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Abstract

Background: Biological networks provide fundamental insights into the functional characterization of genes and
their products, the characterization of DNA-protein interactions, the identification of regulatory mechanisms, and
other biological tasks. Due to the experimental and biological complexity, their computational exploitation faces
many algorithmic challenges.

Results: We introduce novel weighted quasi-biclique problems to identify functional modules in biological
networks when represented by bipartite graphs. In difference to previous quasi-biclique problems, we include
biological interaction levels by using edge-weighted quasi-bicliques. While we prove that our problems are NP-
hard, we also describe IP formulations to compute exact solutions for moderately sized networks.

Conclusions: We verify the effectiveness of our IP solutions using both simulation and empirical data. The
simulation shows high quasi-biclique recall rates, and the empirical data corroborate the abilities of our weighted
quasi-bicliques in extracting features and recovering missing interactions from biological networks.

Introduction
Cellular processes such as transcription, replication, meta-
bolic catalyses, or the transport of substances are carried
out by molecules that are associated in functional mod-
ules, and are often realized as physical interaction within
protein complexes. These physical interactions form mole-
cular networks. Analyzing these networks is a thriving
field (e.g. [1]) and has extensive implications for a host of
issues in biology, pharmacology [1], and medicine [2].
Capturing the modularities of molecular networks accu-
rately will gain insights into cellular processes and gene
function. Yet, before such modularities can be reliably
inferred, challenging computational problems have to be
overcome.
These computational problems typically result from

incomplete and error-prone networks that largely obfus-
cate the reliable identification of modules [3,4]. Often,
molecular interactions can not be measured to the

accuracy of the genome sequences, leaving some guess-
work in identifying modularities correctly. Some mole-
cular interactions are highly transient and can only be
measured indirectly, while others withstand denaturing
agents. Functional interaction does not even have to be
realized via physical interactions. Thus, computational
methods for capturing modularity can not directly rely
on presence or absence of interactions in molecular net-
works and need to be able to cope with substantial
error rates.
Unweighted quasi-biclique approaches have been used

in the past to identify modularity in protein interaction
networks when presented as bipartite graphs that are
spanned between different features of proteins, e.g. bind-
ing sites and domain content function [3,5]. An example
is depicted in Figure 1. While these approaches aim to
solve NP-hard problems using heuristics, they were able
to identify some highly interactive protein complexes
[6,7].
Unweighted quasi-biclique approaches are sensitive to

the quantitative uncertainties intrinsic to molecular net-
works. Interactions are only represented by an unweighted
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edge in the bipartite graph if they are above some user-
specified threshold. Therefore, unweighted quasi-biclique
approaches are prone to disregard many of the invaluable
interactions that are below the threshold, and treat all
interactions above the threshold the same. Further, some
interactions may or may not be represented due to some
seemingly insignificant error in the measurement. Conse-
quently, many crucial modules may be concealed and
remain undetected by using unweighted quasi-biclique
approaches.
Here we introduce novel weighted quasi-biclique pro-

blems by using bipartite graphs where edges are
weighted by the level of the corresponding interactions,
e.g., Figure 1. We show that these problems are, similar
to their unweighted versions, NP-hard. However, in
practice, exact Integer Programming (IP) formulations
can efficiently tackle many NP-hard real-world problems
[8]. Therefore, we describe exact Integer Programming
(IP) solutions for our weighted quasi-biclique problems.
Furthermore our IP solutions exploit the sparseness
of molecular networks when represented as bipartite
graphs. This allows to verify the ability of our IP solu-
tions using a moderately sized genetic network [9], and
simulation studies. In addition our IP solutions can pro-
vide exact results for instances of the unweighted quasi-
biclique approaches that were previously not available.

Related work
Maximal bicliques in biological networks are self-
contained elements characterizing functional modules.

In protein interaction networks they manifest as interac-
tive protein complexes (e.g., [3,7]). Bipartite graphs are
graphs whose vertices can be bi-partitioned into sets X
and Y such that each edge is incident to vertices in X
and Y. A biclique is a subgraph of a bipartite graph
where every vertex in one partition is connected to
every vertex in the other partition by an edge. A biclique
is maximal if it is not properly contained in any other
biclique, and it is maximum if no other maximal bicli-
ques have larger total edge weights. The problem of
finding maximum bicliques is well studied in the litera-
ture of graph theory and is known to be NP-complete
[10] and effective heuristics for this problem have been
described and used in various applications [11]. How-
ever, bicliques are too stringent for identifying modules
in real world networks [12]. For example a module is
not identified through a biclique that is incomplete by
one single edge. Quasi-bicliques are partially incomplete
bicliques that overcome this limitation. They allow a
specified maximum number of edges to be missed in
order to form a biclique [13]. While quasi-bicliques are
less stringent for the identification of modules, they
might contain genes that are interacting with only a few
or none other of the genes. Such situations occur when
the missing edges are not homogeneously distributed
throughout. The δ-quasi-bicliques (δ-QB) [14] allow to
control the distribution of missing edges by setting
lower bounds, parametrized by δ, on the minimum
number of incident edges to vertices in each of the ver-
tex sets in a δ-QB.

Figure 1 An example of a quasi-biclique. A quasi-biclique (darker nodes and solid edges) identified from a gene interaction network in one
of our experiment sets where the edge weights are interaction scores. The bipartite graph is unweighted if only the existence of edges are
considered.
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Our contributions
Here we define a “weighted” version of δ-QB, called a,b-
weighted quasi-bicliques (a,b-WQB), to improve on the
identification of modules in molecular networks by
using the interaction levels between genes. Thus, a,b-
WQB’s may be better applicable to handle noisy data
sets as they distribute the overall missing information
across the vertices of the quasi-biclique as shown in our
simulations. We define two versions of a,b-WQB’s, each
in terms of the amount of weight the quasi-biclique is
allowed to miss. The two different versions of weighted
quasi-bicliques provide flexibility in choosing the miss-
ing weight. For the first version, called the percentage
version, we define the missing weight in terms of the
percentage of number of vertices in the quasi biclique.
While for the second version, called the constant ver-
sion, the missing weight is defined as a constant. The
need for constant version weighted quasi-bicliques arises
from the fact that, for certain applications, the weight
allowed to be missed does not depend on any of the
graph parameters and is a constant. Finding a maximum
a,b-WQB in a given edge weighted bipartite graph is
NP-hard, since it is a generalization of the NP-hard pro-
blem to find δ-QBs in unweighted bipartite graphs [3].
We also introduce a “query” version of the maximum a,
b-WQB problem that allows biologists to focus their
analyzes on genes of their particular interest. Given a
network and specific genes from this network, called
query, the query problem is to find a maximum
weighted a,b-WQB that includes the query. We prove
this problem to be NP-hard. While the maximum a,b-
WQB problem and its query version are NP-hard, we
provide exact IP solutions to solve both problems. By
reducing the number of required variables and exploit-
ing the sparseness of bipartite graphs representing mole-
cular networks, our solutions solve moderate-sized
instances. This allows us to verify the applicability of a,
b-WQB by analyzing the most complete data set of
genetic interactions available for the Eukaryotic model
organism Saccharomyces cerevisiae. Our results not only
extract meaningful yet unexpected quasi-bicliques under
functional classes, but also suggest higher possibilities of
recovering missing interactions not presented in the
input. A preliminary version of this work appeared in
ISBRA 2011 [15]. In this paper, we extend the usage of
the parameters a and b such that the edge weight
threshold can be either a ratio of the a,b-WQB size or a
constant. The time complexity and the application of
this extended a,b-WQB are both discussed.

Results and discussion
Before analyzing our findings in biological networks, we
first introduce formal definitions of weighted-quasi

bicliques (WQB) and then discuss the results of apply-
ing the WQB as a data mining tool.

Preliminaries
A bipartite graph, denoted by (U + V, E), is a graph
whose vertex set can be partitioned into the sets U and V
such that its edge set E consists only of edges {u, v}
where u Î U and v Î V (U and V are independent sets).
Let G := (U + V, E) be a bipartite graph. The graph G is
called complete if for any two vertices u Î U and v Î V
there is an edge {u, v} Î E. A biclique in G is a pair (U’,
V’) that induces a complete bipartite subgraph in G,
where U’ ⊆ U and V’ ⊆ V. Since any subgraph induced by
a biclique is a complete bipartite graph, we use the two
terms interchangeably. A pair (U, V) includes another
pair (U’, V’) if U’ ⊆ U and V’ ⊆ V. In such case, we also
say that the pair (U’, V’) is included in (U, V). A pair (U,
V ) is non-empty if both U and V are non-empty. A
weighted bipartite graph, denoted by (U + V, E, ω), is a
complete bipartite graph (U + V, E) with a weight func-
tion ω : E ® [0, 1].
Maximum weighted quasi-biclique (a,b-WQB) problem
Definition 1 (a,b-WQBP )). Let G := (U + V, E, ω) and a,b
Î [0, 1]. A percentage version a,b-weighted quasi-biclique,
denoted as a,b-WQBP, in G is a non-empty pair (U’, V’)
that is included in (U, V ) and satisfies the two properties:
(1) ∀u Î U’ : ∑vÎV’ ω(u, v) ≥ a |V’|, and (2) ∀v Î V’ :

∑uÎU’ ω(u, v) ≥ b|U’|.
Definition 2 (a,b-WQBC ). Let G := (U + V, E, ω)

and a,b Î [0, ∞). A constant version a,b-weighted
quasi-biclique, denoted as a,b-WQBC, in G is a non-
empty pair (U’, V’) that is included in (U, V ) and satis-
fies the two properties:
(1) ∀u Î U’ : ∑vÎV’ ω(u, v) ≥ |V’| - a, and (2) ∀v Î V’

: ∑uÎU’ ω(u, v) ≥ |U’| - b.
In either version, the weight of an a,b-WQB is defined

as the sum of all its edge weights.
Definition 3 (Maximum a,b-WQBP(C)). A a,b-WQBP

(C), is a maximum a,b-WQBP(C) of a weighted bipartite
graph G := (U + V, E, ω), if its weight is at least as
much as the weight of any other a,b-WQBP(C) in G for
given values of a and b
Problem 1 (a,b-WQBP(C)).
Instance: A weighted bipartite graph G := (U + V, E, ω),

and values a, b Î [0, 1]([0, ∞)).
Find: A maximum weighted a,b-WQBP(C) in G.
Note that, we use the same notation (a,b-WQBP(C))

for a, b-weighted quasi-biclique and maximum weighted
a, b-weighted quasi-biclique problem of either version.
The context in which we use the notation will make the
difference clear. Also, when we just say a,b-WQB, the
context will make clear if we are referring to percentage
version or constant version or both.
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Query problem
A common requirement in the analysis of networks is to
provide the environment of a certain group of genes,
which translates into finding the maximum weighted a,
b-WQBP(C) which includes a specific set of vertices. We
call this the query problem and is defined as follows.
Problem 2 (QueryP(C)).
Instance: A weighted bipartite graph G := (U + V, E,

ω), values a, b Î [0, 1] ([0, ∞)), and a pair (P, Q)
included in (U, V).
Find: The a,b-WQBP(C) which includes (P, Q) and has

a weight greater than or equal to the weight of any a,b-
WQBP(C) which includes (P, Q).

Experiment results
Finding appropriate values for a and b is a critical part
in an application. The a and b values allow the user to
custom-tailor the search based on the weight distribu-
tion and the expected findings of the particular applica-
tion. Typically, quasi-bicliques of different a and b
values have to be analyzed by the domain experts in
order to optimize the findings. We use simulated data
sets to explore the problem of finding right a and b
values. We then use our IP model to explore a,b-
WQB’s in a real world application, a recent data set of
functional groups formed in genetic interactions. The
filtered data set, compared to the raw data, served to
investigate the role of non-existing edges in the input
bipartite graph. While mathematically equivalent in the
modeling step, a non-edge in a experimentally generated
network represents either a true non-interaction or a
false-negative. Assuming the input consists of meaning-
ful features, our preliminary results show that a,b-
WQB’s may recover missing edges with potentially
higher weights better than δ-quasi-bicliques.

Simulations
As part of simulation studies, we try to retrieve a known
maximum weighted quasi biclique from a weighted bipar-
tite graph using both versions of a,b-WQB’s. In each
simulation experiment we do the following. The pair (U,
V) represents the vertices of a weighted bipartite graph G.
We randomly choose U’ ⊆ U and V’ ⊆ V as vertices of the
known quasi biclique in G. The sizes of both U’ and V’ are
set the same and is picked randomly, but is limited to a
specific percentage of the total vertices on each side. Ran-
dom edges between the vertices of U’ and V’ in G are
introduced according to a pre-determined edge density d.
The edges between vertices of U\U’ and V\V’ of G are also
generated randomly according to a pre-determined density
d’. The edge weights of the known quasi-biclique (U’, V’)
are determined by a Gaussian distribution with a mean
mn and standard deviation dev. Weights of the edges of G
not present in the quasi-biclique are also determined by a

Gaussian distribution with a lower mean mn’ and standard
deviation dev’. We now retrieve maximum weighted a,b-
WQBP and a,b-WQBC from G by using specific values a
and b calculated as described below.
For retrieving a,b-WQBP , the values a and b are cho-

sen in two different ways. As part of the simulation we
evaluate the performance of both methods. The first
method sets both a and b to the mean of the weights of
the edges of the quasi biclique. In the second method, a
and b are calculated as given below:

α = min{Cu′ |Cu′ =
(∑

v′∈V ′ w(u
′, v′)

)/
|V ′|for all u′ ∈ U′}

β = min{Cv′ |Cv′ =
(∑

u′∈U′ w(u
′, v′)

)/
|U′|for all v’ ∈ V ′}

Similarly, for retrieving a,b-WQBC, the values a and b
are calculated as given below.

α = |V| − min{Cu′ |Cu′ =
(∑

v′∈V ′ w(u
′, v′)

)
for all u′ ∈ U′}

β = |U| − min{Cv′ |Cv′ =
(∑

u′∈U′ w(u
′, v′)

)
for all v’ ∈ V ′}

The ILP models of the corresponding a,b-WQB pro-
blems are generated in Python, and solved in Gurobi 4
[16] on a PC with an Intel Core2 Quad 2.4 GHz CPU
with 8 GB memory.
For the evaluation, let (U”, V”) represent the maxi-

mum weighted a,b-WQB returned by the ILP model.
The percentage of the vertices of U’ in U” is called the
recall of U’. Similarly, the percentage of vertices of V’ in
V” is called the recall of V’. The recalls of U’ and V’ are
our evaluation criteria. For a specific graph sizes experi-
ments were run by varying the values mn and mn’. The
values dev and dev’ were set 0.1. The densities d and d’
are set to 0.8 and 0.2. The experiments were run for
graphs of size 16 × 16, 32 × 32 and 40 × 40. Each
experiment is repeated thrice and the average number
of recalled vertices is calculated. The recall of the
experiments can be seen in Table 1. For each graph size
the first two columns represent the recall values for per-
centage version a,b-WQB’s and the third column repre-
sents the recall value for constant version a,b-WQB. As
the difference between the means increases, so does the
average recall. The second method of choosing a and b
for percentage version a,b-WQB yields a consistently
higher recall.

Genetic interaction networks
A comprehensive set of genetic interaction and func-
tional annotation published recently by Costanzo et al.
[9] is amongst the best single data sources for weighted
biological networks. The aim of our application is to
identify the maximum weighted quasi-bicliques consist-
ing of genes in different functional classes in the Cost-
anzo dataset.
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Pairwise comparisons of the total 18 functional classes
provide 153 sets. For every distinct pair (A, B) of such
classes, we build a weighted bipartite graph (UA + VB, E,
ω) where genes from functional class A are represented as
vertices in UA and genes from functional class B are repre-
sented as vertices in VB.
The absolute values of the interaction score ε, are

used as the edge weights. Values greater than 1 are
rounded off to 1. Any gene present in both the func-
tional classes A and B is represented as different vertices
in the partitions UA and VB and the edge between those
vertices is given a weight of 1. We build LP models of
both a,b-WQB versions for the bipartite graphs to iden-
tify the maximum weighted quasi-bicliques.
Biological interpretation and examples
Genes with high degree and strong links dominate the
results. In several instances, the quasi-bicliques are tri-
vial in the sense that only one gene is present in U’, and
it is linked to more than 20 genes in V’. Such quasi-
bicliques are maximal by definition but provide limited
insight. A minimum of m = 2 genes per subset was
included as an additional constraint to the LP model. It
might be sensible to implement such restrictions in the
application in general.
We observed the following with the maximum

weighted a,b-WQBP’s in the data sets. Given the low
overall weight, the a,b-WQBP’s generated with the para-
meters a = b = 0.1 were the most revealing. Though we
found many interesting quasi-bicliques in the 153 bipar-
tite graphs, we only present a couple of them here. A
notable latent set that was obtained identified genes
involved in amino acid biosynthesis (SER2, THR4,
HOM6, URE2) and was found to form a 4 × 10 maxi-
mum weighted quasi-biclique with genes coding for pro-
teins of the translation machinery, elongation factors in
particular (ELP2, ELP3, ELP4, ELP6, STP1, YPL102C,
DEG1, RPL35A, IKI3, RPP1A). These connections, to
our knowledge, are not described and one might specu-
late that this is a way how translation is coupled to the

amino-acid biosynthesis. In some cases the maximum
weighted quasi-biclique is centered around the genes
that are annotated in more than one functional class as
they provide strong weights. These genes are involved in
mitochondrial to nucleus-signaling and are examples
where our approach recovers known facts. Using the
query approach, it is possible to obtain quasi-bicliques
around a gene set of interest quickly and extend the
approach proteins of interest.
Maximum weighted a,b-WQBC’s generated from the

data sets with parameters a = b = 5 reveal the following.
Genetic interaction networks allow to study protein-
coding genes as well as genes that might only code for
RNAs. A noteworthy example was discovered in the
comparison of genes involved in nuclear transport and
those with an unknown bioprocess revealed proteins
that are part of the nuclear pore transport (POM34,
NUP60, NUP157, THP2 and POM152). They interact
with a number of genes that are lined up on chromo-
some 15 (YML033W, YML034C (SRC1) and YML035C-
A) as well as and YDR431W. Most of these genes they
interact with are annotated as “dubious” in the current
version of the Yeast Genome Database SGD [17]. SRC1
overlaps with another uncharacterized gene YML034C-
A. It would be possible that locus codes of a long RNA
are involved in nuclear transport.
Recovering missing edges
The published data sets have edges under different
thresholds removed. To sample such missing edges, we
calculate the average weight of all the edges removed in
the 153 bipartite graphs (generated above), and the cal-
culated average weight is 0.0522.
For each of the 153 maximum weighted quasi-bicliques

of either version, the missing edges induced by the quasi-
bicliques are then identified, and the average missing
edge weight e of each is calculated. The average missing
edge weight e is always greater than 0.0522. In other
words, we observe that a missing edge in a maximum
weighted quasi-biclique has a higher expected weight

Table 1 Simulation results of a, b-WQB recall

mn mn’ 16 × 16 32 × 32 40 × 40

Method 1 Method 2 Constant Method 1 Method 2 Constant Method 1 Method 2 Constant

AU AV AU AV AU AV AU AV AU AV AU AV AU AV AU AV AU AV

0.5 0.5 33 77 55 100 44 22 33 30 55 6 11 40 75 37 83 79 61 62

0.55 0.45 27 38 100 100 83 88 0 0 0 0 0 0 0 25 0 0 11 0

0.6 0.4 66 77 83 88 100 88 88 56 91 80 66 70 49 53 61 66 61 66

0.65 0.35 72 77 88 88 88 88 56 66 40 66 40 66 66 91 91 100 91 100

0.7 0.3 72 100 100 100 100 100 78 83 91 91 85 91 88 77 100 83 100 83

0.75 0.25 66 83 100 100 100 100 70 69 100 100 100 100 64 91 93 100 93 100

0.8 0.2 66 100 100 100 100 100 100 78 100 91 100 91 70 76 100 100 100 100

Recall of vertices in the simulation. For every experiment, the value in the AU(AV) column represents the average recall percentage of U’(V’). The results are
different from the preliminary version due to randomness in the simulation experiments.
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than the weight of a randomly selected missing edge.
This happens when the a and b values are chosen to
derive a,b-WQB’s which are more dense in terms of
weight.
We further compare e from our approach to e from the

δ-quasi-bicliques (δ-QB) described by Liu et al. [3]. All
quasi-bicliques (including exact δ-QB using our IP formu-
lation) used to induce average missing edge weight e are:
(1) D05/M1: δ-QB with δ = 0.5 and minimum node

size is 1, i.e., m = 1.
(2) D05/M2: δ-QB with δ = 0.5; m = 2.
(3) AB/M2: a,b-WQBP using the minimum average

edge weights found from D05/M2 as a and b; m = 2.
(4) AX/M2: a,b-WQBP where X = a = b Î {0.05, 0.1,

0.2, 0.3, 0.4, 0.5}; m = 2.
(5) CX/M2: a,b-WQBC where X = a = b Î {1, 2, 3, 4,

5}; m = 2.
Comparing the averages of e from A005/M2 to A05/

M2 (please see Table 2), we see a steady increase. Since
a and b can be seen as expected edge weights of the
resulting QB, the changing in e shows that QB’s identify
sub-graphs of expected edge weights. However, we do
not see a similar pattern in the constant versions. Over-
all, in this particular experiment data set, the removed
edge weights are at most 0.16, hence e can never
approach closely to the parameter a no matter how
lenient the parameters are.

Method
Time complexity
Here we prove the NP-hardness of the a,b-WQBP(C)

problem by a reduction from the maximum edge bicli-
que problem. Note that the queryP(c) problem is a gener-
alization of a,b-WQBP(C) problem and hence, is also
NP-hard.
Lemma 1. The a,b-WQBP(C) problem is NP-hard.
Proof. Given a bipartite graph G := (U + V, E) and an

integer k, the maximum edge biclique problem asks if G
contains a biclique with atleast k edges. The maximum
edge biclique problem is NP-complete [10]. Let G’ := (U
+ V, E’, ω ) be a weighted bipartite graph where ω(u, v)
is set to 1 if (u, v) Î E or is set to 0 otherwise. Note
that, there is a biclique with k edges in G if and only if
the maximum weighted a,b-WQBP in G’ has a weight of
atleast k when a and b are set to 1. Similarly, there is a
biclique with k edges in G if and only if the maximum

weighted a,b-WQBC in G’ has a weight of atleast k
when a and b are set to 0. Therefore, the a,b-WQBP(C)

problem is NP-hard.
We now prove that checking for the existence of a

percentage a,b-WQB in a bipartite graph is NP-com-
plete. Note that, checking the existence of a constant
version a,b-WQB in a bipartite graph can be done in
polynomial time. For rest of the section we only refer to
percentage version a,b-WQB’s.
Problem 3 (Existence).
Instance: A weighted bipartite graph G := (U + V, E,

ω), values a, b Î [0, 1].
Find: If there exists a a,b-WQBP (U’, V’) in G.
To prove the hardness of existence problem we need

some auxiliary definitions. A modified weighted bipartite
graph, denoted by (U + V, E, Ω), is a complete bipartite
graph (U + V, E) with a weight function Ω: E ® [0, 1]
where, for any two edges e and e’, |Ω(e) - Ω(e’)| ≤ 1.
Definition 4 (Modified a,b-WQB (MO-WQB)).
Let G := (U + V, E, Ω) be a modified weighted bipar-

tite graph. A non-empty pair (U’, V’) included in (U, V)
is a MO-WQB of G, if it satisfies the three properties: (1)
(U’, V’) includes (∅, V), (2) ∀u Î U’ : ∑vÎV’, w(u, v) ≥ 0,
and (3) ∀v Î V’ : ∑uÎU’, w(u, v) ≥ 0.
Problem 4 (One sided existence).
Instance: A weighted bipartite graph G := (U + V, E,

ω), values a, b Î [0, 1].
Find: If there exists a a,b-WQBP (U’, V’) in G which

includes the pair (∅, V).
Problem 5 (Modified existence).
Instance: A modified weighted bipartite graph G := (U

+ V, E, Ω).
Find: If there exists a MO-WQB in G.
The series of reductions to prove the hardness of the

existence problem are as follows. We first reduce the
partition problem, which is NP-complete [18], to the
modified existence problem. The modified existence pro-
blem is then reduced to the one sided existence pro-
blem. The one sided existence problem reduces to the
existence problem.
Lemma 2. The modified existence problem is NP-

complete.
Proof. The proof of MO-WQB Î NP can be briefly

described in the following.
Given a weighted bipartite graph G(U + V, E, Ω) and

a pair (U’, V’) included in (U, V), it can be verified in

Table 2 Missing edge recovery in a genetic interaction network

WQBP d05/m1 d05/m2 ab/m2 a005/m2 a01/m2 a02/m2 a03/m2 a04/m2 a05/m2

avg(e) 0.0855 0.0844 0.0850 0.0806 0.0830 0.0867 0.0905 0.0934 0.1169

WQBC - - - - C1/M2 C2/M2 C3/M2 C4/M2 C5/M2

avg(e) - - - - 0.1008 0.0805 0.0809 0.0823 0.0825

A comparison of e under various QB parameters showing improvements of recovered edge weight expectation in a,b-WQB’s.
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polynomial time if the pair (U’, V’) satisfies the all the
MO-WQB constraints for G. So, the modified existence
problem belongs to class NP. The reduction from parti-
tion problem is as follows.
We are left to show that partition ≤p MO-WQB. Given

a finite set A, and a size s(a) Î Z+ associated with every
element a of A, the partition problem asks if A can be
partitioned into two sets (A1, A2) such that∑

a∈A1
s(a) =

∑
a∈A2

s(a).

a. Construction: Let SUM be the sum of sizes of all
elements in A. Build a modified weighted bipartite
graph G := (U + V, E, Ω) as follows. For every ele-
ment a in A there is a corresponding vertex ua in U.
The set V contains two vertices v+ and v-. For every
vertex ua Î U, Ω(ua, v+) = s(a)/(2 × SUM) and
Ω(ua, v-) = -s(a)/(2 × SUM). Add an additional ver-
tex usum to set U. Set Ω(usum, v+) to -1/4 and
Ω(usum, v-) to 1/4. Note that, the weights assigned to
edges of G satisfy the constraint on Ω for a modified
weighted bipartite graph.
b. ⇒: Let (A1, A2) be a partition of A such that the
sum of the sizes of elements in A1 is equal to the
sum of the sizes of elements in A2. Let U1 = {ua : a
Î A1}. The sum of weights of all edges from v+ to
the vertices in U1 is equal to 1/4. Let U’ = U1 ∪
usum. The sum of weights of all edges from v+ to
vertices of U’ is 0. Similarly, the sum of weights of
all edges from v- to vertices of U’ is 0. Thus, (U’, V)
is a MO-WQB of G.

⇐: Let (P, V) be a MO-WQB of G. The edge
from v- to usum is the only positive weighted
edge from vertex v-. So, P will contain vertex u∑.
Since Ω(v+, usum) is negative, set P will also con-
tain vertices from U - usum. The sum of the
weights of edges from v- to vertices in P - usum
cannot be smaller than -1/4. Similarly, the sum
of the weights of edges from v+ to vertices in P -
usum cannot be smaller than 1/4. So, the sum of
all elements in A corresponding to the vertices
in P - usum should be equal to SUM/2. This
proves that if G contains a MO-WQB, set A can
be partitioned.

Hence, the modified existence problem is NP-
complete.
Lemma 3. The one sided existence problem is NP-

complete.
Proof. The proof of one sided existence Î NP is

omitted for brevity. Next we show MO-WQB ≤p one
sided existence. We prove this problem to be NP-com-
plete by a reduction from the modified existence pro-
blem. The reduction is as follows.

a. Construction: Let G := (U + V, E, Ω) be the modi-
fied weighted bipartite graph in an instance of the
modified existence problem. We build a graph G’ :=
(U + V, E, ω) for an instance of one sided existence
problem from G. Notice that the partition and vertices
remain the same. If the weight of every edge in the G
is non negative, set a = b = 0 and ω(u, v) = Ω(u, v) for
every edge (u, v) Î E. Otherwise, set a and b to |x|
and ω(u, v) = Ω(u, v) - x for every edge (u, v) Î E,
where x is the minimum edge weight in G.
b. ⇒ and ⇐: Let (U’, V) be a MO-WQB of graph G. If
weights of all edges in G are non negative, the con-
straints for both the problems are the same. If G has
negative weighted edges, the constraints of both the
problems will be the same when a,b and ω for the one
sided existence problem instance are set as mentioned
in the construction. It can be seen that there is a MO-
WQB in G if and only if there is a a,b-WQBP in the
graph G’ which includes the pair (∅, B).

This proves that the one sided existence problem is
NP-complete.
Lemma 4. Existence problem is NP-complete.
Proof. Given a set of vertices (U’, V’), a weighted

bipartite graph G = (U + V, E, ω) and values a, b Î [0,
1], it can be verified in polynomial time if (U’, V’) is a a,
b-WQBP in G. Thus, the existence problem belongs to
NP. We now show that One sided existence ≤p existence.

a. Construction: Let G’ = (U + V, E’, ω), a’, b’ Î [0,
1] be the parameters of the one sided existence pro-
blem. We build the weighted bipartite graph G =
(Up + V, E, ω) for the instance of existence problem
as follows. First, set G = G’. For every vertex u Î U,
let Su denote the sum of the weights of all edges
incident on u. Delete every vertex u Î U whose Su is
less than a|V|. Let (Up + V) denote the remaining
vertices, and E’ represent the remaining edges in G.
For the instance of the existence problem, set a = 0
and b = b’.
b. ⇒ and ⇐: Any a,b-WQBP in G’ which includes (∅,
V), is also a,b-WQBP in G. Consider a a,b-WQBP

(U’, V’) in G. If V’ = V, then (U’, V’) is a a,b-WQBP

in G’ which includes the pair (∅, V). If V’ is not the
same set as V, the pair (U’, V) is still a a,b-WQBP in
G’ and it includes the pair (∅, V).

IP formulations for the a,b-WQB problem
Although greedy approaches are often used in problems
of a similar structure, e.g., multi-dimensional knapsack
[19], δ-QB [3], in our experiments, both greedy and ran-
domized approach did not identify solutions close
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enough to the exact solutions. In our experiments, sim-
ple greedy and randomized solutions yielded accuracies
ranging from 60% to 95% depending on various para-
meters without performance guarantee. Hence we con-
sider that it is rather important here to find exact
solutions in order to demonstrate the usefulness of a,b-
WQB’s. Here we present integer programming (IP) for-
mulations solving the a,b-WQB problem in exact
solutions.
Due to the similarity in formulating constraints

between a,b-WQBC and a,b-WQBP, we start by formu-
lating a solution to a,b-WQBP . Our initial IP requires
quadratic constraints, which are then replaced by linear
constraints such that it can be solved by various optimi-
zation software packages. Our final formulation is further
improved by adopting the implication rule to simplify
variables involved. This improved formulation requires
variables and constraints linear to the number of input
edges, and thus, suits better for sparse graphs. Through-
out the section, unless stated otherwise, G := (U + V, E,
ω) represents a weighted bipartite graph, and G’ = (U’,
V’) represents the maximum weighted a,b-WQB of G
and E’ represents the edges induced by G’ in G.
Quadratic programming
For each u Î U (v Î V), a binary variable xu (xv) is
introduced. The variable xu (xv) is 1 if and only if vertex
u (v) is in U’ (V’). The integer program to find the solu-
tion G’ can be formulated as follows.

Binary variables: xu, s.t. xu = 1 iff u ∈ U′ for each u ∈ U (1)

xv, s.t. xv = 1 iff v ∈ V ′ for each v ∈ V (2)

Subject to:
∑

v∈V ω(u, v) · xvxu ≥ α
∑

v∈V xvxu for all u ∈ U (3)

∑
u∈U ω(u, v) · xuxv ≥ β

∑
u∈U xuxv for all u ∈ V (4)

Maximize:
∑

(u,v)∈U×V xuxv · ω(u, v) (5)

The quadratic terms in the constraints are necessary
because, a and b thresholds apply only to vertices in U’
and V’. This formulation uses variables and constraints
linear to the size of input vertices, i.e., O(|U| + |V|).
Since solving a quadratic program usually requires a
proprietary solver, we reformulate the program so that
all expressions are linear.
Converted linear programming
A standard approach to convert a quadratic program to a
linear one is introducing auxiliary variables to replace the
quadratic terms. Here we introduce a binary variable yuv
for every edge (u, v) in G, such that, yuv = 1 if and only if
xu = xv = 1, i.e., the edge (u, v) is in G’. The linear program
to find the solution G’ is formulated as follows.

Binary variables: Same as in (1) and (2)

yuv, s.t., yuv = 1 iff xu = xv = 1 for all (u, v) ∈ E (6)

Subject to: yuv ≤ (xu + xv)
/
2 for all (u, v) ∈ E (7)

yuv ≥ xu + xv − 1 for all (u, v) ∈ E (8)

∑
v∈V ω(u, v) · yuv ≥ α

∑
v∈V yuv for all u ∈ U (9)

∑
u∈U ω(u, v) · yuv ≥ β

∑
u∈U yuv for all v ∈ V (10)

Maximize:
∑

(u,v)∈U×V ω(u, v) · yuv (11)

Expressions (7) and (8) state the condition that yuv = 1
if and only of xu = xv = 1. Expression (8) ensures that,
for any edge whose end points (u, v) are chosen to be in
G’, yuv is set to 1. Due to the use of yuv variables, this
formulation requires O(|U||V|) variables and constraints.
Improved linear programming
Observe that constraint (7) becomes trivial if yuv = 0. In
other words, this constraint formulates implications, e.g.,
for binary variables p and q, the expression p ≤ q is
equivalent to p ® q. Expanding on this idea, we elimi-
nate the requirement of variables yuv in constraints (9)
and (10) in the next formulation while sharing the rest
of the aforementioned linear program.

Subject to:
∑

v∈V (ω(u, v) − α)xv ≥ |V|(xu − 1) for all u ∈ U (12)

∑
u∈U (ω(u, v) − β)xu ≥ |U|(xv − 1) for all v ∈ V (13)

There is a variable xv for every vertex v in G. There is
a variable yuv for every edge (u, v) in G whose weight is
not 0. The variable yuv is set to 1 if and only if both xu
and xv are set to 1. For any vertex u Î U (v Î V), the
variable xu (xv) is set to 1 if and only if vertex u (v) is in
G’. Constraint (12) can also be explained as follows. If
xu = 1, the constraint transforms to the second con-
straint in the a,b-WQB Definition. If xu = 0, constraint
(12) becomes trivial. Constraint (13) can be explained in
a similar manner.
Generalized formulation for a,b-WQBP and a,b-WQBC
Recall that the difference between the two problems a,
b-WQBP and a,b-WQBC is in the edge weight summa-
tion which we can combine as the following properties:
(1) ∀u Î U’ : ∑vÎV’ ω(u, v) ≥ aP |V’| - aC, and (2) ∀v Î
V’ : ∑uÎU’ ω(u, v) ≥ bP |U’| - bC, where (aP, bP ) and
(aC, bC ) are the parameters given in a,b-WQBP and a,
b-WQBC respectively. Following the same reasoning in
the previous paragraphs, linear constraints (12) and (13)
are now updated as the following.
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Subject to:
∑

v∈V (ω(u, v) − αP)xv + αC ≥ |V|(xu − 1) for all u ∈ U (14)

∑
u∈U (ω(u, v) − βP)xu + βC ≥ |U|(xv − 1) for all v ∈ V (15)

As a results, the problem instance is a a,b-WQBC pro-
blem if (aP, bP ) = (1, 1), and it is a a,b-WQBP problem
if (aC, aC) = (0, 0). Note that the formulation does not
require either condition to present; it essentially defines
a generalization of a,b-WQB problems when all 4 para-
meters are valid and non-zero.
If there are n vertices in U and m vertices in V, there

will be a total of m + n + 2k constraints and m + n + k
variables where k is the number of edges whose weight
is not equal to 0. The above formulations can be
extended to solve the query problem by adding an addi-
tional constraint xv = 1 to the formulation, for every
vertex v Î P ∪ Q. Similar constraints also help us
explore sub optimal solutions, e.g., excluding known
vertices in subsequent solutions, or provide a lower-
bound of required query items in the optimal solution.

Conclusions
We address noise and incompleteness in biological net-
works by introducing graph-theoretical optimization
problems that identify variations of novel weighted
quasi-bicliques. These quasi-biclique problems incorpo-
rate biological interaction levels in different analytical
settings and exhibit improvements over un-weighted
quasi-bicliques. To meet demands of biologists we also
provide a query version of (weighted) quasi-biclique
problems. We prove that our problems are NP-hard,
and describe IP formulations that can tackle moderate
sized problem instances. Simulations and empirical data
solved by our IP formulation suggest that our weighted
quasi-biclique problems are applicable to various other
biological networks.
Future work will concentrate on the design of algo-

rithms for solving large-scale instances of weighted
quasi-biclique problems within guaranteed bounds.
Greedy approaches may result in effective heuristics that
can analyze ever-growing biological networks. A practi-
cal extension to the query problem is the development
of an efficient enumeration of all maximal a,b-WQB’s.
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