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Abstract

Mass Spectrometry utilizing labeling allows multiple specimens to be subjected to mass spectrometry
simultaneously. As a result, between-experiment variability is reduced. Here we describe use of fundamental
concepts of statistical experimental design in the labeling framework in order to minimize variability and avoid
biases. We demonstrate how to export data in the format that is most efficient for statistical analysis. We
demonstrate how to assess the need for normalization, perform normalization, and check whether it worked. We
describe how to build a model explaining the observed values and test for differential protein abundance along
with descriptive statistics and measures of reliability of the findings. Concepts are illustrated through the use of
three case studies utilizing the iTRAQ 4-plex labeling protocol.

Background

In this manuscript we focus on statistical methods for
quantitative mass spectrometry (MS) based proteomic
experiments as they pertain to labeling protocols. Labeling
of fragmented proteins (i.e., peptides) allows specimens to
be labeled without altering the chemical properties of the
peptides, mixed into a single aliquot and then subjected to
MS simultaneously. The advantage of the labeling protocol
is that specimens can be distinguished in the resulting data
by leveraging known properties of the labels. For example,
if stable isotopes are used, the known mass shift resulting
from extra neutrons together with known naturally occur-
ring distributions of isotopes in the atmosphere are used
during the relative quantification step.

Several different labeling protocols have been developed.
In iTRAQ labeling, each specimen is labeled with a differ-
ent amine-specific isobaric tag [1,2]. In '*0/'®0 labeling,
one specimen is mixed with “light” water containing oxy-
gen in its natural isotopic state (mostly °O) and a second
specimen with “heavy” water containing mostly water
molecules with the 'O isotope that has two extra neu-
trons. With stable isotope labeling by amino acids in cell
culture (SILAC) cells may be grown in “light” or “heavy”
medium [3,4] or mice may be fed chow containing carbon
in either the natural ("light”) 12¢C state or the 3C ("heavy”)
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isotopic state [5]. Similarly, with >N labeling, cells may be
grown in “light” or “heavy” medium [6,7].

Labeled protocols are appealing for multiple reasons.
Mixing multiple specimens for simultaneous MS reduces
the total MS machine time needed to perform an experi-
ment. It also eliminates the between MS experiment varia-
tion for the specimens assayed together, thus reducing the
variation in the study overall. We demonstrate here appli-
cation of some fundamental experimental design princi-
ples, how to assess need for and success of normalization,
and how to use statistical models to assess differential pro-
tein abundance for a study using data from multiple MS
experiments.

There are three common objectives in high dimensional
studies that produce data on a large number of endpoints
such as global proteomics studies [8]. Class comparison
involves comparing abundance levels between predefined
groups. An example of this is comparing protein abundance
levels between cancerous and benign tumors in order to
gain biological insight into the mechanism of cancer. Class
prediction involves development of a prediction rule con-
sisting of a panel of biomarkers that are useful for classify-
ing a new subject into pre-determined classes such as
cancer or benign. Building on the cancer example, this pro-
cess would combine multiple proteins present at differing
abundance levels between cancer and benign tumors in this
case, into a prediction rule that could be applied to a new
subject with a tumor to determine whether the tumor
was benign or cancerous. Class discovery involves use of
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abundance profiles to uncover yet unknown biological sub-
types of disease. For example, in a proteomics study of
high-grade serous ovarian cancers, the protein abundance
data would be used to determine whether subtypes of ser-
ous cancer may exist that are currently unknown. The
methods of this manuscript are focused on the class com-
parison objective.

In general we will use specimen to refer to the sample
material labeled, tag to refer to the label applied to the
specimen, experiment to refer to the set of specimens
mixed and subjected to MS simultaneously, and study to
refer to the collection of MS experiments used to test a
particular hypothesis. We assume that protein and peptide
identification has already been performed, and that a list
of peptides, the associated proteins and abundance levels
are available for analysis. Case studies will be used to
demonstrate the principles discussed. The beginning por-
tions of the “Assessing the need for and success of normal-
ization” and “ Estimation of model parameters and
calculating significance” sections will likely be more acces-
sible to statisticians than to non-statisticians; the case stu-
dies in those sections provide tangible examples of the
concepts being discussed which will likely be more tangi-
ble to clinicians and practitioners of mass spectrometry.

Methods

Overview

We utilize three 4-plex iTRAQ data sets as case studies
throughout the manuscript. The iTRAQ 4-plex labeling
protocol involves adding one of four amine specific iso-
baric labels which do not alter mass (e.g., 114, 115, 116,
or 117) to each of four specimens for simultaneous
mass analysis via tandem mass spectrometry. The four
mixed specimens are not discernible in the first MS
where the most abundant species in the chamber are
chosen for relative quantification (see Figure 1). During
the second MS, the isobaric tags are broken off and
quantification is performed based on the relative abun-
dance of these tags. An 8-plex iTRAQ protocol is also
available. See the “Discussion” section for an example of
how other labeling protocols may differ.

Here we provide a very brief explanation of each case
study. Highly abundant proteins were removed in the
GCM and prostate cancer studies, proteins were digested
for all three studies, and fractionation was performed via
strong cation exchange (SCX) in all three studies.

Giant cell myocarditis (GCM)

The study focused on three histologic subtypes of acute
cardiomyopathy: 1) idiopathic dilated cardiomyopathy
(DCM), 2) giant cell myocarditis (GCM) and 3) lympho-
cytic myocarditis (LM). These three subtypes present
with similar clinical symptoms. However, GCM is much
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more lethal and requires a very different treatment strat-
egy. Immediate objectives included comparing protein
abundance profiles between these groups and long-term
objectives included finding a protein present in blood
useful as a diagnostic tool.

Six subjects of each subtype were included in the study.
Though less than ideal (rationale will be discussed more in
later sections), a pool of six normal healthy controls was
used as a reference (N). Specimens were mass analyzed via
capillary reverse-phase LC/MS/MS on a QSTAR quadri-
pole time of flight mass spectrometer. Protein identifica-
tion was performed via ProQuant. A total of six MS
experiments were performed. Full experimental details are
available elsewhere [9,10].

Prostate cancer

This study used serum from prostate cancer patients to
understand changes from pre- to post-androgen depriva-
tion therapy (ADT) (n = 15 paired specimens) and to
understand the differences between subjects experiencing
ADT failure within a short (n = 10) versus long (n = 10)
time-frame. Mass analysis was performed with an LTQ-
Orbitrap Velos mass spectrometer. Final analyses are still
being performed, so group membership is blinded for the
current manuscript. A total of 13 MS experiments were
performed. Two of the experiments were run a second
time as indicated by an ‘R’ suffix (1R and 13R).

Yeast spike-in

A spike-in study was performed using yeast lysate to
represent a complex background with the goal of under-
standing variance structure, systematic experimental
biases and ability to detect fold changes of various mag-
nitudes. Sixteen proteins with masses ranging from
approximately 11 to 98 kDa were combined into two
spike-in mixes; each protein was present in one mix at a
“low” concentration and in the other mix at a “high”
concentration. Each mix was then spiked into the yeast
background at relative concentrations (fold changes)
ranging from 1.0, 1.1, 1.2, 2.0, and 5.0. For each mix,
two combinations of fold changes were performed: 1.0 :
1.5:1.0:5and 1.1 : 1.0 : 2.0 : 1.2. Each of these was
mass analyzed in duplicate for a total of eight MS
experiments (2 mixes * 2 fold change layouts * 2 repli-
cates). The yeast background was present at equal abun-
dance (1.0 : 1.0 : 1.0 : 1.0) in all experiments. Mass
analysis was performed on an LTQ Orbitrap. Full experi-
mental details are available elsewhere [11]. These data
are publicly available from http://ProteomeCommons.
org/Tranche using the following hash search: YW9yck8P
Khd5vyKwUtOAIfVVIIgXP9RoMOqTZDWQO05aNtae8
ulHN/ 1Ird7APnNweSfqjVbon5fT +0oEyfqnOKZdRz3A
UAAAAAAAABSQ=-=.
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Figure 1 Cartoon depiction of the 4-plex iTRAQ labeling protocol for one MS experiment. A) Four specimens are each labeled with one of the four
tags. The black dots indicate a given peptide that is present in different relative abundance according to size. B) The four specimens are then mixed into a
single aliquot for simultaneous MS analysis. The resulting data constitute an MS experiment. C) Each peptide will take some amount of time to elute off of
the LC column and so may be observed multiple times. D) In the first MS the top species according to abundance are chosen for a second MS. It is
common for the top 3 or 5 to be chosen. E) During the second MS the iTRAQ tags are broken off and used for relative quantification (left in the dotted
circle). It is these data that are used in downstream statistical analyses. The remaining peptides are fragmented further for identification purposes (right).

Statistical experimental design

Overview

The primary goals of statistical experimental design are to
maximize information gain while minimizing resource
expenditure and avoiding bias. Thoroughly considering
the key aspects of replication, randomization and blocking
prior to running an experiment ensures that enough of
the necessary data is collected in a manner that ensures
proper conclusions. In this “Statistical experimental
design” section we first briefly describe the issues of bias
and variability followed by discussion of the fundamental
experimental design strategies to combat these issues.

Bias
Bias is any trend in collection, analysis, interpretation,
publication or review of data that can lead to conclusions

that are systematically different from the truth. A con-
founded factor is one that is associated with both a real
causal factor and the outcome of interest [12]. Bias and
confounding may enter a study if samples in the compara-
tive classes differ systematically on factors that affect the
outcome. Dr. Ransohoff defines bias, describes ways to
avoid it, and how to assess it and address it in various
types of studies [13].

Variability

There are several levels of variability including technical,
biological and institutional. Technical variability deals
with reproducibility of an assay. Sample extraction,
label, dye, technician, machine, reagent batch are all
potential sources of assay variation and could alter
the result produced in multiple assays of the same
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specimen. Biological variation is due to the difference
between human subjects in a human study, mice in a
mouse study, or Petri dishes/beakers of cell line in a cell
line study. Institutional variation is due to differences
between institutions and can be due to differences in
patient populations seen, e.g. differences in disease
severity or ethnicity, and differences in sample procure-
ment protocols and implementation (even if identical on
paper). These levels of variability all play a role in distin-
guishing signal from noise as well as in the generaliz-
ability of study conclusions. In general, technical
variability is smaller than biological variability, which in
turn is smaller than institutional variability. Generally,
biological variability is the focus of most studies.

Replication
One of the main threats to validity and generalizability of
experiments where a large number of endpoints are mea-
sured on a small set of subjects is chance [13]. Replica-
tion is the tool that increases the precision of study
conclusions and reduces the possibility that they are due
to chance. There are several levels of replication that
parallel the levels of variability. Technical replication
involves repeated assays on the same biological replicate.
This could involve one extraction of sample material
undergoing sample preparation procedures as a unit but
subjected to assay multiple times. It could also involve
more than one extraction of sample material with each
extraction then undergoing the sample preparation pro-
cess on its own. Biological replication involves studying
multiple members of the population being studied. For
example, in a human study, each person in the study con-
stitutes one biological replicate. If each human provides,
say both cancer tumor tissue and normal tissue, then the
pair of cancer-normal specimens constitutes one biologi-
cal replicate. In an animal study, each animal constitutes
one biological replicate. In a cell line study, each dish of
cells grown up and subjected to treatment on its own
constitutes a biological replicate. Institutional replication
involves a study being performed at multiple institutions.
The optimal replication strategy depends on the goal of
a study. A study with the goal of understanding and esti-
mating sources of assay variability requires various types
and levels of technical replication on a small number of
biological replicates. Class comparison and class prediction
studies have the goal of better understanding distinct
classes of subjects. Study results are generally inferred
back to population classes of subjects, making it ideal to
maximize the precision of statements about those popula-
tions. Technical replication increases the information and
precision about a specific subject while biological replica-
tion increases the information and precision about a popu-
lation. Thus, the greatest information gain and increase in
precision for inferences to the study population comes
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from allocating available resources to more biological
replicates rather than technical replicates. The mathe-
matics supporting this are demonstrated elsewhere [14].
In practice, it is wise to include technical replicates on
a few of the biological replicates in high dimensional
experiments, especially if the assay platform or protocol
is new to the laboratory, for use in evaluating and report-
ing on reproducibility and quality. Institutional replica-
tion is often utilized in studies with validation as the goal.

Blocking

Statistical blocking is a tool that helps to guard against
known potential biases and to minimize variance in a
study. Blocking is sometimes referred to as matching in
the context of sample selection, where for example, sub-
jects are matched on gender or paired specimens are
taken from the same subject. In the context of spectral
acquisition, blocking is sometimes referred to as multi-
plexing. Specimens assayed within a block are more simi-
lar than specimens assayed between (in different) blocks.
Use of this strategy in allocating specimens to MS experi-
ments and tags is called a Randomized Block Design
(RBD). MS experiment is a natural blocking factor in
labeled work-flows and should be used as such. Labels or
tags, day of MS assay, laboratory technicians, reagent
batches, MS machines or LC columns are other examples
of natural blocking factors. To protect against bias, avoid
confounding and minimize variance about the question of
interest, some specimens from each study group should be
allocated to be assayed together within a block. This is the
basis of the RBD and is demonstrated in the case study
examples towards the end of this section on “Statistical
experimental design”. A labeled MS study with only one
MS experiment will result in study groups being con-
founded with labels and very small sample sizes. It is good
practice to utilize multiple MS experiments in order to
avoid confounding of study groups and tag effects and rea-
sonable sample sizes.

Randomization

Randomization is a tool that protects a study from both
known and unknown biases. This tool is utilized during
both subject selection and during the allocation of speci-
mens to sample processing order. Randomized selection
of subjects generally ensures that potential biases which
may influence the outcome are approximately balanced
across the study groups and is discussed in greater detail
elsewhere [15,16].

Randomized allocation of study specimens over assay
run order generally ensures group membership is
approximately balanced over run order, thereby elimi-
nating the potential confounding of study group and
run order. In a labeled workflow using MS experiment
as a blocking factor, this allocation takes place in two
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steps. Consider the 4-plex iTRAQ workflow and a study
with four groups of interest such as the GCM study.
Thus, the number of groups is equal to the number of
tags within each MS experiment block. The first step is
to allocate one specimen from each study group to each
block. To do this, a random number is generated for
each biological replicate via a random number genera-
tor, such as the RAND function in excel. These numbers
are then ranked within study group to determine which
specimen is allocated to MS experiment 1, 2, etc. The
second step is to allocate specimens to labels within a
block. This can be done using the same random num-
ber, or a second random number could be generated,
with the rank order of these random numbers determin-
ing the tag allocation.

Though a consistent tag bias affecting all proteins has
not been demonstrated in iTRAQ data, there are likely
protein-specific tag biases. Thus, it is wise to ensure tag
and study group are not confounded. Check the rando-
mization to be sure groups are approximately balanced
over tag so that group and tag are not confounded. Alter-
natively, both MS experiment and tag can be used as
blocking factors. This is especially wise in studies with
very small sample sizes.

Case study: GCM data

Both MS experiment and labeling tag were used as block-
ing factors in this study. First, one specimen from each of
the four study groups was allocated to an MS experiment.
Second, within each MS experiment, the four specimens
were randomly assigned to a tag so that the study groups
were approximately balanced over tags. Both steps were
accomplished using a random number generator. See
Table 1 for the resulting allocation. Though the normal
pool was included as a reference, it was randomly assigned
to tag within a block in order to avoid confounding of tag
and study group. As a result of the blocked randomization,
any potential effects or biases due to tag can be distin-
guished from study group using a statistical model for
differential abundance. This will be discussed in more
detail in the “Differential abundance” section.
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The rationale for using a pool as a reference in a
labeled design is based on the fact that the abundance
measures are relative and the pool can be used as a nor-
malizing factor of sorts to adjust for technical variation.
With this strategy, abundance values are divided by the
pool abundance values to create a “normalized” ratio.
First, this strategy assumes the normalization factor is
identical for each specimen within the MS experiment.
However, normalization factors generally differ for each
specimen due to slight but non-ignorable differences in
sample handling from the time of extraction from the
subject to mass analysis. Second, the resulting ratios are
generally ill behaved and difficult to deal with in statisti-
cal analyses. This will be discussed further in the “Data
quality and normalization” and “Differential abundance”
sections. Third, this induces a correlation between obser-
vations, violating the independence assumption of statis-
tical tests. Model-based methods for normalization are
described in the “Data quality and normalization” section.
Fourth, it is not possible to correctly perform statistical
differential abundance between the six normal specimens
in the pool and other study groups since biological varia-
bility cannot be estimated for the normal specimens. Sta-
tistical designs and the associated analysis methods were
developed specifically to deal with relative measurements
in the early 1900’s[17,18], obviating the need for a refer-
ence sample in each MS experiment.

Case study: prostate data

Two comparisons were of interest in the prostate cancer
study. The first comparison was between pre- and post-
ADT treatment protein profiles in paired specimens from
each of 15 patients in order to understand proteins indi-
cating early response to ADT. The second comparison
was between ten subjects who failed ADT within 12
months (short) and ten subjects who failed after 30
months (long). In addition, for proteins found to be signif-
icantly differentially a in the pre- to post-ADT compari-
son, the investigator wished to assess behavior of those
proteins in the short and long cohorts. Thus, it was impor-
tant to keep paired pre and post specimens within the

Table 1 Statistical experimental design of the GCM study demonstrating allocation of specimens to MS experiments

and labeling tags.

Experiment Tag
114 115 116 117
1 GCM1 DCM1 LM1 Normal Pool1
2 DCM2 Normal Pool2 GCM2 LM2
3 Normal Pool3 LM3 GCM3 DCM3
4 LM4 GCM4 Normal Pool4 DCM4
5 DCM5 GCM5 Normal Pool5 LM5
6 Normal Pool6 DCM6 LM6 GCM6

(Adapted with permission from [9]. Copyright 2008 American Chemical Society.) The abbreviations GCM, DCM, LM and N (normal control pool) denote the four
groups under investigation as described in Section 2.2. The numbers denote biological replicates for GCM, DCM and LM, and technical replicate number for N.
For example, GCMT1 is the first sample in the GCM group. Experiment number also corresponds to run order.
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same MS experiment in order to minimize variability in
that comparison. Second, it was important to allocate at
least one short and one long specimen to the same MS
experiment in order to minimize variability in that com-
parison. Third, it was important to observe most of the
proteins in both sets of subjects. Thus, given the data-
dependent acquisition process of global MS studies, it was
important to include both pre/post specimens together
with short-term/long-term in the same MS experiments.

The randomization plan accounted for these goals. Thir-
teen MS experiments were required to assay the 50 speci-
mens and two technical replicates. First, one short-term
and one long-term subject were randomly assigned to 10
of the 13 MS experiments, allocating all 20 of these speci-
mens. Second, a pair of pre/post specimens was randomly
assigned to those same 10 MS experiments, allocating
10 of the 20 pairs of specimens. Third, the remaining
five pairs of specimens were randomly assigned to the
remaining three MS experiments. Fourth, the four speci-
mens assigned to each MS experiment were randomly
assigned to tag, ensuring balance of the groups over tag.
See Table 2 for the resulting allocation.

Data quality and normalization

Obtaining the data

Vendor software generally creates data reports in which
abundance data has been divided by the abundance in
one specimen or tag that is designated as the reference.
This reference specimen may be a control or a pool, or

Table 2 Statistical experimental design of the prostate
cancer study.

Experiment Tag

114 115 116 117

1, 1R Pre Late Early Post
2 Post Early Late Pre

3 Early Post Pre Late

4 Post Early Late Pre
5 Late Pre Post Early

6 Late Early Post Pre

7 Pre Post Early Late

8 Pre Pre Post Post

9 Early Late Pre Post

10 Post Post Pre Pre
11 Post Pre Late Early
12 Early Pre Late Post
13, 13R Post Late Pre Early

Statistical experimental design of the prostate cancer study demonstrating
allocation of specimens to MS experiments (where an ‘R’ suffix indicates that
experiment was re-run) and labeling tags. The abbreviations Pre, Post, Early
and Late denote the four groups under investigation as described in Section
2.3, pre-ADT, post-ADT, ADT failure within a short time-frame, ADT failure
within a long timeframe. The numbers denote biological replicates for each
group. For example, Pre1 is the first sample in the pre-ADT group.
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represent one of the study groups of interest. However,
ratios are generally ill behaved, and it is preferable to
work with the individual abundance values in statistical
analyses [14,19]. For example, when abundance values
in the control are very small, the resulting ratios get
incredibly large very quickly due to very small numbers
in the denominator. In addition, such ratios are not
immune to pipetting errors or differences in specimen
processing.

Thus, it is preferable to work with data that have not
been put into a ratio format. That is, we want the pep-
tide level abundance values for each labeled specimen
for use in statistical analyses. It is not always obvious
how to obtain this data. In the ProteinPilot software
with which we are familiar, individual reporter ion area
under the curve values are contained in the Peptide
Summary exports. These reports are generated by first
opening the results file (*.group) in ProteinPilot and
then clicking on Peptide Summary export on the left
side of the page. The user is then prompted for a loca-
tion to save the resulting . txt file. The desired data
are near the last columns in the spreadsheet and are
given variable names such as Areall4, ...,
Areall?.

An a priori list of proteins does not exist for global
MS studies. Rather, the goal is to catalogue as many
proteins as possible in a specimen and obtain quantifica-
tion information for them. A “divide-and-conquer” strat-
egy is employed since MS instruments have a dynamic
range of around 4-5 orders of magnitude while the
human proteome spans over 12 [20]. A specimen under-
goes many steps in this process including digestion to
break proteins into peptides and fractionation to sepa-
rate the specimen into less complex sub-samples via
some chemical property such as charge state (saltiness)
and/or hydrophobicity (ability to mix with water)
[21,22]. As material is introduced into the mass spectro-
meter, generally only the most abundant species are
selected for MS, e.g., the top three or five. Thus, the
data acquisition is abundance-dependent. As a result,
iTRAQ studies using multiple MS experiments typically
have many proteins/peptides that are not observed in all
MS experiments. Due to the dynamic range of the pro-
teome, whether human or other species, approximately
half of the species in a specimen are present at the level
of detection. So even in technical replicate MS experi-
ments there can be a large number of proteins which
are not observed in both experiments.

The tandem MS is utilized in iTRAQ to choose a spe-
cies in the first MS and then perform identification and
quantification in the second MS, generally resulting in an
observed abundance value for all for specimens within an
experiment. Thus, there is generally not missing data for
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a given peptide within an MS experiment. This has impli-
cations for the normalization strategy. See Table 3 for an
example of a typical data matrix.

Assessing the need for and success of normalization
Observed abundance values produced by global mass
spectrometry machines are relative rather than absolute.
In addition, experimental effects between MS runs have
been demonstrated in several proteomic work-flows [23].
Even in labeled work-flows which reduce between MS
experiment variability, abundance values are subject to
other experimental factors such as sample handling from
the time the specimen was extracted from the subject,
pipetting errors or other potential sources of bias [24].
Thus, data must generally be normalized prior to per-
forming comparisons between groups of interest.
Normalization via standard curves is problematic in
these experiments that catalogue and quantify hundreds to
thousands of proteins in a single assay. However, normali-
zation methods have been developed utilizing the entire
data distributions. These make some specific assumptions
about the data. Most algorithms assume: 1) only a small
portion of the proteins are differentially abundant between
groups of interest, 2) the fold change distribution of differ-
entially abundant proteins is symmetric about 1.0, 3) data
must be available on a sufficient number of proteins with

Table 3 Snapshot of an iTRAQ data table.
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abundance levels distributed throughout the dynamic
range to estimate global biases without over-fitting [25].
For example, quantile [26,27] and cyclic loess normaliza-
tion [28-30] are examples of normalization algorithms
developed for one- and two-color gene expression arrays
that make these assumptions. The iterative ANOVA
model [9] described in the “Data quality and normaliza-
tion” section is an example of such a normalization algo-
rithm which can be applied to both labeled and label-free
proteomics abundance data.

There are several visualization tools which are useful
for assessing data quality, the need for normalization
and the success of normalization. These include peptide
or protein coverage plots, box-and-whisker plots (box
plots for briefness), and minus versus average (MVA or
MA) plots. We define these and provide some examples
of each in subsequent paragraphs.

Peptide and protein coverage plots are useful for
understanding the magnitude of missing data in a data
set, and how many peptides/proteins were detected in
multiple MS experiments. They can highlight systematic
effects present in the data for further investigation. The
axes indicate MS experiment number versus some rank
order of the peptide or protein ID. The sort order of the
peptides can be by average abundance, by number of
experiments it was observed in, or other. A line is placed

MSMS Spectrum ID Protein Accession Peptide Sequence 114 115 116 117 Experiment Number
S4_F11.1140.11402  GPP1_YEAST (F)EDAPAGIAAGK(A) 2813568536 1595.741524 2475724121 2458306255 4
S1_F16.2850.28503  GPP1_YEAST (KYGRNGLGFPINEQDPSK(S) 316.4418979 466.2738416 6304750319 444921289 1
S3_F16.261826183  GPP1_YEAST (KYGRNGLGFPINEQDPSK(S) 869.2210037 544.1843783 1617.949095 665.3067241 3
S3_F16.262326233  GPP1_YEAST (KYGRNGLGFPINEQDPSK(S) 1163.021548 925.1491063 1347.204837 1032958433 3
S1_F13.1643.16432  GPP1_YEAST (K)YDDLLK(-) 10607.97083 8544.75492  10953.83841 9005.777375 1
S1_F13.1513.15132  GPP1_YEAST (K)DDLLK(-) 1748.258583 2893.388823 186130691 2715.653088 1
S1_F13.1507.1507.2  GPP1_YEAST (K)DDLLK(-) 606.7841803 919.8748238 1144.338397 1025.119065 1
S1_F13.1643.16432  GPP1_YEAST (K)YDDLLK(-) 10607.97083 8544.75492  10953.83841 9005.777375 1
S2_F13.1291.12912  GPPI1_YEAST (K)DDLLK(-) 2618558021 1367.979923 2947928581 2321.749983 2
S2_F13.1291.12912  GPP1_YEAST (K)DDLLK(-) 2618558021 1367.979923 2947928581 2321.749983 2
S3_F13.1582.15822  GPP1_YEAST (K)YDDLLK(-) 1849.138156 2882.532646 3456336093 3333.133633 3
S3_F14.137413742  GPP1_YEAST (K)YDDLLK(-) 88.57809719 39.54738544 1134348917 128.6087568 3
S3_F13.1360.1360.2  GPP1_YEAST (K)DDLLK(-) 5897.197655 8115.16893  5413.842313 6349.146183 3
S3_F13.1357.1357.2  GPP1_YEAST (K)DDLLK(-) 3232418762 6524.148517 5246904457 539107817 3
S3_F13.1582.15822  GPP1_YEAST (K)DDLLK(-) 1849.138156 2882.532646 3456.336093 3333.133633 3
S3_F14.137413742  GPP1_YEAST (K)YDDLLK(-) 88.57809719 39.54738544 1134348917 128.6087568 3
S3_F13.1360.1360.2  GPP1_YEAST (K)YDDLLK(-) 5897.197655 811516893 5413842313 6349.146183 3
S3_F13.1357.1357.2  GPP1_YEAST (K)DDLLK(-) 3232418762 6524.148517 5246904457 5391.07817 3
S4_F13.1395.13952  GPP1_YEAST (K)DDLLK(-) 2404.371623 2571.938103 4057.845902 3907827732 4
S4_F13.1399.1399.2  GPP1_YEAST (K)DDLLK(-) 3195952185 3638.020997 6349.053364 6973.840279 4
S4_F13.1395.13952  GPP1_YEAST (K)YDDLLK(-) 2404371623 2571.938103 4057845902 3907.827732 4
S4_F13.1399.1399.2  GPP1_YEAST (K)DDLLK(-) 3195952185 3638.020997 6349.053364 6973.840279 4

This table shows a snap shot of an iTRAQ data table from the yeast data.
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on the plot if the peptide was detected in that experi-
ment, white space if it was not detected. A peptide that
was detected in all MS experiments in a study would
show as a solid line across the entire plot.

Box plots provide a visual summary of a distribution. The
bottom, mid and top lines of the box represent the 25%,
50" (median) and 75" percentiles of the distribution.
A “whisker” extends above the box to 1.5 times the inter
quartile range (i.e.,, the distance from the 75™ percentile to
the 25 percentile) or to the maximum value in the distri-
bution, whichever is smallest. Similarly, a whisker extends
below the box the same distance or to the minimum value,
whichever is largest. If points exist beyond these whiskers,
they are represented by dots. There is one box-and-whisker
for each specimen in the study. Global biases which affect
all peptides are indicated by shifts up or down in the box-
and-whiskers. Usually such a shift is not expected due to
the disease, i.e., a global increase or decrease in protein
concentration in the biological subject is not expected. The
sort order of the boxes can be chosen strategically. For
example, sorting by MS experiment first and then by tag
would help the eye identify global experiment effects
whereas sorting by tag first and then experiment would
help the eye identify global tag effects. Changes in dynamic
range are evident from compression or expansion of the
box and whiskers. If normalization has effectively removed
global biases, the box plots of post-normalization data
should demonstrate similar per-specimen box and whis-
kers. They typically demonstrate less variability than in the
pre-normalization plots as well, as evidenced by reduced
height of the box and whiskers.

Minus versus average (MVA) plots are useful for
assessing whether bias is a function of mean abundance.
Nonlinear bias of this type is common in gene expres-
sion data from both single and multi-channel arrays
[30,31]. Traditional MVA plots demonstrate agreement
in the global distributions (or lack thereof) for two spe-
cimens, have the average of the two on the horizontal
(x) axis and the difference between the two on the verti-
cal (y) axis, and a point for each peptide or protein that
is observed in both specimens. If two replicates yielded
identical results, all points would lie on the y = 0 hori-
zontal line (indicated on the plots for reference).
Residual MVA plots are advantageous because they
allow one plot for every specimen (rather than all pair-
wise combinations) and demonstrate visually how a spe-
cimen is similar to or different from the average of the
others. Here, the horizontal axis is the average over all
specimens instead of the average of two specimens and
the vertical axis is the difference between that specimen
and the average over all specimens.

Case study: yeast data
Pre-normalization box plots of peptide abundance values
from the yeast study demonstrate that, even in a well-
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controlled experiment where all but 16 proteins are pre-
sent at 1.0 : 1.0 : 1.0 : 1.0 ratios, between MS experiment
and tag effects exist (see Figure 2a, left panel). Post-
normalization box plots (see Figure 2a, right panel)
demonstrate that the global distributions have similar per-
centiles and the variability has been reduced, both indica-
tors of successful normalization.

MVA plots in the yeast study demonstrate a small
amount of global shift in abundance (see Figure 3), more
between MS experiments than within as would be
expected. The fact that the smoother is shifted away from
the y = 0 line indicates global bias. The curvature in the
smoother indicates the bias may be abundance-dependent.
If normalization has been effective at removing global
biases, the smoothers on post-normalization MVA plots
should overlay the y = 0 line. This is nearly true in these
data. Some nonlinearity remains post-normalization. How-
ever, these are in a region where there are very few data
points as demonstrated by the smoothed histogram at the
bottom of the plot. Completely removing this bias would
be viewed as over-fitting the data. Most experimental
biases we have seen in iTRAQ data have been mostly lin-
ear in nature, but this should be evaluated on a per-study
basis.

The abundance-dependent data acquisition process is
evident in a protein coverage plot for the yeast data
through the gradation of shading; there are fewer pro-
teins present on the left at low abundance levels than
on the right at high abundance levels (see Figure 4a). It
is also evident that a larger portion (relative to the other
case studies) of proteins were observed in most of the
MS experiments in this well controlled spike-in study.
Case study: GCM data
The coverage plot from the GCM study demonstrates
that many more peptides were detected in experiment 4
than the other experiments (see Figure 4b). In discuss-
ing the results with the researchers, we learned that
experiments 1-3 had been performed within a short
time-frame, experiment 4 was performed approximately
two months later followed by another gap in time before
experiments 5 and 6 were performed. Pre- and post-
normalization box plots (see Figure 2b) demonstrate lin-
ear biases have been removed and variability reduced
through normalization.

Case study: prostate data

Protein coverage plots from the prostate study (See Fig-
ure 4c) indicate a systematic difference between experi-
ments (1, 9-13) and (2-8) as demonstrated by the blocks
of proteins present in all of one set of experiments or the
other. Upon discussion with laboratory personnel includ-
ing the mass spectrometry expert and the bioinformatics
expert, we determined that a change in the protein iden-
tification labels had occurred in between the eighth and
ninth MS experiments (experiment 1 was actually run
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between numbers 8 and 9). This change resulted in pro-
tein names represented two different ways for a subset of
proteins. Once the naming conventions were applied
similarly across all experiments, these “blocks” of pro-
teins were no longer evident.

Box plots from this study demonstrate that the distri-
butions for experiments 1, 2 and 13R (recall the ‘R’ suf-
fix indicates a repeated MS experiment) were shifted up
relative to the other experiments in the box plot (see
Figure 2c). In talking with the mass spectrometry expert,
there was no known explanation for the shifts in experi-
ment 1 and 2, and review of the spectra deemed the
data to be of good quality. Through the discussion we
determined that a machine setting had been changed
prior to experiment 13R resulting in a nearly 10 fold
increase in abundance and far fewer proteins observed
compared to other experiments, thus the data was ren-
dered not useable. Experiment 1R was done due to

questionable quality of Experiment 1. Thus, the MS
experiments used statistical analysis were 1R, 2-13.

Building the normalization model

Vendor software generally applies a normalization factor
within an MS experiment which results in equal median
fold changes between the chosen reference specimen and
the remaining specimens. This is not adequate with the
abundance-dependent data acquisition process [32]. Here,
we describe how to build a model for normalization.

We use the observed data, y, to indicate the true
abundance. However, the observed values are influenced
by multiple factors. There are both known biological
and experimental factors as well as unknown factors
which can be put into a statistical model. Biological fac-
tors include study group, subject or specimen, protein
and peptide. Experimental factors include MS experi-
ment, tag and elution time (see Figure 1). On the raw

. . " 0 " s 4 2 o 2 . .
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Figure 3 MVA plots. Pre- (panel A) and post-normalization (panel B) within-experiment MVA plots. Pre- (panel C) and post-normalization (panel
D) between-experiment MVA plots. The vertical axis is difference between the intensities in two specimens on the log2 scale and the horizontal
axis is the average of the two intensities on the log2 scale (note the different in axes labels between the top and bottom plots); there is one
point for each peptide observed in both specimens. A locally weighted moving average smoother is indicated to demonstrate the average bias
curve as a function of average abundance. A smoothed histogram is included at the bottom of the plots to demonstrate the number of data
points represented directly above that area in the plots.
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scale effects are generally considered to be multiplica-
tive. Thus, the model can be written as

YVijkpm = expt; X tagj X SPECU‘ X grpr X protp X pepkpm X erTijkpm

where, y;ji,m is the observed abundance value, expt;
indicates the ith MS experiment, tag; indicates the jth
labeling tag, spec;; indicates the ijth specimen (which is
also the expt; x tag; interaction), grpy indicates the kth
study group, prot, indicates the pth protein observed in
the ith MS experiment, pepy,,, indicates the mth peptide
observed for the pth protein in the ith experiment and
erryjipm indicates random, unspecified error. Note that
subscripts may be helpful for some readers. For others,
it is important simply to understand the conceptual fra-
mework of representing known effects in the model to
explain sources of variability in the data. A complete
discussion of model terms and the rationale for each
can be found elsewhere [33].

The most common and simplest statistical models
are based upon additive rather than multiplicative
effects. Since it is generally easier to transform data to
obtain the proper scale for the mean and then worry
about how to model the variance in that framework,
the data are generally transformed to the log scale.
Log2 is commonly used since it is easy to interpret in
your head with differences of 1, 2, 3, etc. corresponding
to fold changes of 2, 4, 8, etc., respectively (powers
of 2). On the additive scale then, this model can be
written as

log, (Yijym) = expti + tag; + specij + grpy. + proty + PePipm + Eijkpm

where the g, are assumed to identically and inde-
pendently distributed according to a Gaussian distribu-
tion. This is the basis of the analysis of variance
(ANOVA) model, explaining the sources of variation.
Experimental factors are not of interest specifically, but
should be accounted for in order to minimize variability
and ensure accurate conclusions. Conceptually, including
terms such as MS experiment in the statistical model
performs group comparisons within an experiment, and
then averages these comparisons over all experiments in
the study to achieve a unified result based on all available
data. It is this concept that allows multiple MS experi-
ments to be combined for unified analysis.

The experimental effects serve as the normalization
portion of the model, and the biological effects serve to
test the hypotheses of interest. The experimental
effects in labeled MS studies include MS experiment
and label. These effects should be chosen based on the
study at hand, and may also include others such as LC
column or laboratory technician in larger studies. Bio-
logical effects will be discussed further in a subsequent
section.

The experimental effects are global terms, and are
assumed to affect all proteins and peptides similarly.
Thus, they should be estimated using all available data.
However, due to the size of data sets generated from
these experiments it is generally not possible with current
computing infrastructure to fit the entire model at once.
Thus, the model is broken into normalization and differ-
ential abundance pieces which are each fit separately. If
good study design is utilized, then normalization and
group effects are close to independent, allowing these to
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be estimated in two separate models to achieve the
desired results. Due to the abundance-dependent data
acquisition process, peptide must be included in the nor-
malization model in order to estimate the normalization
parameters properly [9,32]. Code to implement this via
SAS is available from the authors. See the “Discussion”
section for potential extensions to the normalization
model.

Case study: GCM data

The GCM study had six MS experiments and four iTRAQ
tags. Thus, experiment and tag are two known experimen-
tal effects to be included into the normalization model.
Specimen is included as well to obtain a specimen-specific
normalization. Thus, the normalization model on the addi-
tive scale is log(¥ijipm) = expt; + tag; + spec;; + pepipm +
&;kpm Where model terms are as defined in the previous
section. With the 2,637 unique peptides observed in this
study, the matrix is too large to invert and as a result, even
this normalization model must be fit iteratively as is gener-
ally the case with these studies. The normalized data are
then the residuals from the normalization model,
Y normiem = 10g(Vijkom) — |eXpti + tag; + specij| where the
hat indicates estimated parameter values. The pepy,,, term
is not subtracted off since it is a biological effect and is
included in the normalization only to appropriately line up
the distributions between specimens. The normalization
models for the other case studies contained the same
terms.
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We have investigated the utility of accounting for the
abundance-dependent data acquisition, and therefore
non-random missing data by incorporating a censoring
mechanism into the normalization and differential abun-
dance models [34]. iTRAQ-like data with either peptide
competition alone or peptide competition plus a
machine threshold for inducing missing data were simu-
lated with MS experiment effects ranging from 0.5 to
2.0 and study group differences of 0.5, 1.0, 1.5, 2.0 and
2.5, all on the log2 scale. Incorporating a censoring
mechanism into the modeling process reduces the bias in
MS experiment effect estimation but does not reduce the
variability in estimates (see Figure 5). However, due to
the balance of study groups over MS experiments and
tags in a properly designed study, the MS experiment
effects cancel out in the class comparison calculation,
resulting in essentially no difference in estimation of
study group effects under the two models. Note that this
does not imply that normalization is not necessary; it is
still required to account for and therefore remove varia-
bility and improve reliability of treatment comparisons.

Differential abundance

Overview

Statistical models can be used to assess which peptides
or proteins are significantly differentially abundant
between study groups. The models are flexible, can
accommodate nearly any experimental design, and
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Figure 5 Bias in parameter estimates. Bias in MS experiment study group comparison estimates under two different mechanisms described in
the text giving rise to missing data between MS experiments using either the ANOVA model normalization or a hybrid model incorporating
censoring. A) Bias (vertical axis) is the difference between estimated and true MS experiment effects. The horizontal axis indexes varying MS
experimental effects and analysis methods. B) Box and whisker plots of estimated study group differences. The dot indicates the true simulated
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consider the magnitude of signal relative to the varia-
tion in the data in order to determine whether the sig-
nal is appreciably larger than random noise. These
methods have been shown to be the most powerful for
hypothesis testing and enable estimates of fold change
based on all available data. They are more straightfor-
ward than many ad hoc methods and result in simple
summary statistics for each protein or peptide.

Building the differential abundance model

We pick up the modeling discussion we began in the
previous section where we discussed and demonstrated
estimation and removal of the experimental effects. Now
we turn our attention to the biological effects in the
model. Differential abundance models are generally fit
on a per-protein basis due to computational limitations.
Thus, the differential abundance model reduces to
Y_NOTMjipm = G¥Pk + P€Pipm + Eijkpm The hypothesis
test of grpy is of greatest interest, as this is a measure of
the difference in abundance between the two groups
relative to the noise in the data. Research has shown use
of all peptide information associated with a protein
without summarization in a statistical model is more
efficient than ad hoc summaries or decision rules [35].

Variance structure

It is important to understand the variance structure or
precision in your data as this has implications for
the statistical models and estimation strategies used.
We and others have found that precision is generally a
function of mean abundance in iTRAQ data [11,36-40].
This varying precision is not evident in standard residual
plots, but is evident in per-MS experiment plots. The var-
iance structure will likely depend on the MS technology
used. Thus, this should be examined for each study to
determine the structure and appropriate modeling
approaches in light of this (See the “Estimation of model
parameters and calculating significance” section).

Case study: yeast data

We demonstrate the mean-variance relationship graphi-
cally. The within MS experiment coefficient of variation
(CV), which corresponds to the standard deviation on
the raw scale, plotted versus the mean abundance
demonstrates that precision increases as abundance
increases (see Figure 6). We have observed this relation-
ship in several iTRAQ data sets produced from human
and yeast specimens on Orbitrap and TOF mass spectro-
meters. It is important to look at your data to understand
the correct modeling procedure to use.

Estimation of model parameters and calculating
significance

When variance or precision is constant, ordinary least
squares (OLS) are used to estimate model parameters.
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Figure 6 CV as a function of protein abundance. Within
experiment peptide coefficient of variation (CV) on the vertical axis
versus average abundance on the horizontal axis for the yeast data.
The line is a moving average smoother indicating average CV as a
function of mean abundance.

However, as shown in the previous section, precision
can be abundance-dependent in iTRAQ data. Thus,
other means must be used for parameter estimation.
Including MS scan, i.e., elution time, in the model to
account for varying precision results in a saturated
model. Thus, weighted least squares (WLS) is used to
estimate model parameters. In WLS, each abundance
value is given a weight that is inversely proportional to
the precision. As a result, peptides measured with
more precision are given more weight in the analysis,
whereas those measured with less precision are given
less weight. The weight can be estimated theoretically
using the relationship between the Gaussian and Log-
normal distributions. Alternatively, it can be estimated
empirically. We have chosen to use an empirical esti-
mate, assigning each peptide the value of the moving
average smoother at its abundance value on a CV plot
such as that in Figure 6. In these data, this weighting
accounts for the variability due to differences in elu-
tion time.

It is not computationally feasible to estimate all para-
meters within the biological model simultaneously. Thus,
in practice, differential abundance models are fit on a per-
protein or per-peptide basis depending on the goals of the
study at hand. We focus on per-protein level models here.
In biological terms, fitting models on a per-protein basis
allows estimation of the amount of random variability for
each protein separately rather than forcing it to be the
same across all proteins.
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Peptides mapped to multiple proteins are not included
in differential abundance models. Shared peptides, pep-
tides that are present in more than one protein, are com-
mon in shotgun proteomic experiments. These shared
peptides have been found to be beneficial to determine
the presence of a protein [41]. However, these same
shared peptides can become problematic in estimating
relative abundance of a protein. A simple example is
demonstrated in Figure 7 containing two specimens, each
of which contain two proteins which are represented by
solid or dotted line circles. The true relative ratios for
Specimen A to Specimen B are 3:1 and 1:1 for proteins
ABC and DEF, respectively, and peptide 4 is shared
between both proteins. If the shared peptide is ignored,
the fold change difference between Sample A and B for

protein ABC is simply 3+3+3 = ) = 3 and for DEF is
1+41+1 3
1+1 2 .
141-9° 1 which match the true fold changes. How-
+

ever, after the identification process Peptide 4 will be
assigned a total abundance of 4 in Specimen A and 2 in
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Specimen B, and these abundance values will be attribu-
ted to both proteins in the resulting output. The resulting
fold change estimates for ABC and DEF now become
3+3+3+4 14 1+1+4 6
1+1+1+2 5 1+1+2 4
tively. Thus, both estimates of fold change for the pro-
teins are biased away from their true values as a result of
including the shared peptide. For this reason, when doing
quantitative analyses, peptides that appear in more than
one protein are excluded from analysis.

Due to the large number of proteins being examined
in global mass spectrometry studies, stringent criteria
must be used to determine significance of a peptide.
One strategy is to use the Bonferroni correction which
involves computing a significance threshold based on
the number of proteins being tested as 0.05/(the number
of proteins being tested). This is generally accepted to
be too stringent and frequently results in no significant
proteins. The distribution of p-values can be used to
compute an expected false discovery rate (FDR) [42,43].
These numbers, called g-values, give an indication of

= 2.8 and = 1.5, respec-
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Peptide 2: 3 copies

Peptide 3: 3 copies

Peptide 4: 3 copies

Peptide 4: 1 copy
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Peptide 6: 1 copy

X

DEF 4

Figure 7 Cartoon illustration of the impact of including peptides mapped to multiple proteins in relative quantification. As described
in the text, the inclusion of including peptides which are mapped to multiple proteins results in biased estimates of fold changes. Therefore,
these peptides are generally included in the normalization step, but excluded from the relative quantification step.

Specimen B

Peptide 1: 1 copy

Peptide 2: 1 copy

\ Peptide 3: 1 copy

\ | Peptide 4: 1 copy

« .
7 | Peptide 4: 1 copy

DEF /

Peptide 5: 1 copy

Peptide 6: 1 copy




Oberg and Mahoney BMC Bioinformatics 2012, 13(Suppl 16):57
http://www.biomedcentral.com/1471-2105/13/5S16/S57

Table 4 Differential abundance output.
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Accession Comparison Estimate Standard Error Fold Change Lower 95% CI Upper 95t CI P-value
hCP1788782 GCM/DCM -2.068 0.1272 0.238 0.186 0.306 2.09E-27
hCP1887960 GCM/DCM 1.894 0.08586 3717 3.142 4.399 2.65E-18
hCP1780445 GCM/DCM 1.145 0.08317 2211 1.878 2602 9.99E-17
10PH_A GCM/DCM -2.764 02218 0.147 0.095 0.227 1.27E-16
AAH78670.1 GCM/DCM 2156 0.1805 4458 3.130 6.350 1.51E-15
AAF29581.1 GCM/DCM -3.013 0.266 0.124 0.074 0.207 5.60E-13

This table shows sample differential abundance output from the top 5 proteins when ranked by p-value in the GCM study. Columns are explained in the text.

the level of significance in the study. An FDR value is
the number of genes among those declared to be signifi-
cant which are expected to be falsely declared signifi-
cant. A study resulting in a uniform distribution of
p-values (which would be expected by chance under the
null hypothesis of no differences between the study
groups) will have large FDR values. However, a study
with a skewed distribution of p-values having a spike
near zero will have smaller FDR values.

Visualizing and interpreting significance and fold changes
Digesting the volumes of data resulting from a high
dimensional study can be challenging. Here we present
some visualization and computational tools we have
found helpful for drawing biological conclusions.

Case study: GCM data

Recall the primary goal of the GCM study was to compare
abundance for proteins between four types of subjects,
GCM, DM, LM and normal controls. We focus on the
GCM versus DM comparison as an example. Note that
due to the fact that the normal controls were pooled prior
to mass analysis, it is not possible to properly estimate bio-
logical variability within this group. The differential abun-
dance model was fit in SAS [44] with the following
commands:

proc mixed data=abundance;

by protein id;

class dx_grp;

model logYnorm=dx grp;

/*This performs all pair wise comparisons
between diagnostic groups*/

lsmeans dx_grp/pdiff;

ods output diffs=dx grp contrasts;

ods output tests3=overallFtest;

run;

A few lines of the output listing are shown in Table 4.
The “Accession” column is the protein name. The “Com-
parison” column indicates which groups are being com-
pared and which group is in the numerator for the fold
change estimate. The “Estimate” column is the model
estimate of the difference between GCM and DM on the
log2 scale. The “Standard error” column contains the
standard error of this estimate, and is an indicator of the

precision associated with the comparison. The “Fold
Change” column is 2 raised to the power in the “Esti-
mate” column, so 27> in the first row of the table. 95%
confidence interval limits for the fold change are the next
two columns and the p-value is contained in the last
column.

A volcano plot helps to understand the level of signifi-
cance and magnitude of changes observed in the study
as a whole (see Figure 8). The fold change on the log2
scale is placed on the horizontal axis (sometimes labeled
on the log2 scale, sometimes labeled on the fold-change
scale) and p-value on the -logl0 scale is placed on the
vertical axis. Points on the plot tend to look like lava
spewing from a volcano, hence the name. Points nearest
the far right and left hand sides of the plot have the lar-
gest fold changes while those along the top of the plot
are the most statistically significant. Thus, these may
help one to use both fold change and significance in
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Figure 8 Volcano plot. A volcano plot from the GCM study
demonstrating magnitude and significance of the protein
comparisons between the GCM and DM groups. The vertical axis
indicates -log10(p-value). The horizontal axis indicates log2 fold
change, here labeled on the fold change scale.
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determining which proteins to carry forward for further
study based on both statistical and biological criteria.
While plots of p-values and FDR rates cannot help to
distinguish true and false positive test results, they are
useful for understanding the likelihood of real change. If
there are no differences between the two groups, a uni-
form distribution of p-values would be expected. The
presence of the spike for small p-values indicates that
there are more significant differences than would be
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expected by chance (see Figure 9a). An FDR value (or
q-value) for a given protein, indicates the expected num-
ber of false positive tests if the p-value for that protein
is used as the significance cut-off (see Figure 9b).
Figures 9c and 9d can help determine an acceptable sig-
nificance threshold in light of the number of expected
false discoveries. In this particular example, a g-value
threshold of 2% would result in approximately 60
expected false positive tests (see Figure 9¢). On the
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Figure 9 Visualization of statistical significance in the GCM study. A) Histogram of the p-values. B) Histogram of the g-values (FDR values).
C) Number of tests declared to be significant (vertical axis) as a function of the FDR cut-off used (horizontal axis). D) Expected number of false
positive tests (vertical axis) as a function of the number of significant tests (horizontal axis).




Oberg and Mahoney BMC Bioinformatics 2012, 13(Suppl 16):S7
http://www.biomedcentral.com/1471-2105/13/516/57

other hand, if approximately the top 70 proteins are
declared significant, one of these is expected to be a
false positive (see Figure 9d).

Summary statistics such as estimates of fold change and
p-values are useful. However, it is wise to also look at the
data being summarized. A dot plot is useful for visualizing
the behavior of the peptides within a given protein, and
understanding the underling variability (see Figure 10). At
least one study group is statistically significantly different
from the other groups in this example peptide dot plot,
but there is still a lot of variability in the underlying pep-
tide distributions. There is substantial overlap in the abun-
dance distribution between study groups, indicating this
peptide may not be a good biomarker of disease. This par-
ticular peptide was detected in all six MS experiments;
this is not the case for all peptides.

Discussion
In this work, the primary focus has been on the iTRAQ
labeling protocol, but the basic statistical principles
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highlighted here are directly applicable to other experi-
ments which utilize different labeling protocols. What
does vary between labeling protocols is the mathematical
model governing the labeling process which ultimately
dictates the analytical methods used to quantify relative
abundance information from the raw data. Thus, each
labeling protocol will require different analytical meth-
ods. For example, in the case of **0/*®0 stable isotope
labeling, all peptides mixed in heavy water would be
shifted two Daltons to the right of those mixed in light
water (%0 has two extra neutrons, thus is 2 Daltons hea-
vier) and peak picking algorithms would be used to iden-
tify these provided that 100% of the oxygen atoms were
fully exchanged. However, due to less than pure '*0
water, naturally occurring isotopes, and a probabilistic
model governing the oxygen exchange rates, some of the
labeled mixture will have 0, 1 or 2 extra neutrons.
Regression modeling strategies can be used to tease apart
just how much came from the light and heavy samples,
respectively [45,46]. Coupled with sound statistical
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Figure 10 Dot plot for peptide with sequence ALPAPIEJ in the GCM study. The vertical axis indicates abundance on the log2 scale. The
horizontal axis indicates study group. Numbers in the plot indicate the MS experiment in which the peptide was detected. The circles with + inside to
the right of the points for a given study group indicate the mean for that study group. While this peptide has a small p-value, it appears that
observations in run 6 are driving the significance. Relying on p-value alone isn't enough; one needs to look at data for a complete interpretation.
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practices, a full understanding of the labeling protocol
being used and the necessary analytical steps to follow
will maximize the information content of the experiment.

There is evidence that the variance is a function of
mean abundance as discussed in the “Differential abun-
dance” section. The analytical strategy demonstrated
herein utilized that information in the differential abun-
dance models by using WLS as the estimation technique.
However, the normalization models were estimated via
OLS which does not account for the varying levels of pre-
cision. Ideally both of these models would incorporate
the weighting. This poses computational challenges since
the entire model, normalization plus differential abun-
dance, cannot be fit at once with current computing
resources. Incorporation of the weighting into both steps
would require iterating between estimation of normaliza-
tion parameters and differential abundance parameters
and is work that requires further investigation.

The models described herein are considered “fixed”
effect models. It may be desired to utilize a “mixed” effect
model in which some effects are considered fixed while
others are considered to be random. Likely random
effects are subject and peptide. Designating subject as a
random effect would broaden the scope of inference
from only the subjects selected for the current study to
the population of subjects the sample represents. Desig-
nating peptide as a random effect acknowledges that due
to the data-dependent acquisition process, the same pep-
tides may not be observed every time. Use of global
experimental factors as random effects in the normaliza-
tion model is currently problematic due to computational
limitations and the fact that iterative estimation processes
are not yet worked out for random effects. Fixed effect
models have been shown to have greater sensitivity than
mixed effect models, and therefore more desirable in dis-
covery studies whereas properties of the mixed effect
models make them more attractive for studies validating
results [35].

Conclusions

Use of replication, randomization and blocking in the
process of experimental design for labeled MS studies
can avoid confounding of experimental and biological
effects and minimize variability. A statistical model can
be used to account for experimental and biological
sources of variation to describe the observed data and
produce unified estimates of changes between study
groups along with associated measures of uncertainty.
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