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Abstract

Background: Large-scale bioactivity/SAR Open Data has recently become available, and this has allowed new
analyses and approaches to be developed to help address the productivity and translational gaps of current drug
discovery. One of the current limitations of these data is the relative sparsity of reported interactions per protein
target, and complexities in establishing clear relationships between bioactivity and targets using bioinformatics
tools. We detail in this paper the indexing of targets by the structural domains that bind (or are likely to bind) the
ligand within a full-length protein. Specifically, we present a simple heuristic to map small molecule binding to
Pfam domains. This profiling can be applied to all proteins within a genome to give some indications of the
potential pharmacological modulation and regulation of all proteins.

Results: In this implementation of our heuristic, ligand binding to protein targets from the ChEMBL database was
mapped to structural domains as defined by profiles contained within the Pfam-A database. Our mapping suggests that
the majority of assay targets within the current version of the ChEMBL database bind ligands through a small number of
highly prevalent domains, and conversely the majority of Pfam domains sampled by our data play no currently
established role in ligand binding. Validation studies, carried out firstly against Uniprot entries with expert binding-site
annotation and secondly against entries in the wwPDB repository of crystallographic protein structures, demonstrate that
our simple heuristic maps ligand binding to the correct domain in about 90 percent of all assessed cases. Using the
mappings obtained with our heuristic, we have assembled ligand sets associated with each Pfam domain.

Conclusions: Small molecule binding has been mapped to Pfam-A domains of protein targets in the ChEMBL
bioactivity database. The result of this mapping is an enriched annotation of small molecule bioactivity data and a
grouping of activity classes following the Pfam-A specifications of protein domains. This is valuable for data-focused
approaches in drug discovery, for example when extrapolating potential targets of a small molecule with known
activity against one or few targets, or in the assessment of a potential target for drug discovery or screening studies.

Background
Research in the field of drug discovery is increasingly
driven by the data mining of large-scale pharmacologi-
cal, screening, patent, literature and other bioactivity
data. Such approaches have led to interesting concepts
that challenge historical dogma - for example the view
that many small molecules and indeed drugs exert their
effect through interactions with multiple rather than a

single target [1]. New targets have been predicted for
FDA approved drugs through analysis of large-scale
bioactivity databases [2] and side-effect data mined from
package inserts [3].
The discipline of combining small molecule bioactivity,

the ‘ligand space’, with bioinformatics analyses of the ‘tar-
get space’ is also known under the name chemogenomics
[4,5]. Chemogenomic approaches can be used to systema-
tically examine and explore the binding of small molecules
to large target families such as kinases [6,7] or G-protein
coupled receptors (GPCRs) [8,9] or for the design of
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compounds targeting multiple proteins [10]. One of the
current limitations of these approaches is the biased distri-
bution of data that is available for individual targets. While
there are a few prominent target classes such as certain
GPCR families, protein kinases and various protease
families, for which the bioactivity of many thousands of
ligands has been measured, most targets have measured
bioactivities for only a few compounds or no annotation at
all [11]. To partially address this limitation, we propose an
indexing of target space at a structural domain level,
allowing aggregating ligands known to bind targets con-
taining a given structural domain into a larger bioactivity
class. The practical implication for the analysis of large-
scale bioactivity data is a necessity to automatically and
reliably annotate large numbers of protein targets with a
domain containing the site of small molecule binding. We
therefore propose to map small molecule binding to struc-
tural domains and present an initial implementation for
targets in the ChEMBL database [12] (version chembl_13).
Previous studies have statistically associated small mole-
cule binding to protein domains [13] and direct mapping
has been applied to ligands in crystallographic structures
[14]. Here we extrapolate these mappings to pharmacolo-
gically relevant interactions described in the CHEMBL
database.
Structural domains are independent folding units that

form the basic evolutionary and architectural ‘building
blocks’ of proteins [15]. While there can be large sequence
differences between members of a domain family, the fold
of the peptide backbone is generally conserved [16], even
though (exceptional) cases of homologous proteins with
differing folds have been identified and discussed [17].
A small protein would typically consist of one domain,
while longer proteins are often an assembly of more than
one domain [18]. In some eukaryotic proteins, the under-
lying intron-exon structure of the gene reflects this struc-
tural domain segmentation [19]. For the mapping of small
molecule binding, targets consisting of combinations of
domains impose a challenge because the binding site for
the ligand might lie in either domain and in addition more
than one domain in a protein might interact with the
same or different ligands. Domain assignment information
is available from a number of publicly available resources.
SCOP [20] and CATH [21] are databases that define pro-
tein architecture based on hierarchical definitions of
3D structural domains. Pfam-A [22] is a database of hid-
den Markov chain models of non-overlapping full domain
sequence alignments. Pfam-A domain definitions are also
manually annotated and curated. Interpro [23] is a data-
base that integrates different domain models into a com-
prehensive set of protein domains. For our purposes, the
Pfam-A database with its non-overlapping, non-hierarchi-
cal architecture and extensive coverage of protein families,
is ideal to map ligand binding to a given protein domain.

In this study, we propose a simple heuristic to map the
site of small molecule binding to Pfam-A domains and
compare our results with binding site information from
the protein sequence database Uniprot [24] and PDBe
[25], a repository of crystallographic protein structures.

Results
Domain content of the human proteome and ChEMBL
targets
The domain content of a human protein-protein interac-
tion dataset has been described in a study by Patil et al.
[26]. According to this work, 51 percent of all proteins
from the interaction data set were found to contain more
than one Pfam domain. We analyzed the Pfam domain
content of the ChEMBL target dictionary and as a subset
all human proteins within the ChEMBL target dictionary.
We also queried the Ensembl database [27] (version:
Ensembl65) for all protein coding genes in the human
genome and analyzed the Pfam domain content for this
set. The queries used to obtain this data are described in
the Methods Section Code and queries. The results of
this analysis are summarized in Figure 1. Additional file 1
provides a table with domain annotations for all targets
in the analysis. Similar to Patil’s interaction data set, 50.6
percent of the human targets in the ChEMBL target dic-
tionary have more than one Pfam domain. In contrast,
only 40.8 percent in the set of protein coding sequences
from the human genome have more than one domain
and 12.6 percent have no Pfam domain assigned. It
appears therefore that while Patil’s interaction set and
the ChEMBL target dictionary are well covered by Pfam
domain models, coverage of the entire set of human pro-
teins is not complete.
In order to assess the impact of incomplete annotation

for our set of ChEMBL targets, we determined for each
target the number of residues belonging to a Pfam
domain as a fraction of the number of residues in the
overall protein sequence. We found that for the entire set
of human proteins, the median of this fraction is 0.50
and about a quarter of all proteins have less than 20 per-
cent of all residues assigned to a Pfam domain. The low
ratio of residues within Pfam domains is likely due to
incomplete coverage of Pfam-A models for the human
proteome. For human protein targets in the ChEMBL
database, the ratio of residues within Pfam domains is
significantly higher (p < 2.2*10-16, Bonferroni adjusted for
multiple testing): the median proportion of Pfam residues
relative to sequence length is 0.72. In comparison, this
ratio is 0.69 for all protein targets in the ChEMBL data-
base, including non-human protein targets. Previous
works suggests that proteins consist mainly of highly
structured regions [20,21]. Therefore, we propose that
coverage of Pfam-A domain annotation is almost com-
plete for most ChEMBL targets but not for the entire set
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of human proteins. This is most likely due to the prefer-
ence of drug discovery programs for well-characterized
targets and the priority of disease-related proteins in
functional and structural studies.

Binding of small molecules within domain boundaries
Our attempt at mapping of ligand binding to discrete
Pfam domains is based on the assumption that small
molecule binding takes place within the structurally
conserved region of a protein domain rather than in the
surrounding non-Pfam domain regions. Following this
premise, and assuming that the annotation with Pfam
domains for our set of ChEMBL targets is complete, the
mapping of small molecule binding is immediately
achieved for proteins with a single domain. Thus, with
our initial assumption, the heuristic covers 50% of all
protein targets in the ChEMBL target dictionary. To
estimate the accuracy of the outlined assumptions, we
carried out systematic queries against UniprotKB/Swiss-
Prot and PDBe and systematically evaluated the overlap
of binding sites annotations and Pfam domain predic-
tions. The Methods Section Code and queries describes
the queries in detail.
UniprotKB/Swiss-Prot is a resource providing protein

sequence and reviewed, manual annotation data. Binding
site information is provided in the form of residue posi-
tions, in many cases focusing only on the most important
residue(s). We queried Uniprot to retrieve all binding site
information available for human protein targets in the

ChEMBL database. The query was limited to human pro-
teins to avoid a bias for targets with orthologs in the
ChEMBL target dictionary, yielding binding site informa-
tion for 1,428 targets. A comparison of binding site resi-
due positions and Pfam domain boundaries revealed that
1,290 (88.4%) of annotated binding sites from Uni-
protKB/Swiss-Prot lie completely within a Pfam domain
and only 36 (2.5%) entirely outside. Binding sites defined
by a set of residues of which some are within and others
outside of a Pfam domain are likely associated with the
Pfam domain and therefore support our proposal that
small molecule binding is associated to conserved
sequence defined domains. The empirical cumulative dis-
tribution function (CDF) shown in Figure 2A describes
the results of our query in greater detail. In analogy to
the above, we queried the crystallographic structure data
repository PDBe for binding site information and evalu-
ated the overlap with Pfam domain predictions. Unlike in
the manually annotated UniprotKB/Swiss-Prot, binding
site information in PDBe is derived from molecular coor-
dinates and encompasses all residues involved in a small
molecule binding interaction. We retrieved binding site
information for 496 human ChEMBL targets. Of all tar-
gets evaluated, 288 (58.1%) have all their binding site
residues within a Pfam domain, and only 8 (1.6%) have
all binding site residues outside any Pfam domain. The
corresponding CDF is shown in Figure 2B. Compared to
the CDF that represents the Uniprot query, there is a
higher fraction of proteins having binding site residues

Figure 1 Pfam domain content of drug targets. (a) Shows the proportion of proteins having zero, one or more domains for all human
targets in the ChEMBL target dictionary (blue), protein targets of all species in the ChEMBL target dictionary (green) and all protein coding
genes (orange). (b) Barplots summarizing observed ratios of residues within a Pfam domain over the number of residues in the entire protein
sequence for all human targets in the ChEMBL target dictionary (blue), protein targets of all species in the ChEMBL target dictionary (green) and
all protein coding genes (orange). The median ratio for all protein coding genes is 0.50 and significantly lower than the corresponding ratio for
targets in the ChEMBL data base (p < 2.2*10-16, Bonferroni adjusted for multiple testing).
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both within and outside of Pfam domain boundaries. We
attribute this to the greater detail of binding site annota-
tion in PDBe, which encompasses all, rather than only
one or few of the residues involved in ligand binding.
Nevertheless, the majority of binding sites described in
this analysis have a substantial number of residues within
a Pfam domain, supporting our assumption that small
molecule binding is associated to the defined and anno-
tated regions in a protein that are detectable using Pfam
domain models.

Predicting binding sites for multi-domain proteins
Given that about half of all proteins in the ChEMBL target
dictionary have more than one domain, we investigated
ways to expand our mapping of small molecule binding
from targets with only a single domain to targets with
multiple domains. We had observed with high probability
that small molecule binding in single domain protein takes
place between the boundaries of a domain. We prepared a
set of single domain protein targets from the ChEMBL
data base by selecting each protein that had at least one
ligand tested against it in a binding assay with a reported
activity value less or equal 50 μM (see also Methods sec-
tions Mapping and Manual curation of input data). The
occurrence of a domain in this set is thus a validation of a
domain’s potential to mediate a small molecule binding
interaction. In the following, we consider all domains from
this set as ‘seed’ domains with the potential to mediate
small molecule binding. If such a ‘seed’ domain co-occurs
with one or more ‘non-seed’ domains, our mapping
defaults to this previously established seed domain. Hence,
the mapping follows a heuristic based on the assumption

that domains with known ligands take precedence over
domains that do not occur in single domain proteins with
known ligands. For example, in protein kinase Akt-3
(Q9Y243), which also contains a Pkinase_C and PH
domain, the target of small molecule binding is the Pki-
nase domain. In total, our mapping covers 197,642 activ-
ities. A table with all mappings is provided in Additional
file 2.
We benchmarked our mapping against manually

curated binding site annotations from Uniprot and also
against annotation extracted from crystallographic struc-
tures in PDBe. We queried the PDBe for protein struc-
tures with ligands matching our predictions and identified
217 entries that could be used to evaluate our mapping for
multi-domain proteins. The comparison with binding site
annotation retrieved from Uniprot was carried out in the
same fashion and we identified 511 entries that could be
used to evaluate the mapping. We considered predictions
correct if at least half of all binding residues are located
within the predicted domain. Details of the benchmarking
are discussed in the Methods Section Validation. Unsur-
prisingly, the accuracy of predictions made for single
domain targets is high (approx. 97 percent for both, the
PDBe and Uniprot benchmark). For multi-domain pro-
teins, the accuracy is at around 88 percent for both bench-
marks. Benchmarking results of this validation are
summarized in Table 1.
One limitation to our approach is its blindness towards

ligand-binding Pfam domains that always occur in combi-
nation with at least one other Pfam domain. To account
for the most important cases, we identified all Pfam
domains that occur only in combination with other

Figure 2 Small molecule binding within Pfam domains. (a) Shows how small molecule binding sites specified in Uniprot overlap with Pfam
domains. The empirical cumulative distribution function describes the number of proteins for which the ratio of binding site residues within a
Pfam domain over binding site residues outside of a Pfam domain is equal or greater to the value specified on the x-Axis. In analogy to the
above (b) shows how small molecule binding sites specified in PDB motif overlap with Pfam domains.
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domains and occur one hundred or more times in the
ChEMBL target dictionary. Based on a PDBe database
survey of those domains (see Table 2), we selected the
Pkinase_Tyr domain to be included in the list of seed
domains. Another blind spot of this heuristic are ligand
interactions that take place at the interface of two or more
domains and thus are mediated by a combination of Pfam
domains. In order to obtain an estimate of the importance
of this type of interaction, we carried out a systematic
query against PDBe to identify interactions that are
reported in ChEMBL and fall into this category. We iden-
tified 12 targets (see Table 3), all of which are enzymes.
Figure 3 shows four examples of small molecule binding
at the interface of two domains. Additional files 3 and 4
contain graphics and session files for all 12 examples.

Small molecule binding to Pfam domains from a
chemogenomic perspective
We used the mapping described in the previous sections
to analyze the numbers of ligands tested for individual
Pfam families and set these in a relationship with the
genomic frequencies of Pfam domains. Table 4 lists the
numbers of ligands tested in binding assays against the
top 10 Pfam domains. These 10 domains cover almost
three quarters of all reported binding events (63,070 of
84,891). This highly skewed distribution is reminiscent of
the genomic frequency distributions of Pfam domains.
The frequency of protein domains in bacterial and eukar-
yotic genomes follows a power-law distribution [28,29]
with a small number of very frequent domains while the

vast majority of domains has only few occurrences.
In this study, we examined the distribution of occur-
rences of Pfam domains in human protein coding genes
as well as the distribution of known ligands per Pfam
domain following a state-of-the-art protocol [30].
According to this protocol, we calculated the scale-para-
meter alpha and the smallest number of occurrence
(xmin) to which the power-law still applies. We then
used Kolmogorov-Smirnov testing (KS) to estimate the
goodness-of-fit. The resulting p-Value is a measure for
the plausibility of a power-law hypothesis. In a final step,
we used a maximum likelihood ratio test to compare the
power-law with alternative hypotheses. Figure 4 and
Table 5 summarize the results of our analysis, which is
described in the Methods section Statistical analysis of
power-law distributions. The results of our analysis con-
firm that the distribution of Pfam domains in the set of
protein coding genes follows a power-law. A power-law
equally applies to large parts of the distribution of known
ligands per Pfam domain, covering a range of observed
instances (ligands per domain family) that is shifted up
one order of magnitude compared to Pfam domain fre-
quencies. In contrast to the distribution of Pfam domains
and known ligands per Pfam domain, the highest num-
bers of ligands for individual proteins appear to be lim-
ited and the number of targets with very few ligands is
smaller than would be expected by a power-law. The fre-
quency of Pfam domains in the human genome is dic-
tated by gene duplication under selective pressure and
models describing this process have been presented pre-
viously [31,32]. In analogy, the distribution of known
small molecule ligands for Pfam domains is shaped by
the slow and incremental exploration of target classes in
drug discovery. Target families with known ligands are
more likely to gain new ligands, for example through
lead-optimization studies and selectivity screens. Once a
target is economically exploited, lead-optimization pro-
jects are halted (hence the apparent upper limit for indi-
vidual targets) or directed towards other targets within
the same family. Target families without known ligands
on the other hand only become subject to investigation if
extensive scientific evidence suggest favorable future
outcomes.

Ligand sets
We conducted a survey of the chemical space occupied by
ligands of given Pfam domains. Here, we focus on 6 Pfam
domains of high relevance for drug discovery, protein
kinase (Pkinase), tyrosine kinase (Pkinase_Tyr), cyto-
chrome p450 (p450), retroviral aspartyl protease (RVP),
sodium neurotransmitter symporter (SNF) and the serine
protease trypsin (Trypsin). For each of these, Figure 5A
depicts the chemical space of known ligands in terms of
two simple descriptors, molecular weight and the

Table 1 Validation results

single domain multi domain

% correct Uniprot (N = 511) 97.53 87.22

% correct PDBe (N = 217) 97.64 88.88

# total predictions 1161 579

Benchmarking results against binding site information from Uniprot and
PDBeMotif are summarized in the first and second row respectively. (N)
specified in parentheses indicates how many targets were assessed in each
benchmark. The total number of predictions made for single- and multi-
domain targets is provided in the bottom row # total predictions.

Table 2 Combinations of co-occurring validated domains

Domain # ChEMBL targets # PDB accessions

Neur_chan_memb 168 -

Pkinase_Tyr 159 148

fn3 126 -

Hemopexin 105 -

Ank 99 -

Listed are all domains that occur in multi-domain targets of the ChEMBL
target dictionary at least one hundred times but never in a single domain
target. The occurrence of each domain in the target dictionary is specified in
the column # ChEMBL targets. The number of PDBe entries (if any) that
describe small molecule interactions with any listed domain is indicated in the
column # PDBe accessions.
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calculated partitioning coefficient logP. Specifically, these
plots show the relative density of ligands at a given point
in projected chemical space. It is obvious from the overlap
on these plots that true separation of ligands cannot be

achieved based solely on these two descriptors. However,
judging from the distinct distribution peaks for ligands of
each domain it is conceivable that probability density
functions for combinations of simple descriptors could

Table 3 Small molecule binding at the interface of two or more Pfam-A domains

Domain combination PDBe ratio # ChEMBL targets

ADH_N, ADH_zinc_N 1u3u [...] 0.58, 0.33 21

DNA_topoisoIV, Toprim 3qx3 0.32, 0.68 8

GST_C, GST_N 3ee2 [...] 0.62, 0.31 23

Hexokinase_1, Hexokinase_2 3goi [...] 0.56, 0.39 14

Mur_ligase_C, Mur_ligase 2am1 [...] 0.36, 0.36 6

NMT, NMT_C 1iyk [...] 0.46, 0.41 6

OTCace, OTCace_N 1oth 0.50, 0.50 3

Peptidase_M4, Peptidase_M4_C 1zdp [...] 0.50, 0.50 2

Peptidase_S9, DPPIV_N 3d4l [...] 0.51, 0.43 10

Topoisom_I, Topo_C_assoc, Topoisom_I_N 1k4t [...] 0.35, 0.31, 0.35 5

S-AdoMet_synt_N, S-AdoMet_synt_C 1o93 0.41, 0.43 2

Tubulin, Tubulin_C 1ia0 0.30, 0.48 20

Summary of small molecule binding mediated through more than one domain. Combinations of Pfam-A domains are specified in the left-most column. The
column PDBe provides one exemplary structure accession ([...] indicates that more entries exist) and ‘ratios’ specifies the ratio of binding site residues within the
corresponding domain over all binding site residues. # ChEMBL targets indicates the number of targets in ChEMBL containing a given domain combination.

Figure 3 Examples of small molecule binding at the interface of Pfam-A domains. (a) Binding of thiorphan at the active site of
thermolysin. The phenyl ring binds within the S1’ pocket, the sulfur atom is coordinated with the active site Zinc atom (not shown). Thiorphan
binds residues of both, the thermolysin metalloprotease catalytic domain (Peptidase_M4, red) and C-terminal domain (Peptidase_M4_C, green).
(b) Nocodazole binding to the prostaglandin/GSH site of the human haematopoetic prostaglandin synthase D2. Nocodazole binds at the
interface between the glutathione S-transferase N-terminal (GST_N, green) and C-terminal (GST_C, red) domains. (c) Etoposide binding to the
DNA cleavage site of human type II DNA topoisomerase. The ligand binds residues both of the Toprim domain (green) and DNA topoisomerase
IV domain (DNA_topoisoIV, red). (d) Nicotinamide-adenine dinucleotide binding to the active site of human alcohol dehydrogenase beta-1-beta-
1 isoform. Binding takes place at the interface of the Alcohol dehydrogenase GroES-like domain (ADH_N, green) and Zinc-binding
dehydrogenase domain (ADH_ZINC_N, red). Examples were rendered using PDB files 1zdp, 3ee2, 3qx3, 1u3u, respectively.
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enable target class prediction based on chemical structure.
To explore this further, we used six basic molecular
descriptors of all ligands associated with either of the cho-
sen domains as input for a principal component analysis
(PCA, see Methods section Principal Component Analysis
and Additional file 5 for details). Those six descriptors are
molecular weight, the oil/water partition coefficient
(ALogP, calculated following the method of Ghose and
Crippen [33]), polar surface area (PSA, following the
method of Ertl [34]), the number of rotable bonds, the
number of hydrogen bond donors and the number of
hydrogen bond acceptors. In preparation for the PCA we
removed from each set of descriptor values the distribu-
tion outliers and subsequently scaled all values to unit var-
iance. The loadings of components obtained after PCA are
summarized in Table 6. We used the first principal com-
ponent to project the molecular variability of ligand sets
onto one-dimensional distributions of component values
for each domain family (see Figure 5B). We observed that
the obtained distributions reflect the relationships between
different domain families. For example, there is a relatively
large overlap between ligand sets of the related Pkinase
and Pkinase_Tyr domains, which are both dominated by
analogues of the kinase substrate adenosine triphosphate.
Pair-wise Student t-tests confirmed that the descriptor
spaces of ligands for each domain class are distinct (p <
2.2*10-16 for all combinations, with the exception of the
comparison between the p450 and SNF domain classes,
where p = 1.2*10-13; all p-Values were calculated using
Bonferroni correction for multiple testing). Hence, the dis-
tributions obtained here can be exploited to assess the
binding potential of a given small molecule to a Pfam
domain family, based on a combination of simple descrip-
tors. To retain predictive power, this approach requires
that the scope of the search is limited to a selection of
domains. Prior knowledge about a given small molecule

can instruct the selection of domains, for example if infor-
mation about co-localization with protein complexes is
available.

Conclusions
In this study, we show that small molecule binding sites
are associated with the regions in a protein that map to a
Pfam domain, and hence typically have a discrete struc-
ture defined by a conserved sequence profile. We exploit
this knowledge to map small molecule binding to Pfam
domains in single- and multi-domain proteins. The inte-
gration of small molecule bioactivity data from the
ChEMBL database and (predicted) structural data from
Pfam will drive cross-linking across databases and deeper
semantic annotation for chemical biology. In addition,
our mapping allowed for an analysis of the distribution of
known small molecule ligands per Pfam domain. The
power-law behavior of this distribution mirrors the geno-
mic distribution of protein folds and the incremental pro-
gression of drug discovery.
The heuristic presented here is simple and efficient.

However, the mapping does not address two naturally
occurring edge cases. Firstly, a number of Pfam domains
occur only in combination with other domains and hence
are not picked up in the initial seeding step. We address
this partially by manually including such domains if they
occur in more than one hundred ChEMBL targets. The
second case is the relatively rare occurrence of ligand
binding at the interface of domains, as discussed in the
section on mapping small molecule binding to multido-
main proteins.
One incentive to annotate recorded activities of small

molecules against multi-domain proteins is a phenomenon
we term ‘domain poisoning’ - where the presence of a
common ‘spectator domain’ links together targets on the
basis of sequence searches, but the ligand-binding domain
is absent from the identified homologue. To avoid false
positives, we were previously forced to use very conserva-
tive cut-offs for sequence similarity (see [35] for an exam-
ple) because we found that without this safeguard, known
drug targets were associated with a query protein through
high conservation in regions that are not involved in small
molecule binding and thus ‘poisoned’ our query results
with irrelevant compounds. For example, when querying
the ChEMBL target dictionary for targets similar to Tyro-
sine-protein phosphatase Syp (e.g. P35235), the presence
of SH2 domains would result in relatively strong associa-
tion with tyrosine kinases such as Tyrosine-protein kinase
SYK (e.g., Q64725) and poison the query with kinase inhi-
bitors (see Figure 6 for an illustration). In such a case, a
query using only the domain relevant to small molecule
binding would automatically filter out targets that are
associated through domains not relevant to ligand binding.

Table 4 Pfam domains with most ligands tested in
binding assays

Pfam-A # cmpds

7tm_1 32060

Pkinase 5989

Pkinase_Tyr 5858

Hormone_recep 4239

SNF 3399

Trypsin 3172

Ion_trans 3107

Peptidase_C1 1760

Asp 1757

adh_short 1729

Shown are the 15 Pfam-A domains with most associated ligands. Pfam-A
specifies the domain name, #cmpds the number of ligands tested in binding
assays with potency no weaker than 50 μM.
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The mapping described in this study further pro-
vides ligand sets for the development of methods to
predict bioactivity for new compounds and gives an
estimate of the chemical space of ligands associated
with each domain. We also used these sets as a start-
ing point to explore the selectivity of small molecules

within and across protein families following the
Pfam domain definitions. Mappings and ligand sets
resulting from this study will be kept up-to-date with
new ChEMBL releases and are available at http://
www.ebi.ac.uk/~fkrueger/mapChEMBLPfam, along
with documentation.

Figure 4 Power-law distribution of Pfam domains and small molecule ligands. (a-c) Log-log plots of observed distributions. X-Axis:
proteome frequency of Pfam-A domains (a), ligands per Pfam domain (b), ligands per target (c). y-Axis: Number of instances with count X equal
to corresponding x-value. (d-f) Corresponding cumulative distribution functions overlaid with the fit of the power-law distribution (dotted line).
X-Axis: proteome frequency of Pfam-A domains (d), ligands per Pfam domain (e), ligands per target (f). Y-Axis: Proportion of instances with count
X equal to or greater than x.

Kruger et al. BMC Bioinformatics 2012, 13(Suppl 17):S11
http://www.biomedcentral.com/1471-2105/13/S17/S11

Page 8 of 13

http://www.ebi.ac.uk/~fkrueger/mapChEMBLPfam
http://www.ebi.ac.uk/~fkrueger/mapChEMBLPfam


Methods
Mapping
Practically, the mapping was carried out as follows. For
all targets in the ChEMBL target dictionary, we collected
activities measured in binding assays that are linked
directly and unambiguously to a single target. (Assay
type = B, multi- and complex-flags = 0) The activity
type was required to be either of the following: Ki, Kd,
IC50, EC50, -Log Ki, pKd, pA2, pI, pKa. We further fil-
tered out all activities weaker than 50 μM. The remain-
ing mappings were kept and a dictionary of validated
domains created. Multi-domain proteins were scanned
for the presence of validated domains and categorized as
either of the following. i) No validated domain, ii) only
one validated domain (or multiple copies thereof), iii)
more than one validated domain. Case i) results in no
mapping, case ii) assigns all ligands to the validated
domain. In the case iii) that more than one validated
domain occurs in a protein we did not assign any map-
ping. A summary of all co-occurrences of validated
Pfam-A domains is provided in Additional file 6.

Validation
Validation was carried out against data from Uniprot as
well as PDBe. Uniprot lists manually curated positions
of residues that participate in ligand binding while infor-
mation about residues in close proximity to the bound
ligand can be extracted from PDBe using the algorithm
PDBeMotif [36]. Binding site annotations from PDBe-
Motif contain explicit information about the ligand, in
the form of a three-letter code, and the residue numbers
of interacting residues in the target protein. We can
thus assess binding within Pfam domain boundaries by
comparing the position of each binding site residue with
the start and end positions of a given domain. Predic-
tions on multi-domain proteins were benchmarked by
calculating the fraction of residues within a predicted

domain over all residues involved in the binding of the
corresponding ligand. The resulting ratio can be consid-
ered as a measure of association between a predicted
Pfam domain and ligand binding, with high values indi-
cating strong associations and vice versa. We argue that
a value of 0.5 or greater is a robust measure of associa-
tion between a Pfam-A domain and ligand binding.
Accordingly, predictions benchmarked against Uniprot
or PDBe were either classified as correct if this ratio was
equal or greater than 0.5 or classified as false if this ratio
was less than 0.5.

Manual curation of input data
In some few cases, small molecule bioactivities reported in
ChEMBL are mapped to Uniprot identifiers that represent
fragments of a protein. This might be due to annotation
errors, or the lack of a Uniprot entry representing the full-
length protein. These cases can be problematic for our
mapping. As an example, some activities extracted from
an article on phosphodiesterase inhibitors (PubMed
8027992) map to the Uniprot identifier Q864F1. This
identifier represents an N-terminal fragment of the pig
phosphodiesterase 5, containing only the GAF domain
and, crucially, missing the PDEase_I domain. Thus, small
molecule binding is incorrectly mapped to the GAF
domain. We identified five critical protein fragments in
the ChEMBL target dictionary and removed these manu-
ally before applying our mapping algorithm. A list of these
targets and justification for removal is provided in Addi-
tional file 7.

Statistical analysis of power-law distributions
Statistical analysis was carried out in R [37] unless
otherwise stated. The protocol we followed to test the
distributions of Pfam domain occurrences and number
of known ligands for a power-law behavior comprises 4
steps. In the first step, we use the R package plfit.R to

Table 5 Statistical analysis of power-law parameters

Frequency of Pfam domains Ligands per Pfam domain family Ligands per target

xmin 10 81 210

alpha 2.07 1.71 2.15

Goodness of fit 0.5 0.42 0.42

vs_lognormal yes (p = 5.1*10^-9) yes/no (p = 0.48) yes/no (p = 0.57)

vs_exponential yes (p = 3.9*10^-3) yes (p = 0.10) yes (p = 8.5 *10^-8)

vs_weibull yes (p = 2.1*10^-4) Yes/no (p = 0.16) no (p = 1.0*10^-3)

magnitude ~ 3 ~ 3 ~ 1

support for power-law yes yes no

Parameters of the power-law functions fitted to the observed distributions of Pfam-A domain frequencies (left column), number of ligands associated with each
Pfam-A domain (middle column) and number of ligands associated with individual targets (right column) are shown in columns ‘xmin’ and ‘alpha’. ‘Goodness of
fit’ indicates the p-Value calculated from a KS goodness of fit test. The rows vs_lognormal, vs_exponential, vs_weibull indicate outcomes of maximum-likelihood
tests against alternative distributions. ‘Yes’ indicates significant support for a power-law distribution, ‘no’ indicates support for the alternative over a power-law.
‘Magnitude’ specifies the orders of magnitude in the distribution spanned by a power-law and ‘support for power-law’ is the summary outcome for each
distribution.
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Figure 5 Chemical space of the ligands of 6 target classes. (a) Plotted are molecular weight vs logP for ligands of 6 target classes. Colored
rings outline the ligand densities at any given point in projected chemical space, where densities halve for each ring traversing the scale from
red to blue. (b) Projection of the values of the first principal component calculated for ligands of the 6 selected target classes. Distributions are
distinct for each target class (p = 2.2*10-16 for all combinations, with the exception of the comparison between the p450 and SNF domain
classes, where p = 1.2*10-13; all p-Values were calculated using Bonferroni correction for multiple testing). RVP - retroviral aspartyl protease;
Pkinase - protein kinase; Pkinase_Tyr - tyrosine kinase; p450 cytochrome - p450; SNF - sodium neurotransmitter symporter, Trypsin - serine
protease trypsin.
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determine the scale parameter a and xmin. We then use
the package powerlaw.R http://www.rickwash.com/
papers/cscw08-appendix/powerlaw.R to calculate the
goodness-of-fit and corresponding p-Value. For the
maximum-likelihood calculations we use the functions
pareto.lnorm.llr, pareto.exp.llr and pareto.weibull.llr.
Visualizations were created using the script plplot.py.
All functions except powerlaw.R were provided by
Aaron Clauset and Cosma Shalizi http://tuvalu.santafe.
edu/~aaronc/powerlaws/.

Principal component analysis
We selected ligands from mappings for 6 Pfam
domains and retrieved pre-calculated descriptor values
from the compound_properties table within the
ChEMBL database. To prepare the data for scaling to
unit variance, we excluded as outliers the first and
hundredth percentile of each descriptor value distribu-
tion (see Additional file 5). Scaling to unit variance
and principal component analysis was carried out
using the R function prcomp.

Code and queries
The workflow for this study was implemented in python
and R. The code is deposited at https://github.com/fak/
mapChEMBLPfam. Pfam domain annotations and esti-
mated domain boundaries for all protein entries were
retrieved from http://pfam.sanger.ac.uk/protein/X?out-
put=xml where X is the Uniprot accession of a query
protein. The corresponding function can be found as
getPfamDomains.py in the code repository. Binding site
annotations from Uniprot were retrieved from http://
www.uniprot.org/uniprot/X.xml, where X is the Uniprot
accession of a ChEMBL target. Residues in close proxi-
mity to the bound ligand were retrieved from PDBeMo-
tif using a query submitted to http://www.ebi.ac.uk/
pdbe-site/pdbemotif/hitlist.xml. The corresponding
deposited functions are called queryUniprot.py and
queryPDB.py, respectively. We used SIFTS [38] to trans-
late between PDBe and Uniprot residue coordinates.
Protein coding genes in the human genome were
extracted from Ensembl using Ensembl Biomarts [39]
with the deposited function queryBioMaRt.R.

Figure 6 Domain poisoning in chemogenomics queries. (a) The schematic shows the domain structure of a protein in a hypothetical query -
the rat Tyrosine-protein phosphatase Syp (P35235) - and one of the hits, retrieved from a BLAST query against the ChEMBL target dictionary -
the rat Tyrosine-protein kinase SYK (Q64725). The relatively low expectation value for this query comes from high scoring alignments of the SH2
domains. At the same time, the overlap between small molecules binding both proteins is expected to be low.

Table 6 Loadings of the principal components

PC1 PC2 PC3 PC4 PC5 PC6

logP 0.0065 -0.8068 0.2363 -0.3698 0.2969 -0.2614

Molweight 0.4670 -0.3361 -0.0544 -0.1498 -0.6339 0.4916

HBD 0.3965 0.2750 0.7574 -0.0600 0.3267 0.2979

HBA 0.4498 0.0944 -0.6080 -0.2818 0.5498 0.1931

RTB 0.4332 -0.2790 -0.0448 0.8250 0.1320 -0.1857

PSA 0.4844 0.2716 0.0370 -0.2780 -0.2889 -0.7276

Shown are the factor correlation coefficients for individual components.
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Additional material

Additional file 1: Domain annotations for the ChEMBL target
dictionary. Tab-delimited file. The column ‘uniprot’ provides the Uniprot
identifier, the column ‘pfam’ the Pfam identifier, ‘start’ and ‘end’ the start
and end positions of the respective domain in the Uniprot sequence.

Additional file 2: Table of mapped interactions. Tab-delimited file.
The column ‘activity’ provides the value of the ChEMBL field activity_id,
‘domain’ the mapped Pfam-A domain, ‘molregno’ the identifier for the
small molecule, ‘uniprot’ provides the Uniprot identifier and ‘maptype’
indicates whether the protein target is a single- or multi-domain protein.

Additional file 3: Renderings of small molecule binding at the
interface of Pfam-A domains. This is a folder containing graphics in
JPG format.

Additional file 4: Session files of small molecule binding at the
interface of Pfam-A domains. Zipped folder containing Qt-MG session
files and required PDB files.

Additional file 5: Outlier selection for PCA. Boxplots show
distributions of descriptor values for all molecules in the analysis. Red
lines indicate chosen cut-offs for outlier selection.

Additional file 6: List of conflicts between ‘seed’ domains occurring
within the same target. Tab delimited file. The column ‘uniprot’
provides the Uniprot identifier, the column ‘conflict’ the seed domains
co-occurring in the specified protein.

Additional file 7: Manually removed protein targets. This is a text file
listing all entries that were manually removed before mapping small
molecule binding. Reasons for the removal are indicated for each
identifier.
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