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Abstract

Selected reaction monitoring (SRM)-based proteomics approaches enable highly sensitive and reproducible assays
for profiling of thousands of peptides in one experiment. The development of such assays involves the
determination of retention time, detectability and fragmentation properties of peptides, followed by an optimal
selection of transitions. If those properties have to be identified experimentally, the assay development becomes a
time-consuming task. We introduce a computational framework for the optimal selection of transitions for a given
set of proteins based on their sequence information alone or in conjunction with already existing transition
databases. The presented method enables the rapid and fully automated initial development of assays for targeted
proteomics. We introduce the relevant methods, report and discuss a step-wise and generic protocol and we also
show that we can reach an ad hoc coverage of 80 % of the targeted proteins. The presented algorithmic
procedure is implemented in the open-source software package OpenMS/TOPP.

Introduction
Mass spectrometry (MS) has become the most important
method for protein identification and quantitation. In
shotgun proteomics proteins are usually digested into
smaller peptides. The complex mixture of peptides is then
analyzed with high-performance liquid chromatography
(HPLC) coupled to a mass spectrometer (LC-MS). The
fragmentation of peptide ions allows the determination of
the sequence by recording production masses. This
method is called tandem MS [1] and is an established
method in many laboratories. The selection of peptide
ions for fragmentation in tandem MS is most commonly
done in a data-dependent acquisition (DDA) where the n
most abundant precursor ions are selected for fragmenta-
tion in each survey scan. Coupled with efficient separation
methods, DDA allows in-depth proteome analysis. Due to
the stochastic nature of ion sampling, DDA is accompa-
nied with bad reproducibility and not uncommonly low-
abundant proteins remain unseen.
Targeted proteomics based on selected reaction moni-

toring (SRM), in contrast, is a popular technology that
avoids some of the drawbacks of DDA-based shotgun
proteomics. SRM-based analysis of protein expression
has been shown to be highly sensitive [2]. Sensitivity,
dynamic range and reproducibility of SRM assays are
increased compared to a shotgun assay, therefore, SRM is

a promising tool for clinical applications, especially for
biomarker validation in blood plasma [3]. In contrast to
DDA methods, SRM-based proteomics targets only
selected proteins/peptides and thus relies on knowledge
of the selected precursor and their productions. Peptides
are monitored using transitions. A transition is defined as
the pair of precursor mass/charge ratio and a production
mass/charge ratio. Technically, these transitions are mea-
sured on a triple-quadrupole mass spectrometer, which
enable to selectively choose precursor ions in the first
quadrupole, trigger their fragmentation in the second
quadrupole and monitor specific fragment ions in their
quadrupole mass analyzer. The ability to quantify pro-
teins is comparable to western blotting or ELISA assay,
but much easier to parallelize, automate, and replicate. In
classical SRM experiments those transitions have been
constructed based on knowledge from previous experi-
ments [4]. Although SRM-based methods cannot be used
for discovery approaches, such experiments play an
increasingly important role for biomarker validation and
quantitative studies in systems biology, where researchers
are interested in quantitative information for specific
pathways only. SRM has also been successfully applied to
large-scale genome-wide experiments [5,6]. In [6] the
authors show that SRM assays are capable to cover the
full dynamic range of protein expression of small sized
eukaryotic organisms, such as S. cerevisiae.
The selection of SRM transitions remains a difficult

task. Transition information based on experimental data
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on a variety of different biological and technical systems,
is accumulated in databases. A commonly used reposi-
tory for SRM transitions is the MRM atlas webpage
(http://www.mrmatlas.org/) and several tools emerged
that make use of known information to design SRM
assays. Examples for SRM design platforms include
Skyline [7,8], as well as MRMaid [9,10]. Such tools have
become indispensable in the design for targeted proteo-
mics experiments. While these tools allow for an efficient
construction of transition information from public data
and also for the prediction of retention times for the indi-
vidual peptides, the optimal schedule of transitions with
the objective to maximize protein identifications needs
the formulation of an optimization problem in addition.
Furthermore, the heterogeneity of data sets, instrumental
conditions and the focus on human samples and some
model organisms, limit the applicability of the data repo-
sitories as a single source for transition information.
Targeted SRM experiments greatly benefit from both, the
optimal selection and the optimal scheduling of transi-
tions. It is thus desirable to use a semi-automated inte-
gration of SRM design tools, such as MRMaid and
Skyline, with our solution to the optimization problem as
described below. Generally one should select only pep-
tides that can be uniquely mapped to a protein and that
are detectable in a mass spectrometer. Therefore the
notion proteotypic peptide is frequently used in SRM-
based proteomics [11,12]. A proteotypic peptide is unique
for a protein with respect to a given proteome and
detectable through the mass spectrometer. Proteotypicity
is thus an extension of the commonly used peptide
detectability property to the unique mapping of the pep-
tide to a single protein. Peptide detectability has been
shown to be a crucial parameter for protein quantifica-
tion and identification [13,14]. In principle, these pep-
tides can be systematically determined for all proteins of
an organism; however, this approach is rather expensive.
There have been numerous approaches that suggest com-
putational methods for the prediction of peptide proteo-
typicity/detectability [14] and in 2007, the notion of
proteotypicity was introduced [11]. Given the research
effort put into the computational prediction of peptide
detectability, it is possible to construct SRM assays
de novo, that is, from the protein sequences alone. If
transition information is present for the given organism
and instrument, this information can be incorporated
into the assay, additionally to the de novo constructed
transitions. In SRM, a mass filter selects the precursor m/
z value and after CID a specific production m/z value is
monitored. The number of transitions that a mass spec-
trometer can monitor in parallel is limited, currently, to a
few dozen transitions at best. Peptides typically elute
over short time spans only, hence the transition needs to
be monitored only within a small retention time window.

Restricting the monitoring of each transition to a limited
time window can thus increase the overall assay capacity
tremendously, but it requires knowledge of the peptide
retention time. Given a large number of transitions of
different peptides/proteins, the transitions need to be
arranged in an experiment, such that the measurement
time is used efficiently. Even in low-complexity samples
there are many more transitions that could be scheduled
compared to the overall measurement time.
An optimization problem can be formulated to select

the best set of transitions: how to choose between thou-
sands of transitions such that the number of proteins
that are observed is maximized and the error in protein
quantification minimized? We introduce a novel method
for the optimal de novo design of targeted SRM experi-
ments based on the protein sequences alone or in con-
junction with existing transition information. Apart
from a simple calibration run (e.g., a protein mix) to
determine the properties of the chromatographic system,
no further experimental data is required. Our approach
is based on machine learning methods and combinator-
ial optimization. Machine learning methods predict pep-
tide proteotypicity [11,13,15], peptide retention times
[16,17], and suitable productions for SRM transitions
(see upper path in Figure 1). These peptide properties
may also be determined experimentally (see lower path
in Figure 1). Besides the pure computational design of
the targeted proteomics experiment, we also illustrate
how existing, experimentally determined transition can
be incorporated into the formulation of the optimization
problem. From the total set of suitable transitions, we
then formulate the SRM scheduling problem, which opti-
mizes the measurement schedule with respect to protein
and peptide coverage while ensuring that each peptide is
covered by a minimal number of SRM transitions. At
the same time, an optimal design also makes the best
use of instrument measurement time by scheduling as
many transitions as possible. We describe training and
evaluation of the prediction methods used in this work.
The scheduling problem is formally described as an
integer linear program (ILP) [18]. Despite the complex-
ity of the problem, we found that most real-world
instances of the problem can nevertheless be solved in
acceptable time. We show the performance and applic-
ability of these methods on a simple example, where we
generate a scheduled SRM assay for a protein mixture
and we outline the integration of experimentally deter-
mined transitions. For the pure computational approach
(without the integration of experimental data), we can
show that as expected from the performance of single
prediction methods, about half of the transitions work
without experimental validation. The resulting SRM
schedule is thus an excellent starting point for subse-
quent experimental optimization.
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Materials and methods
OpenMS
OpenMS is a comprehensive C++ framework for compu-
tational mass spectrometry. A wide range of MS-related
data structures and algorithms allow rapid prototyping of
data processing pipelines for mass spectrometry-based
proteomics. OpenMS is freely available at www.openms.
de. All experiments outlined here can be performed using
the OpenMS library.

Data generation
All data used in the example processing pipeline have
been acquired with the same instrumental setup. A mouse
proteome dataset was used as training data and the UPS1
protein mixture, containing 48 different proteins (Sigma
Aldrich, Catalog Number U6133) was used as test data.
All protein mixtures were digested with trypsin (Promega)
and the resulting peptide mixtures were analyzed using a
nanoflow LC (Proxeon Biosystems) with nano-HPLC col-
umn (75 mm by 15 cm) packed in-house with 3-mm C18
beads (Dr. Maisch). The LC was online coupled to a 4000
QTrap (ABSciex). The mass to charge range for precursor
selection for Q1 was set to 400-1000 Th (Thomson) and
for production selection for Q3 to 400-1,200 Th.

Training data
Peptide identifications for the mouse dataset were per-
formed using consensus identifications [19] on the basis of
the Mascot [20], X!Tandem [21] and OMSSA [22] search
engines. The SwissProt [23] mouse database (version 57.1)
was used for all database search programs. All searches
were performed using a combined target/decoy database.
The decoy sequences were generated by reversing all pro-
tein sequences. False discovery rates were estimated using
q-values [24] and a q-value cut-off of 0.01 was used to
extract correct identifications. Carbamidomethylation of
cysteines was set as a fixed modification and no variable
modifications were allowed. The precursor mass tolerance
was set to 0.8 Da and the production tolerance was set to
0.5 Da. For the different prediction models the datasets
were created as follows:
If the same sequence and charge was identified several

times, the spectrum with the highest total ion current
(TIC) was kept. The best 1,000 peptides (ranked accord-
ing to their q-values) were used for training of the reten-
tion time and the proteotypicity. No missed cleavages
were allowed for the training. The proteotypicity model
needs additional negative examples; peptides that have
theoretical m/z values within the instrument detection

Figure 1 Overview. The basis of an SRM experiment are the targeted proteins (here proteins involved in a pathway). For those protein
sequences the SRM transitions can be determined experimentally, they can be found using prediction methods or a hybrid method is used,
where transitions are partly predicted and retrieved from repositories. Regardless of their calculation, the transitions are then scheduled and the
mass spectrometric data is acquired.
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range, but are not observed in the training dataset. One
thousand undetected peptides from proteins with high
sequence coverage (many identified peptides) were used
for this purpose.
Experimental test data
The transitions were calculated and optimally scheduled
for the 48 proteins included in the UPS1 mix. The experi-
mental processing was done as for the training data.
Pre-existing, experimentally validated transition information
Besides the pure computational determination of the
optimal transition schedule, our approach also allows
additional incorporation of information from existing
repositories. In this article, we illustrate the information
retrieval for the SRMAtlas (http://www.srmatlas.org)
repository. The data retrieval is from public repositories
is exemplified with the a-lactalbumin protein (Uni-
ProtKB/Swiss-Prot: P00709 (LALBA_HUMAN)).

Algorithmic procedures
The aim of targeted proteomics experiments is the iden-
tification and quantification of a given set of proteins.
The size of this set can range from single proteins, such
as biomarkers, over moderate sized sets, such as all com-
ponents of a cellular pathway, up to the entire proteomes.
Depending on this target protein set the formulation of
the problem needs information on the proteotypicity and
the retention time of all theoretical peptides that can
result from the protein sequences, as well as on the pro-
duction intensity for a given peptide sequence.
These unknowns can either be filled by experimental

evidence, by de novo calculation of prediction models
(see Figure 1) or by a combination of both. In the follow-
ing we will summarize the methods underlying the single
prediction methods and finally we will show the formula-
tion of an integer linear program that allows combining
different methods to optimally schedule transitions in an
SRM assay. The final combination needs to cope with the
uncertainty from the prediction methods, while optimiz-
ing the coverage of the proteins that are analyzed within
one experiment.
Integer linear program (ILP)
An ILP is a technique for the optimization of a linear
objective function. For the SRM experimental design, this
optimization problem is to find the maximal number of
transitions that can be placed into one experiment, while
preserving several constraints, such as the number of
simultaneous transitions.
Retention time prediction
For the prediction of retention times for peptide
sequences a model is calculated based on support vector
regression (SVR [25]). The relevant sequence informa-
tion is integrated in this model using a specialized string
paired oligo border kernel (POBK). A detailed algorith-
mic description of this method can be found in [16].

The training of the retention time model needs data
that were acquired on the same instrument as the
experiment. The method shown here requires only
about 40 peptides with accurately annotated retention
times. The support vector regression method aims to
find a function f : X ® Y, Y ⊆ ℝ from n labeled training
samples (xi, yi) Î {(xi, yi) |xi Î X, yi Î Y, i = 1, .., n} in
order to allow predictions y Î Y to unknown data sam-
ples x Î X from the same data source.
Proteotypicitiy prediction
Proteotypic peptides are unique and detectable peptides.
While uniqueness within a given database is trivial to
determine, prediction of detectability is less trivial. It is
common knowledge that not all peptides of a digested
protein are detectable in an LC-MS experiment [15].
Many different physicochemical properties of peptides
have impact on ionization efficiency during electrospray
ionization (ESI).We integrated an additional machine
learning-based model for peptide proteotypicity predic-
tion. In this context, proteotypicity refers to the peptide
detectability in the mass spectrometer. For this prediction
a support vector-based approach in combination with a
tailor-made kernel function was chosen that is similar to
the model used for peptide retention time prediction. The
training dataset includes positive (detectable peptides) and
negative (non-detectable peptides) examples. Good perfor-
mance is observed if at least 1,000 positive as well as 1,000
negative examples are chosen for training. These training
examples can be easily extracted from the identification
results of existing shotgun proteomics runs. If the training
data has been identified using the target-decoy approach
[26], peptide identification with q-values ≤ 0.01 are chosen
as positive examples. Negative examples are chosen by
selecting non-observed tryptic peptides with appropriate
theoretical m/z values from proteins that were identified
with sufficient sequence coverage. For all experiments we
set the protein sequence coverage to be at least 15 %.
Fragment intensity prediction
An accurate prediction of fragment spectrum intensities
allows selecting the most intenseions and thus the most
sensitive SRM transitions. For the prediction of fragment
ion intensities OpenMS implements a hidden Markov
model based on the mobile proton hypothesis and the
main peptide fragmentation pathways [27]. This model
generates a theoretical fragment spectrum including frag-
ment ion intensities for any given peptide sequence and
charge. For the selection of the optimal transitions we
employed several criteria, such as a limited production
mass range; fragment masses are not used if they are
likely to interfere with others and the predicted retention
time has to be in an appropriate range.
Retrieval of pre-existing transition information
The hybrid approach, as visualized in Figure 1, needs
information that is stored in public repositories. Figure 2
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illustrates the information that can be manually retrieved
from the the PeptideAtlas repository. Once the informa-
tion is downloaded, it can be incorporated into or replace
the list of possible transitions that has been created via
machine learning tools. The downstream formulation of
the optimization problem remains the same, independent
of whether experimentally confirmed or in silico pre-
dicted transition lists (or even a mix thereof) are used.

Optimal experimental design
The problem formulation assumes that we are given a
fixed set of protein sequences. Furthermore, we need
prediction models for (i) proteotypicity, (ii) retention
time, and (iii) production intensities for a given peptide
sequence. If prediction models were not available, those
properties need to be determined experimentally.
Although prediction models have a limited accuracy, we

Figure 2 Transition retrieval from www.srmatlas.org. The user interface of SRM atlas allows to query for transitions of proteins of interest.
Here transitions were retrieved for the a-lactalbumin protein (P00709).
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have previously shown that the prediction of these mod-
els is by far accurate enough to enable ab initio con-
struction of SRM assays [27].
The model optimization problem can then be formu-

lated as follows:
We are given k protein sequences S = {s1, ...sk}. For

these sequences we assume that each proteins contains at
least one tryptic peptide. The union of all peptides is
given by P = {p1, ..., pm} and for each peptide we can pre-
dict the retention time RT (pi), the proteotypicity PT (pi)
and a list of production intensities FI(pi). In order to
maximize the number of transitions observed in a single
LC-MS run, the transitions have to be scheduled accord-
ing to the peptide’s elution time. The set of all possible
transitions is denoted as T = {t1, ..., tl}, where each transi-
tion t consists of a peptide ion mass/charge value p(t)
and a production mass/charge values m(t). The proteoty-
picity of the precursor ion and the corresponding frag-
ment ion intensity for the transition t, will be combined
in the joint detectability dt.
Based on a peptide’s retention time we can reserve

time slots of length 2δ (where δ denotes the retention
time tolerance allowed) for each transition. The result-
ing scheduling problem is illustrated in Figure 4. The
SRM scheduling problem can then be formulated as an
integer linear program by introducing:
We introduce binary decision variables xt with

xt =

{
1, if transition t is in the schedule

0, otherwise

Furthermore we introduce variables yp for each pep-
tide p Î P with

yp =

{
1, if p is not covered by τ transition

0, otherwise

and for each protein sequence s Î S we define r bin-
ary variables zjs with

zjs =

{
1, if s is not presented by jpeptides

0, if covered by at least jpeptides

Additionally, two constants, ωp and ωs are introduced.
The objective function is penalized by ωp, if a peptide p
is not covered by at least τ transitions. In a similar ωs is
used to penalize, if a protein s is not covered by at least
j peptides. A reasonable choice is one and ten for ωp

and ωs, respectively. With the binary decision variables
and the two constants, we can formulate the scheduling
problem as follows:

maximize
∑
t∈T

xtdt − ωs
∑
p∈P

yp − ωs
∑
s∈S

∑
0≤j≤ρ

zjs(ρ − j)2(1)

subject to

τ yp +
∑
i∈Tp

xi ≥ τ ,∀ p ∈ P (2)

(j + 1)zjs +
∑
p∈Ps

tcov(p) ≥ j + 1,∀ s ∈ S,∀0 ≤ j < ρ

with tcov(p) =

{
1, �i x ≥ τ

0, otherwise

(3)

∑
j∈TSi

xj ≤ C,∀1 ≤ i ≤N (4)

The first constraint (2) is introduced to ensure that
each peptide is covered by at least τ transitions. Note
that this constraint is fulfilled if there are τ transitions
for peptide p or yp equals 1. Similarly, the next con-
straint (3) ensures that each protein is covered by at
least r peptides. The final constraint (4) limits the num-
ber of transitions that are scheduled in parallel to at
most C. The ILP, defined by eqs. (1)-(4), was implemen-
ted in C++ based on the GNU Linear Programming Kit
(GLPK) and is available as part of OpenMS.

Results and discussion
SRM assay design
The SRM assay can be set up in step-by-step fashion:
Initially, the set of targeted proteins needs to be chosen.
This set can include only one protein (e.g., for the vali-
dation of a single biomarker) or it could be a larger set
of proteins involved in a common pathway. All subse-
quent predictions will be based on these protein
sequences. In our example pipeline this set contains all
proteins from the Sigma UPS1 mix. In order to have
enough data points for the machine learning, a training
dataset needs to be acquired. It is important to consider
significant changes in retention time if the HPLC col-
umn has been changed between runs. If this is the case,
it might be necessary to acquire new training data. The
training data should ideally include several hundreds to
a few thousands non-redundant peptides. In our exam-
ple this training dataset has been acquired on whole-
proteome measurements from mouse kidney tissues.
Following the acquisition of the training data, these can
be used to train the models. The OpenMS library pro-
vides an easy interface for the training of models for
proteotypicity, retention time, and fragment ion inten-
sity prediction, but other tools can also be incorporated
via the wrapping functionality of OpenMS. As outlined
in the methods section we used the significantly identi-
fied peptides from the mouse data for the training of all
models. With these models, a scheduled SRM experi-
ment can be designed. If the hybrid approach is taken
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and parts of the transitions have been downloaded from
public repositories, this information is simply incorpo-
rated in the transition list before the optimization is run
on the final list. At any point during the generation of
the initial list data can be exchanged in a semi-automated
fashion with other design tools, such as Skyline or
MRMaid via the open standard transition exchange for-
mat TraML [28]. Interestingly, many of the precursor/

production pairs that are suggested by the machine learn-
ing algorithms are also suggested by the repositories.
Optimal solutions to the scheduling problem allow to
determine the information that is necessary to write the
transition lists. At this point, there is no difference
between transitions that originate from pure computa-
tional prediction and transitions that were extracted from
repositories.

Figure 3 Computational prediction pipeline. The left panel shows the input data for the prediction tools (on the right) as implemented in
OpenMS. The performance of the method is indicated after each tool. The selection of transitions (Trans. Selection) is performed by finding
solutions to the ILP.
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Accuracy of in silico predictors
The overall algorithmic framework of the in silico predic-
tion method described here is shown in Figure 3. As each
prediction method has only limited accuracy, we calcu-
lated the prediction performance for each prediction
method independently in order to estimate the overall
accuracy for our final SRM transition list. The complete
SRM transition calculation can be approximated by an
independent combination of probabilities of correct pre-
dictions as determined in a cross-validation.

P (measured transition) = 0.83 × 0.86 × 0.80 = 0.57

is thus an estimate of how probable a transition will be
measured by a given mass spectrometer. Our experi-
ments support this number: about half of the predicted
transitions can be observed in the experiment. With a
sufficiently large number of peptides/transitions per pro-
tein this still implies that the vast majority of the proteins
can be quantified. Using these lists, we detect 45 out of
48 proteins by at least one transition and have an average
of 3.2 transitions per protein as shown in Figure 5. The
raw data can be requested from the others and the soft-
ware source code is freely available at www.openms.de.

Optimal usage of instrument time
Solutions to the scheduling problem can be found, using
the OpenMS implementation that is part of the current

development version. Figure 4 shows a typical schedule for
transitions. Solutions to the ILP produce a transition list
that ensures a minimum number of transitions per pro-
tein, a maximized number of transitions to increase

Figure 4 Theoretical 2D transition map. The arrows indicate the tolerance that is allowed for the predicted retentions times. The color
scheme next to the y-axis corresponds to the occupancy of the acquisition time. We allowed only masses between 400 and 1200 Th.

Figure 5 Number of transitions per protein. In our example
experiment we analyzed a protein mixture of 48 proteins. Here we
show the number of transitions that we obtained for the 45
proteins that were detected in our experiment.
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coverage as well as accuracy, and an optimal use of instru-
ment acquisition time. In our example experiment we can
fill up to 92% of all possible time slots during the HPLC
gradient.

Conclusions
Targeted proteomics aims at the accurate and reproduci-
ble detection of a predefined set of proteins. Selection
reaction monitoring (SRM) is the method of choice in
most targeted proteomics experiments. We present an
algorithmic procedure that enables the construction of
SRM transitions given the protein sequences of the tar-
geted proteins only. Despite limited accuracy of predic-
tion methods, the approach yields good initial transition
lists that allow the quantification of the vast majority of
the targeted proteins even without subsequent experi-
mental optimization. It does not rely on data repositories
or the experimental determination of SRM transitions
and can automatically adapt to any experimental setup
through the use of machine learning methods.
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