
symbiotic microbes whose genomes have reduced in size
in comparison to their closest free-living relatives. It can
also be seen from Figure 7 that genomes of different
sizes have different family size distributions. Our inter-
pretation is that duplication and deletion rates vary
among species. If these rates change along an evolution-
ary lineage, it will take some time for the family size dis-
tribution to come into equilibrium with the new
parameters. If we fit a stationary model to data from dif-
ferent genomes, we are assuming that there has been
sufficient time for each genome to reach a different

equilibrium. This seems reasonable, given that rates of
gene gain and loss have been estimated as very high
[24], and it seems closer to the truth than the assump-
tion that there is a constant rate of non-stationary
expansion.

Explanation (ii) is illustrated by the GBDI model (see
Eq. (10)). This model was not a particularly good fit to
our data, but we wish to make a few comments about
the parameters that emerged when fitting this model. It
was found that the value of r converged to 1 and the
value of a converged to 0 for every genome analyzed
(boundary conditions were r < 1 and a > 0). Thus b was
the only remaining parameter in the fit. The case r = 1
is the second-order balanced model of Karev et al. [13],
and it is known that the stationary distribution is close
to a power law in this case. Nevertheless, we do not find
this model very appealing, because it is not intuitively
clear why the ratio of insertions to deletions should be
tuned exactly to 1 in every case. Also, it is not easy to
interpret what the fitting parameters a and b mean
biologically.

In contrast, the BDI models depend on parameters i,
A and J that have a simple biological interpretation. The
distribution for the basic BDI1 model does not resemble
a power law, but when different classes of genes are
included with different ratios of duplication to deletion,
the model fits the data well. This is explanation (iii) for
the family size distribution. The simple power law
model (Eq. (11)) was included in our analysis as a null
model because it has only one parameter, but according
to AIC, model BDI3 was a better fit in the majority of
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cases. The existence of several classes of genes with dif-
ferent rate parameters has also been observed by Wojto-
wicz and Tiuryn [17] and Hughes and Liberies [18].

Although we found a minimum of three gene classes
were necessary to fit the genomic data, in reality the
number of classes could approach the total number of
families in a genome. The fact that different types of
genes in a genome should have different duplication and
deletion rates seems intuitively reasonable because these
rates depend on selection. A duplication or deletion
arising in an individual cell could be beneficial, neutral
or deleterious, and this will influence the likelihood of
this variant becoming widespread. Selection parameters
are unlikely to be the same for every gene family in the
genome.

When fitting the BDI models, we can only estimate
the ratio 1/J, and not the two separate rates. Self-repli-
cating elements provide one mechanism by which a
gene family can be preferentially duplicated over another
and thus affect A. A high-r class can then represent both
self-replicating (high-1) and useful (low-J) gene families.
Likewise, low-r classes can represent deleterious (high-9)
gene families, neutral or ‘junk’ gene families having
rapid turnover rates, and core or ‘essential’ gene families
for which the loss of the last member is fatal to the
organism.

While gene function is not expected to correspond
explicitly with the gene classes described above, we
might expect some association between functional cate-
gory and class. For example, genes involved in transcrip-
tional regulation may be found more frequently in
multi-gene (high-r) families because they can be utilized
repeatedly throughout the genome, whereas genes
involved in specialized metabolic functions may be
found more frequently in single-gene (low-r) families.
Observations from comparative genomics support this
prediction. Molina and van Nimwegen [25] found that
the abundance of protein domains associated with ‘regu-
lation of transcription’ scaled quadratically with total
number of domains in a genome, whereas ‘metabolic
process’ domains scaled less than linearly. In general,
different functional categories of genes, each composed
of numerous gene families, have been found to vary in
representation within genomes and follow scaling laws
which may [26,27] or may not [25,28] differ by lineage.

We note that Wojtowicz and Tiuryn [17] have consid-
ered an extra process, occurring at rate «, in which an
existing gene mutates to a new kind of gene; thus one
family is reduced in size by one and a new family of size
one is initiated at the same time. The result of this is
that the distribution has the same shape, but depends
on the ratio A/(d + ), instead of A/4. This is interesting
theoretically, but as we can only measure the ratio from
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the stationary distribution, it is not helpful to add x to
the model.

The next step in analysis of data of this type would be
to look at the dynamics of the processes generating the
patterns of gene copy numbers across species on a phy-
logenetic tree. This removes some of the redundancy in
parameters, and may allow more detailed conclusions
about the mechanisms of gene family evolution than can
be obtained from stationary family size distributions.
Several models of this type have been investigated
[29-31] and we intend to continue on these lines. How-
ever, the k process would be difficult to consider in a
phylogenetic model because it would mean that changes
in copy numbers in different families would not be inde-
pendent of one another.

There are several aspects of our data that go beyond
the family size distribution, and these have been studied
less frequently by other authors. One of these is the so-
called gene frequency spectrum, G(k), which is the num-
ber of clusters with one or more genes in k genomes.
This is usually plotted for orthologues only, in which
case there is either 0 or 1 gene per genome in the clus-
ter. In our case, we included paralogues in the same
cluster. This does not alter the shape of the distribution
very much. There is still a U shape with a large peak at
k =1 and a smaller peak of core genes in all genomes.
The infinitely-many genes model, introduced by Baum-
dicker et al. [8], predicts the shape of the spectrum
under the assumption that each type of gene is intro-
duced into the set of genomes only once, that it can
spread to new genomes as the lineages of genomes
divide, and that it can then be deleted independently
from any genomes. This model qualitatively explains the
U-shaped distribution, and we are currently developing
models of this type in order to more quantitatively fit
the G(k) distribution in our data. Baumdicker et al. [8]
assume that the genealogical tree relating the genomes
in the sample can be described by a coalescent tree,
which is what we would expect for neutral evolution
within a species. It is not yet clear whether this can be
applied to describe the gene frequency spectrum across
species (e.g. all Bacteria or all Archaea), as the tree aris-
ing from speciation may not resemble a coalescent tree.
A quantity related to G(k) is the distribution of the total
number of genes in a cluster. Enright et al. [10] plotted
this for genes in MCL-derived clusters, and found that
it was approximately a power law over quite a wide
range of n. Developing a good quantitative model for
this would require a combination of a branching process
that generates the tree of genomes and a duplication/
deletion model to describe gene families in each lineage.

The mean family size can be defined in two ways:
either within a cluster, 5, or within a genome, 7.
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Comparison of ; for different clusters revealed that
more widespread clusters (i.e. larger k) tend to have lar-
ger families. This makes sense for genes that are benefi-
cial. A gene that was beneficial in the genome in which
it originated would remain in that genome for long
enough to be duplicated and for long enough for a spe-
ciation to occur. Hence beneficial genes are more likely
to have both paralogues and orthologues. The converse
of this argument is that genes that are not beneficial in
the genome in which they arise are likely to be deleted
rapidly before duplication or speciation. It thus makes
sense that 5; is very close to 1 for ORFan clusters with
k = 1. The fact that G(1) is so large shows that there is
a high rate of innovation of new gene families in indivi-
dual lineages, and suggests that most of these families
are not useful enough to be retained over long times.

In future work we will examine the dynamical aspects
of gene family evolution to further investigate the pro-
cess of gene innovation and to distinguish between
innovation via evolution within a lineage and innovation
via horizontal transfer from a genome outside the cur-
rent data set. Horizontal gene transfer (HGT) clearly
plays a role in bacterial genome evolution and one of
our future goals is to understand this in a quantitative
way. However, the stationary distribution of genome
families in individual genomes is not instructive regard-
ing HGT because it is not possible to distinguish what
fraction of the innovation rate represents origin within
the lineage and what fraction represents insertion of a
gene by HGT. In our model we assume that the rate of
gain of additional genes in a family is proportional to
the number of genes already present. Interpreted as
gene duplication, this means that genes in larger families
are more frequently duplicated. However, this could also
be interpreted as HGT if the majority of horizontal
transfer events are between closely related organisms
that form an effective bacterial “species” via frequent
exchange of genes. In this case the number of genes in
the family will be similar in all the genomes from which
transfer is occurring, and the rate of gain of a gene by
HGT will be proportional to the number of genes
already present. Along these lines, Treangen and Rocha
[32] have recently reported that the majority of the
gains of additional members of multi-gene families
occur by HGT rather than gene duplication. However, it
is difficult to reconcile their findings with the observa-
tion that the majority of gene families are only found in
a small number of genomes, which would not be the
case if there were frequent repeated transfers of mem-
bers of the same gene family. If there is a high diversity
of genes in the pool from which genes can be gained by
HGT, as suggested by the large numbers of singletons
observed even in closely related organisms, then it is
highly unlikely that a gene in the same gene cluster will
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be gained more than once. Together with our forthcom-
ing phylogeny-based model, a more careful accounting
of gene gains and losses will be required to reconcile
these discrepancies.

Comparison of 7 for different genomes revealed that
larger genomes have larger mean family sizes as well as
larger number of families in total. This raises the ques-
tion of why some genomes are larger than others
among Bacteria and Archaea. The genomes of these
organisms appear relatively streamlined, in the sense
that there are relatively few non-coding regions and
repetitive sequences in comparison to Eukaryotic gen-
omes. This suggests that there is a high rate of deletion
of junk DNA or that there is a cost to the replication of
excess DNA or that there is a cost to possession of
genes that do not produce beneficial proteins. It is pos-
sible that larger genomes are larger because these organ-
isms occupy niches where a more diverse set of genes is
necessary or beneficial to the organism. On the other
hand, it could be that larger genomes get larger simply
because the rate of deletion of non-functional genes is
lower in these species or because the cost of non-func-
tional genes is less, so that the genome can tolerate a
higher proportion of genes that are not beneficial. This
latter explanation fits with our observation that there is
a higher proportion of duplicate genes in larger gen-
omes (Fig. 3b). In contrast, the smallest genomes con-
tain small numbers of large gene families. This suggests
that there is a rapid rate of deletion of non-beneficial
genes and significant selection against retention of these
genes. Looking at gene gain and loss in a dynamical
phylogenetic model would again help to clarify this,
because one could estimate rates of gene gain and loss
in different lineages.
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