Granholm et al. BMC Bioinformatics 2012, 13(Suppl 16):S3
http://www.biomedcentral.com/1471-2105/13/516/S3

BMC
Bioinformatics

RESEARCH Open Access

A cross-validation scheme for machine learning
algorithms in shotgun proteomics

Viktor Granholm', William Stafford Noble??, Lukas Kall*"

Abstract

Peptides are routinely identified from mass spectrometry-based proteomics experiments by matching observed
spectra to peptides derived from protein databases. The error rates of these identifications can be estimated by
target-decoy analysis, which involves matching spectra to shuffled or reversed peptides. Besides estimating error
rates, decoy searches can be used by semi-supervised machine learning algorithms to increase the number of
confidently identified peptides. As for all machine learning algorithms, however, the results must be validated to
avoid issues such as overfitting or biased learning, which would produce unreliable peptide identifications. Here,
we discuss how the target-decoy method is employed in machine learning for shotgun proteomics, focusing on
how the results can be validated by cross-validation, a frequently used validation scheme in machine learning. We
also use simulated data to demonstrate the proposed cross-validation scheme's ability to detect overfitting.

Background

Shotgun proteomics relies on liquid chromatography
and tandem mass spectrometry to identify proteins in
complex biological mixtures. A central step in the pro-
cedure is the inference of peptides from observed frag-
mentation spectra. This inference is frequently achieved
by evaluating the resemblance between the experimental
spectrum and a set of theoretical spectra constructed
from a database of known protein sequences of the
organism under consideration. If a peptide present in
the database was analyzed in the mass spectrometer and
triggered a fragmentation event, then the peptide can be
identified by comparing the observed and theoretical
fragmentation spectra. This matching procedure is car-
ried out by search engines, such as Sequest [1], Mascot
[2], X! Tandem [3] and Crux [4]. Each generated match
is referred to as a peptide-spectrum match (PSM) and is
given a score, indicating the degree of similarity between
the observed and the theoretical fragmentation spec-
trum. The best scoring peptide of a spectrum is referred
to as the spectrum’s top-scoring PSM, and normally
only this PSM is kept for further analysis. Here, we refer
to the search engine scores as raw scores, because they
have not been calibrated and generally lack a direct
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statistical interpretation. Ideally, the best raw score is
assigned to the PSM of the peptide that originally pro-
duced the spectrum. Subsequently, from the set of
PSMs, the proteins in the sample can be inferred [5-8].
A large proportion of the fragmentation spectra in
shotgun proteomics experiments are matched to peptides
that were not present in the fragmentation cell when the
spectrum was collected. We say that the top-scoring
PSMs for these spectra are incorrect. In practice, the
researcher generally chooses a score threshold above
which PSMs are deemed significant and considered to be
correct matches. However, because there are many error
sources associated both with the mass spectrometer and
the matching procedures, correct and incorrect PSMs
cannot be completely discriminated using raw scores. For
this reason, an important step in the analysis is to esti-
mate the error rate associated with a given score thresh-
old. These error rates, quantified using statistical
confidence measures, are usually expressed in terms of
the false discovery rate (FDR) [9-11], the expected frac-
tion of false positives among the PSMs that are deemed
significant. The closely related g value [11] is defined as
the minimum FDR required to deem a PSM as correct.
Thus, the g value provides a useful statistical quantity
that can be readily assigned to each PSM individually.
Target-decoy analysis is arguably the most common
approach for estimating error rates in shotgun proteomics.
As described later, this approach uses searches against a
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shuffled decoy database to model incorrect matches.
Besides error rate estimation, the target-decoy approach
has been used to increase the score discrimination
between correct and incorrect PSMs using semi-super-
vised machine learning [12-17]. This increased discrimina-
tion is highly valuable, because it typically results in a
considerably higher number of confident peptide identifi-
cations. However, as we demonstrate below, improperly
implemented machine learning approaches risk seriously
damaging the quality of the results and the reliability of
the corresponding estimated error rates. Without proper
validation protocols, strong biases, such as overfitting, that
undermine the basic assumptions of the target-decoy
approach, will remain undiscovered.

Here, we describe the cross-validation procedure used
by Percolator [13], a semi-supervised machine learning
algorithm for post-processing of shotgun proteomics
experiments. The procedure accurately validates the
results by keeping training and validation sets separate
throughout the scoring procedure. We begin by introdu-
cing the idea of target-decoy analysis. Subsequently, we
focus on how ranking of PSMs can be improved by using
machine learning algorithms. Finally, we will discuss how
to validate the results from machine learning algorithms
to ensure reliable results. The effect of the validation is
demonstrated using an example based on simulated data.

Results and discussion

Estimating statistical confidence using the

target-decoy analysis

Frequently, results from shotgun proteomics experiment
are validated using the target-decoy analysis. The proce-
dure provides a mean to empirically estimate the error
rates by additionally matching the spectra against a decoy
database. The decoy database consists of shuffled or
reversed versions of the target database, which includes
the protein sequences of the organism under considera-
tion. As a consequence, the decoy database is assumed to
make up a list of biologically infeasible protein sequences
that are not found in nature. A spectrum matched against
one of these sequences is termed a decoy PSM, as
opposed to a standard target PSM, and is assumed to be
incorrectly matched. The idea is that the decoy PSMs
make a good model of the incorrect target matches, so
that the error rates can be estimated [18]. In this article
we assume that the target and the decoy databases are
searched separately. The other main strategy, which is
not discussed here, is target-decoy competition, in which
a single search is made through a combined target and
decoy database [19].

To estimate the FDR corresponding to a certain score
threshold with separate target-decoy searches, one first
sorts all PSMs according to their score. Second, one takes
all PSMs with scores equal to, or above, the threshold, and
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divide the number of decoy PSMs by the number of target
PSMs. Third, this fraction is multiplied by the expected
proportion of incorrect PSMs among all target PSMs,
which can be estimated from the distribution of low-scor-
ing matches [11,20,21]. To estimate g values, each PSM is
assigned the lowest estimated FDR of all thresholds that
includes it. With this approach, the researcher finds a
score threshold that corresponds to a suitable g value,
often 0.01 or 0.05, and uses this threshold to define the
significant PSMs.

Target-decoy approach to machine learning

Let us now turn our attention on how we may improve
the separation between correct and incorrect PSMs than
by ranking PSMs by the search engine’s raw scores alone.
Correct and incorrect PSMs may have different distribu-
tions of other features than just the search engine’s raw
scores. We can hence design scoring functions that com-
bine such features and obtain better separation between
correct and incorrect PSMs. The features that we want to
include in such a combined scoring function can be
selected from a wide set of properties of the PSMs. The
features might describe the PSM itself, such as the frac-
tion of explained b- and y-ions; the PSM’s peptide, such
as the peptide’s length; or the PSM’s spectrum, such as
the spectrum’s charge state.

We can use machine learning techniques, such as sup-
port vector machines (SVMs) [22], artificial neural net-
works, or random forests to obtain an, by some criterion,
optimal separation between labeled examples of correct
and incorrect PSMs. The method that we will discuss
here, Percolator, uses a semi-supervised machine learning
technique, self-training [23] linear SVM [24], to increase
the separation between correct and incorrect PSMs. [13]
Semi-supervised machine learning algorithms can use
decoy PSMs and a subset of the target PSMs as examples
to combine multiple features of PSMs into scores that
identify more PSMs than the original raw scores.

The target-decoy analysis relies on the assumption that
the decoy PSMs are good models of the incorrect target
PSMs. To extend the target-decoy analysis to include the
scenario where we have combined different PSM features
into one scoring function, we have to assure that the
used PSM features for decoy PSMs are good models of
the ones of incorrect target PSMs. For many features,
this assumption requires that the target and decoy data-
bases are as similar as possible. To assure the same
amino acid composition, and size, the decoy is made
from the target database by shuffling [25], using Markov
[26] or bag-of-word models [27] or reversing [18,19] it.
Only reversing, however, promises the same level of
sequence homogeneity between the two databases, as
shuffling would lead to larger variation among decoy
peptides than target peptides. Furthermore, to conserve
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the same peptide mass distribution between the two
databases, the peptides are often pseudo-reversed [28]. In
that case, each amino acid sequence between two enzy-
matic cleavage sites is reversed, while the cleavage sites
themselves remain intact.

Confounding variables

In all mass spectrometry-based proteomics experiments
random variation will make full separation between cor-
rect and incorrect PSMs very hard, if not impossible, to
achieve. Such variation can be introduced during the
experimental procedures, but also during the subsequent
bioinformatics processes. Sample concentration, instru-
ment type and sequence database composition [29] are
just a few of many elements potentially hampering the
search engine’s separation performance.

Just as in many other measurement problems, it turns
out that confounding variables have a considerable detri-
mental effect on the discriminative power of a search
engine [30]. Confounding variables are variables that
inadvertently correlate both with a property of the PSM’s
spectrum or peptide, and the search engine score. Thus,
the score assigned to a PSM by the search engine does
not exclusively indicate the quality of the match between
peptide and spectrum, but also influences from con-
founding variables. A typical confounding variable for e.g.
Sequest’s XCorr is the precursor ion’s charge state. Single
charge precursor spectra are known to have a signifi-
cantly lower XCorr than multiple charged spectra. [31]
Hence, the precursor charge state is a variable of the
spectrum that correlates also with the search engine
score. Figure 1A shows Sequest’s XCorr, influenced by a
covariation of properties, charge state and others, for
each spectrum. The detrimental effect of this correlation
between target and decoy scores for each spectrum
becomes apparent when studying this figure. Some spec-
tra obtain a high or low scores both against the target
and the decoy database, regardless of their PSMs being
correct or incorrect. Thresholds will inadvertently have
to include some incorrect PSMs of high scoring spectra
from the list of accepted target PSMs, while excluding
some correct PSMs from low scoring spectra.

Removing, or decreasing, the influence of confounding
variables can improve the discrimination between correct
and incorrect PSMs considerably. Machine learning
approaches such as PeptideProphet [32], Percolator [13]
or g-ranker [16] find the most discriminating features in
each particular dataset, and combine these to improve
the separation. On top of rendering results with addi-
tional information from the different features taken into
account, the outputted score is less influenced by con-
founding variables, and has better discriminative perfor-
mance. As an example, the effects of using Percolator
scores instead of Sequest’s XCorr are shown in Figure 1B.
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Cross-validation

Regardless of whether one uses an SVM, such as Perco-
lator, or any other machine learning approach, it is
necessary to validate the performance of the algorithm.
As with the common raw scores, the target-decoy
approach can be applied on the scores stemming from
the trained learner, to estimate the new error rates of
the identifications. However, the example data used for
training the algorithm is not suitable for estimating the
error rates, as the training examples are likely to be, at
least somewhat, overfitted.

Overfitting is a common pitfall in statistics and
machine learning, in which the classifier learns from
random variations in the training data. [33,34] Such
learning is undesired, as it does not arise from overall
trends and patterns that are generalizable to new data
points. For this reason, all sound machine learning
approaches keep an independent validation set separate
from the training set. First, the classifier learns from the
training set, to find the best scoring function. Second,
the learned scoring function is applied on the validation
set. This procedure helps avoid overfitting, and gives a
better estimate of the performance. [35]

In shotgun proteomics, a naive straightforward separa-
tion of the PSMs into a training set and a validation set
would decrease the number of PSMs that can be out-
putted in the final results, as we cannot apply the learned
SVM score on the set used for training. To avoid this,
previous versions of Percolator employed duplicate decoy
databases, one of which was used to drive the learning,
and the second to apply the learned classifier on. The
scores given to the PSMs by the second decoy database
was used for estimating the error rates of the target
PSMs. With this approach, however, the target PSMs are
still used both for learning and validation, and the
approach was thus removed from Percolator.

As opposed to using duplicate decoy databases, current
versions of Percolator employ cross-validation, a com-
mon method to deal with small training sets in machine
learning [33,35-37]. Cross-validation means to randomly
divide the input examples into a number of equally sized
subsets, and to train the classifier multiple times, each
time on all but one of the subsets. After each training
procedure, the excluded subset is used for validation.
The number of subsets can be varied, but is commonly
denoted k. Consequently, in a k-fold cross-validation pro-
cedure, k - 1 subsets are used for training, and 1 subset
for testing. This is repeated k times to use all possible
combinations of training and validation sets. With this
approach, all the data points can be classified and vali-
dated, while still keeping a separate training set. Conse-
quently, to reliably score all PSMs, Percolator employs a
three-fold cross-validation procedure by dividing the
spectra into three equally sized subsets. The target and
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Figure 1 Elimination of confounding variables in PSM scoring. Approximately 30,000 top-scoring PSMs were obtained from a set of
C. elegans spectra using a + 3 Da Sequest search. A target database of C. elegans protein sequences and a separate decoy database of the
reversed sequences were used. Each PSM obtained a target and a decoy score, indicated in the 2D-histograms on the x and y axis, respectively.
The black line represents the x = y diagonal. (A) shows the score distribution of PSMs when using Sequest's XCorr. (B) shows the same PSMs
when scored with Percolator score. The PSM count in each 2D-bin is indicated by color coding.
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decoy PSMs from two of the subsets are used for train-
ing, and the PSMs of the spectra in the third subset for
validation. The three-fold cross-validation procedure in
Percolator is illustrated in Figure 2 and outlined in
pseudo-code in Figure 3.

An SVM can learn from training data using different set-
tings, or hyperparameters [38]. The best set of hyperpara-
meters for the dataset at hand are usually approximated by
a so-called grid search. This search is performed by train-
ing and validating the classifier multiple times, each time
with a different permutation of hyperparameters. The

hyperparameters with the best validation results is then
used for the actual training. Percolator uses a nested three-
fold cross-validation step within each training set to per-
form a grid-search. The two training subsets are divided
once again into three parts, of which two at the time serve
as training data, and the third as validation data. The
nested cross-validation is performed for each combination
of hyperparameters, so that the best combination can be
chosen for training the classifier on the two top-level train-
ing sets. The nested cross-validation scheme used in Per-
colator is illustrated in Figure 4.

Classify

Classify

Classify

\

Figure 2 The three-fold cross-validation procedure of Percolator. Percolator discriminates between correct and incorrect PSMs by dividing
the PSMs into three equally sized subsets. The PSMs of each subset are processed by an SVM-classifier that learned from the other two subsets.
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1: procedure CROSS-VALIDATION(S)
2 T+« {}
3 fori+ {1,2,3} do
4: X+ {}
b Z+{}
6: for (f,isDecoy,g) € Sdo
7 if ¢ =i then
8 Z «— ZU{(f,isDecoy)}
% else
10: X « X U{(f,isDecoy)}
i end if
12: end for
13: y + InternalCrossValidation(X)
14: w ¢+ SVMTrain(X, y)
15 for (f.isDecoy) € Z do
16: ye—w-f
17; Y < Y U{(y,isDecoy)}
18: end for
19: W —yu{r}
20: end for

21: ¢ <+ Merge(#,0.01)
2 return ¢
23: end procedure

Figure 3 The algorithm for cross-validation. Given a set, K, of tuples (f, isDecoy, g) representing PSMs, where ;‘ is a vector of PSM features,
isDecoy is a boolean variable indicative of whether the PSM is a decoy PSM or not, and g € {1, 2, 3} is a tag indicating which cross-validation
set the tuple should be allocated to, the algorithm returns a set of PSMs. The function InternalCrossValidation() is used for nested cross-validation
within the training set and returns the most efficient set of learning hyperparameters. The SVMTrain() function uses the training set and
hyperparameters and returns the learned feature weights needed to score the PSM.

> Initialize set for sets of PSMs

> Separate into training and test set using tags

> Score the PSM

> The merging is outlined in Algorithm 2

Merging separated datasets

The cross-validation is necessary to prevent overfitting,
but has the drawback that the three subsets of PSMs are
scored by three different classifiers. These subsets cannot
be directly compared, as each classifier produces a unique

score learned from the features of its respective input
examples. Nevertheless, for the researcher the three sub-
sets have no experimental meaning and they must be
merged into a single list of PSMs. To merge data points
from multiple classifiers, they are given a normalized

Classify

— ™
Train, Train, Test,
Test, Train, Train,
Train, Test, Train,

hyperparameters.

Figure 4 Nested three-fold cross-validation procedure of Percolator. Each of the three cross-validation training sets are further divided into
three nested cross-validation sets, intended to select the most suitable hyperparameters for the SVM training procedure. Just as for the global
cross-validation scheme, different permutations of two subsets for training and one subset for testing are used to evaluate each set of
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score, called the SVM score, based on the separation
between target and decoy PSMs. In Percolator, the nor-
malization is performed after an internal target-decoy ana-
lysis within each of the three classified subsets. The subset
score corresponding to a g value of 0.01 is fixed to an
SVM score of 0. And the median of the decoy PSM subset
scores is set to -1. Both the target and the decoy PSM
scores within the subset are normalized with the same lin-
ear transformation, using the above constrains. Figure 5
outlines in pseudo-code how the normalization and mer-
ging is done in practice.

After the normalization, the three subsets of PSMs are
merged, and the overall error rates are estimated by tar-
get-decoy analysis on all PSMs. The final result is a list
of PSMs and accurate error rates, where correct and
incorrect matches have been highly discriminated.

Other issues with validation

In the previous sections, we described a cross-validation
procedure that assures that the machine learning algo-
rithm only considers general patterns in the data, and not
random variations within a finite dataset. However, the
fundamental assumption that decoy PSMs are good mod-
els of incorrect target PSMs hasstill not been validated.
This assumption can be validated by analyzing mixtures of
known protein content, in which incorrect target PSMs
are readily identified. Such validation experiments enable
direct comparisons of these incorrect matches and the
decoy PSMs. For machine learning algorithms, it is impor-
tant to validate that each one of the features considered by
the learner are indeed very similar between decoy and
incorrect target PSMs. Else, the classifier would easily
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detect these features, and produce biased results. An
example of such a feature is the number of PSMs match-
ing to the same peptide sequence, which differs slightly
between decoy and incorrect target PSMs. [39]

Simulated example

We evaluated the ability of our cross-validation strategy
to avoid overfitting by letting it train on a series of simu-
lated datasets. Each dataset consisted of 2500 target and
2500 decoy synthetic PSMs, described by 50 randomly
generated features. All random features followed a nor-
mal distribution with mean of 0.0 and standard deviation
of 1.0. To 1000 of the target synthetic PSMs, we added
an off set of 10.0 to the first feature, to simulate correctly
matched PSMs. With this procedure, 100 datasets were
created, and the performance of Percolator was tested on
each one of them. To demonstrate the effects of Percola-
tor’s cross-validation scheme, we also ran Percolator with
the cross-validation protocol disabled.

Given that g represents the g value, the ideal identifica-
tion rate from the above experiment is 1000/(1 - g). In
other words, we hope to find 1000 PSMs with a g value
of 0, but more when we increase the g value and start to
introduce incorrect PSMs among the reported PSMs. As
seen in Figure 6A, without cross-validation, Percolator
overestimates the number of significant synthetic PSMs.
With cross-validation, on the other hand, Percolator out-
puts results close to the ideal identification rate. Addi-
tionally, as seen in Figure 6B, cross-validation ensures
that the identified synthetic PSMs are the correct ones.
Without it, the estimated error rates (g values) are not
accurate.

1: procedure MERGE(%, @)
2.

3 €« {}

4 forY € % do

5: u < qValue(Y, o)
6 d < MedianDecoy(Y)

7 for (y,isDecoy) € Y do

8 § e (y—u)/(u—d)

9 € + € U{(9,isDecoy)}
10: end for

11: end for

12: return (%)

13: end procedure

> % is a set of test sets from a cross validation

Figure 5 Percolator’s algorithm for normalizing the scores from different cross-validation sets. The algorithm takes two inputs: a set )/
containing sets of PSMs, and a significance threshold o. Each PSM is represented as a tuple: a score and an accompanying boolean indicating whether

this is a decoy PSM. The function gValue takes as input a set of scored PSMs and finds the minimal score that achieves the specified significance ¢, and
MedianDecoy returns the median decoy score from the given set. The function returns a combined collection of normalized scores.

> ...procedure, & is a chosen central g value
> Set € to an empty set

> Find score threshold corresponding to «

> Normalize the scores
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Figure 6 The effect of cross-validation on simulated datasets. Percolator was run with and without the cross-validation protocol enabled
(blue and green lines, respectively) for 100 simulated datasets. Each dataset contained 2500 synthetic target and decoy PSMs, represented by 50
randomly generated features. 1000 of the target PSMs were intentionally made different, as examples of synthetic “correct” matches. The
medians of the 100 runs are shown by full lines, and the lower and upper dashed lines represent the 5% and 95% quartiles. (A) shows the
number of synthetic PSMs deemed significant for each g values threshold. (B) shows the fraction of synthetic incorrect PSMs among the

Conclusions

Here, we discussed the cross-validation implementation
used by Percolator to ensure the reliability of the machine
learning output. With a three-fold cross-validation proce-
dure, no data points are lost, while still keeping separate
training and validation sets. The PSMs from the three
resulting classifiers are merged after first normalizing the
three scores, and the error rates are estimated using
straightforward target-decoy analysis based on the normal-
ized scores.

Although cross-validation is used by machine learning
algorithms in all fields, merging the validated data after-
wards is less common. In shotgun proteomics, normaliz-
ing scores and merging the data is a necessity, for instance
to allow analyzing unique peptides, where multiple PSMs
map to the same peptide sequence. Thus, a normalization
procedure is a natural second step after the cross-valida-
tion. As there is no established general-purpose method to
normalize the scores in the different cross-validation sets,
we had to design our own heuristic procedure. As we have
described here, we chose to linearly rescale the scores
before merging the datasets. This procedure lacks support
in the literature but seems to work well in practice.
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