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Abstract

Background: The cost of DNA sequencing has undergone a dramatical reduction in the past decade. As a result,
sequencing technologies have been increasingly applied to genomic research. RNA-Seq is becoming a common
technique for surveying gene expression based on DNA sequencing. As it is not clear how increased sequencing
capacity has affected measurement accuracy of mRNA, we sought to investigate that relationship.

Result: We empirically evaluate the accuracy of repeated gene expression measurements using RNA-Seq. We
identify library preparation steps prior to DNA sequencing as the main source of error in this process. Studying
three datasets, we show that the accuracy indeed improves with the sequencing depth. However, the rate of
improvement as a function of sequence reads is generally slower than predicted by the binomial distribution. We
therefore used the beta-binomial distribution to model the overdispersion. The overdispersion parameters we
introduced depend explicitly on the number of reads so that the resulting statistical uncertainty is consistent with
the empirical data that measurement accuracy increases with the sequencing depth. The overdispersion
parameters were determined by maximizing the likelihood. We shown that our modified beta-binomial model had
lower false discovery rate than the binomial or the pure beta-binomial models.

Conclusion: We proposed a novel form of overdispersion guaranteeing that the accuracy improves with
sequencing depth. We demonstrated that the new form provides a better fit to the data.

Background
To measure gene expression by RNA-Seq, RNA molecules
are converted to DNA, sequenced, mapped to a gene data-
base, and counted [1-3]. RNA-Seq then provides a digital
readout of the gene expression levels. As the cost of next-
generation sequencing drops rapidly, RNA-Seq may
replace microarray methods in genome-wide surveys of
gene expression. Compared to microarray technology,
RNA-Seq has several advantages, including the ability to
simultaneously detect mutations, discovering alternative
transcript [4-6] and alternative splicing [7-10].
It is common to study the changes in gene expression

under a perturbation. The perturbation can be, for
example, the deletion of a gene, which is important in

characterizing the function of a new gene, or it can be
the stimulation of cells by a ligand, which is important
in deciphering a pathway. Many experimental techni-
ques, such as RNA interference [11], have been devel-
oped in recent years to make it easier to delete genes in
mammalian cells. For an embryonic lethal gene in the
mouse model, the Cre-lox system can be used to per-
form conditional gene knockout in a tissue-specific
manner [12]. These gene deletion techniques facilitate
the study of gene functions for a large fraction of mam-
malian genes that remain to be characterized. Further-
more, two-sample comparisons apply when studying
pathways through receptor stimulation. These methods
have become increasingly popular for examining signal
transduction pathways holistically. In such studies, the
emphasis is on the function of genes or pathways and
not on the genetic background in which the study is
carried out. Therefore, one repeats the experiments in
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the same cell line or in mice with identical genetic back-
grounds, and expects to find no genetic variation. In this
situation, the difference in gene expression can be due
to different methods of handling the biological samples
(library preparation), as well as statistical fluctuations
from the finite number of tags mapped to each gene.
The uncertainty in the outcome of RNA-seq in repeated
experiments of identical genetic background is yet to be
characterized.
Such uncertainty affects the ability to affirm which genes

are differentially expressed between a sample and a con-
trol. We focus on estimating the change in gene expres-
sion because the absolute amounts of RNA, by themselves,
as measured by the RPKM (reads per kilobase of read
length per million mapped reads) of the sequenced tag
values [2], are not useful in most cases for biological inter-
pretation. We hypothesize that experimental uncertainty is
due primarily to the library preparation steps before
sequencing, that it is intrinsic to the experimental proto-
col, and can therefore be characterized from repeated
experiments. The expression difference is estimated based
on the computation of a p-value, which can be calculated
from repeated experiments using a t-test. However, since
in RNA-Seq, the expression ratio derived from low
sequence reads should have a larger error, it would be
valuable to statistically estimate the error due to low
counts [13]. Binomial and beta-binomial [14,15] distribu-
tions can be used to characterize small tag count
fluctuations.
A fundamental question in RNA-Seq analysis is how

the accuracy of measured gene expression change by
RNA-Seq depend on the sequencing depth [16]. Here
the sequence depth means the total number of
sequenced reads, which can be increased by using more
lanes. A binomial distribution is often used to compare
two RNA-Seq experiments. In this model, uncertainty

approaches zero as
1
N

where N is the tag counts for

the gene. Indeed, the sequencing of the same DNA in
different sequencing lanes produces errors consistent
with the binomial distribution [13,17]. However, com-
parisons of different samples have shown a dispersion
larger than that given by the binomial distribution
[18,19]. A beta-binomial distribution appropriately
describes the overdispersion. This type of distribution
has been used for the analysis of differential gene
expression levels in SAGE libraries [20], and to model
peptide count data with both within- and between-sam-
ple variation in label-free tandem mass spectrometry-
based proteomics [21]. For the dispersion, the error is a
sum of two parts: the first part goes to zero following

1
N

, and the second part is a constant that is indepen-

dent of N. The constant is ideal for describing the

genetic variant. However, where genetic variations are
not expected, it is inconsistent with the intuition that
the accuracy of the measurement should improve with
increasing depth of sequencing. In this paper, we pro-
vide empirical evidence that the error goes to zero as
the tag count N increases, but at a slower rate than

1
N

. We aim to characterize these overdispersions

gene by gene, using a pair of replicate experiments. We
compared the results in a dataset in which multiple
replicates were also available. We used a form of over-
dispersion based on a beta-binomial distribution, but
one in which the overdispersion parameter depends
explicitly on the number of tags. The form we used was
suggested during a study of the standard deviation as a
function of the tag count. We demonstrated that the mod-
ified beta-binomial distribution improve performance.

Results
Normalization by proportion
The use of a proportion is a convenient way to compare
two samples. Let ni and mi be the number of tags
mapped to gene i. The proportion is defined as

p
n

n mi
i

i i




. It is convenient to use proportion because

differences in proportion give rise to p-values using
established statistics such as binomial and beta-binomial
distributions. A proportion is also a convenient compo-
nent of a normalization procedure.
In order to detect differential expression in two sam-

ples, we must determine the ratio of the counts in the
two samples that corresponds to the same expression.
One method, adapted in calculating the RPKM, assumes
that the total number of tags sequenced, and equivalently
the total amount of RNA, is a constant. The problem
with RPKM normalization is that the number is domi-
nated by a few genes that receive the highest sequence
reads. These genes may or may not remain constant
under the two experimental conditions. One could also
use housekeeping genes such as POLR2A (polymeras II)
or GAPDH in a normalization procedure. The problem
with relying on a housekeeping gene is that the normali-
zation depends on the choice of genes. Since the number
of housekeeping genes is small, this normalization proce-
dure is subject to fluctuation due to relatively small tag
counts on these genes. Bullard et al. have shown good
results with an upper-quartile normalization method
[13].
The most conservative normalization procedure

assumes that the maximum number of genes remains
unchanged in the two experimental conditions. This
corresponds to the maximum in the histogram ratio of

tag counts
n

m
i

i
. The tag counts proportion pi is more
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convenient to use. The maximum in a histogram of pi
corresponds to the neutral ratio pn, where the expres-
sion levels are assumed to be equal in the two samples.
This maximum can be determined from fitting a Gaus-
sian (or beta function) to the peak of the histogram
(Figure 1). In this formulation, the RPKM normalization

corresponds to choosing p
N

N Mn  
, where N and M

are the total number of tags to genes in the experiment
and control.
This peak of histogram normalization is expected to

be the most reasonable procedure for the Chiang dataset
[22], which consists of the wild type and knockout ver-
sions of the TDP-43 gene (see Data and Methods for
details). For this dataset, we expect the perturbation to
the global gene expressions to be smaller than when
comparing two different types of cells. Indeed, our peak
of histogram normalization procedure resulted in a
median of base-2 logarithm of expression difference

ratio between the wild type and knockout gene of 0.014,
which is to be compared to 0.025 for the median under
the RPKM normalization procedure. This showed that
peak normalization was comparable to and perhaps
slightly better than RPKM normalization.
Normalization is performed according to the assump-

tion that most of the genes do not change expression in
the two experimental conditions. Although this conveni-
ent assumption is probably true in most cases, it has no
ironclad biological justification.

Binomial distribution fit the variance from the same
library but not for different libraries
We empirically studied errors in RNA-Seq experiments by
examining the variance from replicated measurements.
We first examined the fluctuation in reads mapped to a
gene from duplicate experiments based on the same bio-
logical sample. The p-values of the differences were com-
puted according to a binomial distribution by comparing

Figure 1 Histogram of proportions and peak of histogram of proportion normalization. The peak in the histogram corresponds to the
largest density of genes. To determine the peak maximum, the histogram was fitted to a beta function. The blue curve shows the best fit with
the maximum at pn = 0.527. This is to be compared to the proportion corresponding to RPKM normalization 0.525.
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to a neutral ratio pn as determined by peak normalization.
For the same sample and the same library preparation
sequenced in different lanes of the Illumina sequencer, the
histogram of the p-value is flat (Figure 2a). This indicates
that the errors in different lanes containing sample from
the same library are consistent with the binomial distribu-
tion. In contrast, the histogram of p-values according to
the binomial distribution for two independent library pre-
parations showed clear overabundance of small p-values
(Figure 2b). This demonstrated that the binomial distribu-
tion does not adequately describe the data—the dispersion
of the random fluctuation is stronger than that given by
the binomial distribution. We use the term library pre-
paration to refer to an independent extraction of RNA,
conversion to DNA and PCR amplification of DNA. Since
the experiment and the control must be in separate library
preparations, it is important to capture this overdispersion.
The overabundance of small p-values for different libraries
was also true when we used Fisher’s exact test (data not
shown). When we used the beta-binomial distribution to
compute the p-value for the different libraries, the histo-
gram was flat. This shows the overdispersion is accounted
for by the beta-binomial distribution. A Q-Q plot against
either a binomial or beta-binomial distribution (data not
shown) also indicated that the beta-binomial distribution
better fitted the data.

Errors decreased with sequencing depth
We first addressed the uncertainty in the RNA-Seq mea-
surement and how uncertainty was related to the
sequencing depth empirically from repeated measure-
ments. Specifically, from replicates of the biological sam-
ple, we calculated the standard deviation of the
proportion. If the proportion satisfied the binomial dis-

tribution, we expected ( )
( )

p p
p p

n mi n
n n

i i

  


2 1
, where

ni and mi are tags mapped to gene i in two duplicate
experiments of the sample (possibly from different

libraries), p
n

n mi
i

i i




and pn is the normalization pro-

portion. Figure 3 shows a plot of
( )

( )
p p

p p
i n

n n




2

1
, averaged

over pairs of duplicate experiments (Table 1), as a func-
tion of the mean ni + mi for the three sets of experi-
mental data. These figures show that the variance of the
proportion continued to decrease at large ni + mi and
there was no sign of saturation. However, the rates of
decrease with the tag counts depended on the dataset
and were slower than that given by the binomial
distribution.

Modified beta-binomial distribution
We used a beta-binomial distribution to describe the
overdispersion in the data, as shown in Figure 2b.

However, in the beta-binomial distribution, the standard
error approaches a constant as the mean tag counts
become very large, whereas empirically, the standard
error follows a decreasing trend at large tag counts
(Figure 3). We therefore made the following assumption
about the form of the θ parameter in the beta-binomial
distribution (see Method for details). Let ni and mi be the
number of tags mapped to gene i. We make θi depend
explicitly on the tag counts.

 i
i

i i

D

n m


( )
(1)

Under this assumption, for 0 <g < 1, the asymptotic
form of the variance of the proportion at large tag
count Ni = ni + mi according to the beta-binomial dis-
tribution is Ni

 . Therefore the variance of the propor-
tion of the modified beta-binomial distribution does
approach zero at large N, but at a slower rate than in
the binomial distribution.

Determining the parameters g and Di

Although g can be estimated from the slope and inter-
cept, in the log scale of variance versus the mean tag
count (Figure 3)., it required multiple experiments and
had low accuracy due to data scattering. For a better
estimation of the parameters g and Di in Eq.(1)), we
used maximum-likelihood estimation (MLE). In this
approach, the likelihood was derived from the beta-
binomial distribution of tag counts ni and mi for gene i,
and summed over all the genes and over all the pairs of
duplicate experiments. The overdispersion parameters θi
were given by Eq.(1) and the parameter g and para-
meters Di for each gene were chosen to maximize the
likelihood. The plots in (Figure 4). were obtained by
performing a full optimization of likelihood Eq.(eq:likeli-
hood) (see Data and Methods) with respect to Di for
each g, and plotting the optimized likelihood values
against g. Table 2 compares the g from two estimates.
The estimated g depended on the data. We computed g
for three sets of data. The values ranged from 0.2 to 1.0
(Figure 4). These estimates were consistent with those
from the standard error (Figure 3).

Comparison of beta-binomial and binomial distributions
Figure 5 shows a comparison of the false discovery rates
(FDR) [23] and receiver operating characteristics (ROC)
[24] for genes deemed to be differentially expressed by
the binomial and beta-binomial distributions. For the
Bullard dataset, the results were comparable for the two
distributions. For the Caltech and Chiang datasets, the
beta-binomial distribution was superior (for dataset
details, see Data and Methods).

Cai et al. BMC Bioinformatics 2012, 13(Suppl 13):S5
http://www.biomedcentral.com/1471-2105/13/S13/S5

Page 4 of 13



Figure 2 Histogram of p-values of gene expression differences from duplicate experiments on the same biological sample. (a)
Duplicate experiments were from the same DNA library sequenced in different lanes. p-values were calculated from binomial distribution. (Two
datasets compared: Bullard SRR037457 vs SRR037458.) (b) When binomial distribution is applied to the same biological sample prepared in two
different libraries, more genes had small probability than expected, which erroneously predicted the existence of significantly differentially
expressed genes when there should not be any. (Two datasets compared: Bullard SRR037467 vs SRR037471.) (c) When the same two libraries are
compared using beta-binomial distribution, there is no longer high density at small p-value. Peak of proportion normalization was used in these
calculations. These histograms were drawn using R package Bum-class [27].
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Figure 3 The variance of proportion versus the mean tag counts in base-10 log scale. The variances of proportion were computed from
replicates of the same biological samples. (a) Caltech dataset; (b) Chiang dataset;(c) Bullard dataset. Each point represents a gene averaged over
replicates (see Table 2 for the number of replicates for each dataset). The red line has a slope of -1. The black line is fit to the data for a mean
(x-axis) larger than 2 (count greater than 100).
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We took the top 300 genes deemed most significantly
differentially expressed by a t-test, and by binomial and
beta-binomial distributions, and overlaid them in a plot of
the fold change versus the average tag counts (see Figure 6
and Figure 7). We note that the genes identified as signifi-
cantly differentially expressed by the binomial distribution
tended to have large tag counts; whereas many genes iden-
tified as significantly differentially expressed from the
t-test had small tag counts. Some genes identified as sig-
nificantly differentially expressed by the binomial distribu-
tion (marked by a triangle only) were not identified as
significantly differentially expressed by the beta-binomial
distribution, even though they had higher fold changes
than other genes at similar tag counts. The large fluctua-
tions of these genes are evident because they were also not
called significantly differentially expressed by the t-test.

Conclusions
We have investigated the error of RNA-Seq gene expres-
sion from repeated measurements. We have shown that

the sequence reads from the same biological sample
sequenced in different lanes follows a binomial distribu-
tion and that the library preparation steps prior to
sequencing introduced larger variations from repeated
experiments of the same biological specimen. We showed
that the accuracy from repeated measurement improved
with the sequencing depth. However the improvement
with the tag counts was generally slower than predicted
by the binomial distribution. We used a beta-binomial
distribution to fit the inter-library overdispersion and
introduced a parameterization of the overdispersion
parameter that is consistent with the intuition that mea-
surement accuracy should increase with the sequencing
depth. We optimized the overdispersion parameters
using maximum-likelihood estimation. We demonstrated
better performance in lower FDR using our modified
beta-binomial model.
Using the proportion of counts to estimate the gene

expression difference has advantages over the RPKM
expression. It has been shown recently that, in contrary
to a naive presumption, the number of tags mapped to
different positions in the same gene are highly non-uni-
form [18]. The Poisson rate at different positions can
fluctuate by a few hundred fold. However, the pattern of
the variable rates along the position of the gene is highly
reproducible, even when comparing experiments per-
formed on different tissues. And such rates depend on
the nucleotide composition of the local sequences. The
main contribution of the variable Poisson rate is that it
can be attributed to the hexamer primer in converting
RNA to DNA [19]. These data suggest that uneven PCR
amplification could be the cause of the overdispersion

Table 1 three datasets

Data Set A B

Caltecha Normal Blood Embryonic Stem Cells

Rep1Gm12878CellLongpolyaBow0981x32 PairedRep1H1hescCellPapErng32aR2x75

Rep2Gm12878CellLongpolyaBow0981x32 PairedRep2H1hescCellPapErng32aR2x75

PairedRep1Gm12878CellLongpolyaBb12x75 PairedRep3H1hescCellPapErng32aR2x75

PairedRep2Gm12878CellLongpolyaBb12x75 PairedRep4H1hescCellPapErng32aR2x75

Chiangb Knock-out of TDP-43 Wild Type

GSM546932_A_sorted GSM546935_B_sorted

GSM546933_D_sorted GSM546936_C_sorted

GSM546934_E_sorted

Bullardc Brain UHR library A UHR library B

SRR037457 SRR037466 SRR037470

SRR037458 SRR037467 SRR037471

SRR037468 SRR037472

SRR037469
a from reference [28]
b from reference [22]
c from reference [13]

Table 2 Two estimations of g from three datasets

Data
Set

Pairs of Experiments used in
calculation

Standard
Error1

MLE2

Caltech 6a 0.26 0.2

Chiang 3b 0.40 0.2

Bullard 12c 0.76 1.0
1 Obtained from slope in Figure 3
2 from maximizing likelihood Eq.(2)
a from four libraries of same biological sample
b from three knockout replicates and two wild type replicates
c by comparing two different libraries having four and three replicates

Cai et al. BMC Bioinformatics 2012, 13(Suppl 13):S5
http://www.biomedcentral.com/1471-2105/13/S13/S5

Page 7 of 13



that was observed. In estimating gene expression differ-
ences using a proportion, the highly variable Poisson
rates do not need to be estimated. Such rates only enter

the process indirectly through the dispersion. Not having
to estimate the highly variable Poisson rates is therefore
advantageous.
When the value of g in Eq.(1) is zero, our model

reverses back to the beta-binomial distribution. Interest-
ingly, the g values estimated in the different datasets
were not the same. This phenomenon is similar to the
GC bias in sequencing data, which also depends on the
experiments [25]. Therefore g may be influenced by the
experimental protocol that is used. The Caltech and
Chiang datasets had similar values of g. In these two
datasets, the Di values are similar for the same gene
(data not shown). This is quite consistent with the pre-
vious finding [18] that the variability of the Poisson
rates is similar in different experiments. It would be
interesting to study how Di may depend on the DNA
sequences of the gene. Another parametrization of over-
dispersion is by position within a gene using Eq.(1).
These possibilities will be explored in the future.

Methods
Peak of proportion histogram normalization
The normalization procedure using the peak of the his-
togram of proportion assumes that most genes remain
unchanged in the two conditions being compared. In
this normalization procedure, we fitted the highest peak
in the histogram of proportion to a beta function. The
maximum of the beta function determines the normali-
zation proportion pn.
In RPKM normalization, we first count the total num-

ber of tags mapped to any gene in the RNA-Seq experi-
ment. The number of tags mapped to a particular gene
is divided by the total number of tags sequenced (the
unit is millions of tags), and then divided by the number
of nucleotides in the gene (the unit is thousands).

Datasets used
The three datasets we used are listed in Table 1.
The Chiang dataset consisted of five independent

libraries of the deleted TDP-43 gene in the mouse. The
data were derived from three independent clones of
TDP-43 knockout embryonic stem (ES) cells and two
independent clones of control ES cells. Raw reads were
mapped to the University of California Santa Cruz mm9
genome library by efficient large-scale alignment of
nucleotide databases. One gene deletion is an ideal case
for testing normalization procedures with the assumption
that most genes do not change.
The Caltech dataset consisted of two cells lines:

GM12878 (normal blood) and H1hESC (embryonic
stem cells), each with four libraries made independently
from the same biological sample. The process involved
raw Illumina reads on 2x75 datasets (RawData files on
the download page, fasta format), which were run

Figure 4 Beta-binomial likelihood as a function of the
parameter g. (a) Caltech dataset; (b) Chiang dataset; (c) Bullard
dataset. The vertical lines marked the position of maximum.
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Figure 5 False discovery rate (FDR) and receiver operating characteristic (ROC) for three data sets. (a) and (b) Caltech dataset; (c) and (d)
Chiang dataset; (e) and (f) Bullard dataset. Three panels on the left indicate the FDR. FDR (on y-axis) is plotted against the number of most
significantly differentially expressed genes (on x-axis). Three panels on the right indicate the ROC. Bi denotes binomial distribution; BB denotes
beta-binomial distribution. The line for BB g = 0 was obtained by setting g = 0 and optimizing Di. It corresponds to the normal beta-binomial
distribution. In (b), the line for BB g = 0 overlap with the line for BB g = 0.3.

Cai et al. BMC Bioinformatics 2012, 13(Suppl 13):S5
http://www.biomedcentral.com/1471-2105/13/S13/S5

Page 9 of 13



through Bowtie, version 0.9.8.1, with up to 2 mis-
matches. The resulting mappings were stored (Raw-
Data2 files, Bowtie format) for up to ten matches per
read to the genome, spiked controls and UCSC known-
Gene splice junctions.
The Bullard dataset consisted of human brain refer-

ence RNA and human universal reference RNA as two
library preparations. We used Bowtie, version 0.12.7, to
align the reads to the genome (H. sapiens, NCBI 37.1
assembly). The Bowtie command we used to implement
this mapping strategy was ./bowtie -a -v 2 -t -m 1 –best
-strata h_sapiens_37_asm.

Maximum-likelihood estimation (MLE)
Let nip and mip be the tags mapped to the i-th gene and
p-pair of experiment and control, respectively. The

likelihood function according the beta-binomial distribu-
tion is

 ip
ip ip

ip

ip
l

n

ip
i

m

n m

n

l l
ip ip






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 



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 


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0

1

where aip and bip are two parameters of the beta-
binomial distribution. This is equivalent to using

instead the following parameters pip
ip

ip ip





 
, and


 ip

ip ip



1

. It can be shown analytically that the

proportion that maximizes the likelihood function is

given by p
n

n mip
ip

ip ip




. We will further assume that

Figure 6 Gene expression fold change in the TDP-43 deletion vs wild type genes (Chiang dataset). Gene expression fold change is
plotted against the average tag counts (x-axis in base-10 log; y-axis in base-2 log). The 300 most significantly differentially expressed genes by p-
value are depicted by squares (t-test), diamonds (beta-binomial distribution), and triangles (binomial distribution). Black circles represent genes
not among the top 300 in any methods. The green and purple boxes and lines indicate the median for RPKM and peak of proportional
normalization. The data were from the average of three deletion and two wild type experiments.
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θip is independent of of p; we use Eq.(1) to reparame-

terize θi in terms of parameters Di and

  :
( )

ip
i

ip ip

D

n m



. The parameters were deter-

mined by maximizing the likelihood

log( ) log( ).   ip
ip

(2)

Likelihood ratio test

According to the likelihood ratio test, 2 ln
( )
( )




p

p
i

n











follows a Χ2 distribution, where pi is the proportion for
gene i and pn is the normalized proportion correspond-
ing to no change in gene expression. This is the most
convenient way to compute the p-value.

FDR and ROC
To determine the false discovery rate (FDR), we
assumed that any gene deemed to be significantly differ-
entially expressed at a given p-value were false when
comparing two replicates sequenced from the same bio-
logical sample. We computed the FDR by dividing the
number of falsely discovered genes at a given p-value
with the number of significantly differentially expressed
genes, comparing the sample to the control at the same
p-value.
To determine the receiver operating characteristic

(ROC), we first established a gold standard. Approxi-
mately one thousand genes in the Bullard dataset were
previously assayed by RT-PCR in four independent
experiments [26]. Differentially expressed genes were
determined by t-test by Bullard et al. [13]. We used
their results to draw an ROC curve when comparing the
binomial and beta-binomial distributions for the Bullard

Figure 7 Venn Diagram comparison. The overlap of top 300 genes identified by beta-binomial (bb) binomial (bi), and the t-test (t) shows in
Venn Diagram. The number in lower right of the rectangle indicates the total number of transcripts detected.
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dataset. For the Caltech and Chiang datasets, we
assumed that the t-test provided a gold standard. In
order to reduce errors for small tag counts, we required
a gene to have more than 20 mapped tags. For the Cal-
tech data, the Benjamini & Hochberg adjustment was
applied to the p-value calculated by the t-test, using a
cutoff of 0.05 [23]. We could not use the FDR p-value
adjustment on the Bullard dataset, as much fewer genes
had differential expression levels detected from the wild/
knockout samples. Therefore, we applied a cutoff of 0.05
to the p-value from the t-test and required a fold change
larger than two.

Computing the fold change
We related the fold change in the gene expression
level FCi to the optimized ratio pi and obtained, by

definition, FC i
i

i

p

p


1
. This ratio has to be cali-

brated against the normalization of the entire experi-
ment. We defined pn as no change. Therefore

log ( ) log log2 2 2
1
1

FC i
i

n

i

n

p

p

p

p










 












 , where pn is

the normalized ratio as determined over the entire
dataset. Infinite values of FCi can be avoided by add-
ing a pseudo-count to ni and mi so that 0 <pi < 1.
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