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Abstract

Background: Gene regulatory networks are widely used by biologists to describe the interactions among genes,
proteins and other components at the intra-cellular level. Recently, a great effort has been devoted to give gene
regulatory networks a formal semantics based on existing computational frameworks.
For this purpose, we consider Statecharts, which are a modular, hierarchical and executable formal model widely
used to represent software systems. We use Statecharts for modeling small and recurring patterns of interactions in
gene regulatory networks, called motifs.

Results: We present an improved method for modeling gene regulatory network motifs using Statecharts and we
describe the successful modeling of several motifs, including those which could not be modeled or whose models
could not be distinguished using the method of a previous proposal.
We model motifs in an easy and intuitive way by taking advantage of the visual features of Statecharts. Our
modeling approach is able to simulate some interesting temporal properties of gene regulatory network motifs:
the delay in the activation and the deactivation of the “output” gene in the coherent type-1 feedforward loop, the
pulse in the incoherent type-1 feedforward loop, the bistability nature of double positive and double negative
feedback loops, the oscillatory behavior of the negative feedback loop, and the “lock-in” effect of positive
autoregulation.

Conclusions: We present a Statecharts-based approach for the modeling of gene regulatory network motifs in
biological systems. The basic motifs used to build more complex networks (that is, simple regulation, reciprocal
regulation, feedback loop, feedforward loop, and autoregulation) can be faithfully described and their temporal
dynamics can be analyzed.

Background
In order to understand how biological systems behave, a
branch of systems biology [1,2] called “executable cell
biology” [3] aims to construct computational models
which mimic their behavior and which can be used for
simulating, in a faithful and cost-effective way, their
reactions to external stimuli. The computational model,
which is built upon knowledge obtained by performing
some in vitro experiments, should be complete (it
should be able to reproduce all the experimental data)

and correct (it should be possible to reproduce its beha-
vior experimentally).
The correspondence between the in silico model and

in vitro observed behaviors is verified by applying model
checking techniques [4]. If the model is found to be not
consistent with the experimental data, it must be refined
and experimentally validated again.
A notable side-effect of the model construction pro-

cess is that the computational model may suggest new
hypotheses about the behavior of the biological system
which can then be verified by performing in vitro or in
vivo experiments.
A largely studied class of biological systems is consti-

tuted by systems which regulate the expression of genes
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in an organism. Their behavior is often represented by
using gene regulatory networks (GRNs), which describe
the interactions among genes, proteins and other com-
ponents at the intra-cellular level. GRNs have been suc-
cessful among biologists because they constitute an easy
to use and intuitive tool which can be used to represent
the biological model under consideration. However,
their lack of formal semantics prevents their direct use
for performing reliable and consistent simulations and
for model checking with experimental data.
There have been several attempts to define formal

mathematical and computational frameworks for model-
ing GRNs. They can be classified into quantitative
approaches, using differential equations or stochastic
models [5], and qualitative approaches, mostly based on
boolean networks [6], Petri nets [7,8], and bayesian net-
works [9]. See [10] for a detailed analysis and survey of
modelling and analysis of GRNs. Motifs have been iden-
tified that are significantly overrepresented in biological
networks [5,11-14]. The same motifs have been found in
organisms at different levels of complexity, ranging from
bacteria to humans. The relationships between different
types of motifs and their function have been explored in
a number of simple cases, in silico and in vivo [15,16].
Recently, Shin and Nourani [17] have used Statecharts

(SCs) [18], a computational framework with a visual lan-
guage and well-defined semantics, for modeling some
small and recurring patterns of interactions in GRNs,
called motifs [13].

Gene Regulatory Network motifs
GRN motifs are pattern of interconnections occurring in
real GRNs with a frequence that is significantly higher
than that in a randomly generated GRN.
Their high frequency suggests that they play an

important role in the GRN function and can, thus, be
considered as its building blocks.
The functional role of most common GRN motifs has

been extensively studied in some organisms, such as
E. coli and other model organisms [19].
The simple regulation motif
The simple regulation motif is one of the most basic
interaction patterns. It is composed of two genes X, Y,
where X regulates Y and the interaction is mediated by
a signal SX. The signal can act as an inducer molecule
that binds X or can represent a modification of X which
activates it. Since the regulation of X on Y is either acti-
vation or repression and SX can mediate the regulation
with either presence or absence, four possible types of
motifs can be described.
A simple regulation motif is coherent if both the

effects are of the same polarity, i.e. activation of Y in
presence of SX (s1 in Figure 1A) or repression of Y in

absence of SX (s2). It is incoherent if the effects are
of different polarity, i.e. repression of Y in presence
of SX (s3 in Figure 1A) or activation of Y in absence of
SX (s4).
The feedback loop motif
The feedback loop motif is composed of two genes X
and Y, which regulate each other, and their interactions
are mediated by a signal SX (for X regulating Y ) and a
signal SY (for Y regulating X). Since the reciprocal regu-
lations between X and Y can be either activations or
repressions we have different feedback loop motifs.
A feedback loop motif is double-positive if both the

reciprocal regulations of the two genes X and Y are
positive, that is, X and Y activate each other (Figure 1B,
left). Similarly, a feedback loop motif is double-negative
if X and Y repress each other (Figure 1B, middle). If the
effects of the reciprocal regulations of the two genes X
and Y are of different polarity, that is, X represses Y and
Y activates X or viceversa, the feedback loop motif is
said to be negative. Due to symmetry, we consider only
the former negative feedback loop motif (see Figure 1B,
right).
The feedforward loop motifs
The feedforward loop (FFL) motifs are commonly found
in many GRNs of widely studied organisms like yeast
and E. coli. They are composed of three genes X, Y, and
Z, where X regulates Y and Z, and Y regulates Z. For
reasons of simplicity from now on we discuss only the
motifs where the regulatory effect depends on the pre-
sence of the mediating signals, but our findings apply
also to the cases of their absence. Each type of regula-
tion can be either activation or repression. Here we use
the term coherent (resp. incoherent) to denote the case
where the sign of the direct regulation from X to Z is
the same (resp. the opposite) as the overall sign of the
indirect regulation path through Y, as in the seminal
paper of Mangan and Alon [20]. Out of the eight possi-
ble FFL motifs, the most frequently encountered ones
[20] are the coherent type-1 FFL motif c1 and the inco-
herent type-1 FFL motif i1, both shown in Figure 1C.
The combination of the regulations on gene Z by

genes X and Y can be given different interpretations
[20]. In the following we will assume that such regula-
tions are combined using the AND logic function, as in
the arabinose system of E. coli [21]. Although other
functions seem to be more appropriate for use in other
systems, the AND and OR functions are sufficient to
explain the most peculiar properties of FFL.
The autoregulation motifs
The characteristic element of an autoregulation motif is
a gene regulating itself. The autoregulation motif is
positive if Y activates itself (see par in Figure 1D) and is
negative if Y represses itself (see nar in Figure 1D).
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Statecharts
SCs extend state transition diagrams by adding concur-
rency (i.e., the capability of representing a state as made
up by smaller components all active at the same time)
and hierarchy (i.e., the possibility of representing a state
with a set of more detailed substates). The hierarchical
structuring capabilities of SCs allow one to model sys-
tems at different levels of detail, while concurrency is
useful for modeling multiple, mostly independent, por-
tions of a system. Moreover, SCs are compositional,
that is, they can be defined in terms of other SCs, thus
making the specifications more reusable.
These additional features, if correctly exploited, pro-

vide a solution to the scalability problems of other com-
putational modeling techniques like, e.g., those based on
boolean networks and Petri nets, whose effectiveness
rapidly decreases when applied to larger systems [3].
We now summarize some of the SCs features that

we believe are essential to understand their potential.
Please refer to [18] for more complete and detailed
information.
A SC is composed of states and of transitions between

states. A state is composite, if it contains other states,

and is simple, otherwise. A composite state is parallel if
its sub-states are executed concurrently, and is exclu-
sive if exactly one of its sub-states is executed. The
overall state of a SC is given by all the atomic states
currently under execution.
Transitions are used to specify how a system evolves

changing its internal state according to the external sti-
muli. They can be labeled by events which trigger their
activation and the consequent change of state of the sys-
tem, conditions for their applicability, and actions to be
performed during their execution.
SCs have an intuitive graphical representation: see

Figure 2A showing a SC modeling the movement and
feeding of an organism by means of two concurrent
substates.
SCs have very good software tool support [22-27],

which can be used to generate source code (e.g. in Java)
whose execution corresponds to the SCs semantics, and
to interactively simulate the system execution. SCs have
been extensively studied in software and systems engi-
neering, and have demonstrated to be particularly well-
suited for modeling and designing reactive systems, that
is, systems which evolve reacting to internal or external

Figure 1 Regulation motifs. (A) - The simple regulation motifs: (s1-s2) coherent simple regulation, (s3-s4) incoherent simple regulation. (B) - The
feedback loop motifs: double-positive (left), double-negative (middle), and negative (right). (C) - The feedforward loop motifs: (c1) coherent type-
1 feedforward loop, (i1) incoherent type-1 feedforward loop. (D) - The autoregulation motifs: (par) positive autoregulation, (nar) negative
autoregulation.
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events, or changed conditions. In the case of GRNs
these events can be, for example, the introduction or
removal of a protein or of another component.
SCs have also been successfully used to model pan-

creatic organogenesis in the embryonic mouse [28], cell
fate specification during C. elegans vulval development
[29], and T-cell development in the thymus [30].
Shin and Nourani have used SCs to model GRN

motifs [17]. In their approach, each element (gene, pro-
tein, signal) can be in one of the two states: “on”, which
means that the gene is expressed or that the protein is
present and active, and “off”, which means that the gene
is not expressed or that the protein is not present or
present in its inactive form.
Moreover, activating interactions in GRNs are translated

to transitions from the “off” state to the “on” state for the
gene being activated. Similarly, inhibiting interactions cor-
respond to transitions from the “on” state to the “off” state.
Their SCs model of the coherent simple regulation

motifs s1 and s2 is shown in Figure 2B, which in their
approach represents also the autoregulation motifs.

Results and discussion
We present an improved method for modeling gene reg-
ulatory network motifs by using SCs and we show its

application to model a number of motifs. As in the Shin
and Nourani [17] approach we use two states “on” and
“off” to model each element with the same meaning.
Transitions in our approach are labeled with a logical

formula, expressed in terms of presence or absence of
genes and signals, which activates the transition when
true. Whenever the transitions between “on” and “off”
states are not present in our SCs model of a motif this
means that the corresponding elements are the indepen-
dent variables of the modeled motif and their state is
possibly changed as a consequence of events outside the
motif itself.
A distinctive and novel feature of our method with

respect to the method of Shin and Nourani is that we
map the elements which are involved in the regulation
to concurrent states. This offers a number of advantages
that will be detailed in the following.
We also study the temporal behavior of GRN motifs.

Given the discrete nature of SCs, the temporal behavior of
SCs models of GRN motifs is somewhat rough, but any-
how allows us to simulate some interesting temporal prop-
erties of GRN motifs. We are able to model the delay in
the activation and the deactivation of the “output” gene in
the coherent type-1 feedforward loop motif (c1 FFL), and
the pulse in the incoherent type-1 feedforward loop motif

Figure 2 Statecharts and their use by Shin and Nourani. (A) - An example of a SC modeling the movement and feeding of an organism: an
instance of its overall state is the execution of substates “Running” and “Sensing”. (B) - The model according to Shin and Nourani [17] of
coherent simple regulations s1 and s2 and their model of autoregulations.
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(i1 FFL). We are also able to partially model the temporal
dynamics of feedback loop motifs and autoregulation
motifs, in the sense that the qualitative behavior is repre-
sented but the boolean nature of our SCs based approach
does not allow us to model more sophisticated temporal
mechanisms which require the use of quantitative aspects,
like acceleration and damping.

Model of simple regulation
Our models of the simple regulation motifs s1 and s2
are shown in Figure 3A left and right. In both cases, all
the elements involved in the regulation, the genes X and
Y and the signal SX are modeled as concurrent states,
and, for each of them, we use two states for modeling
its presence (and absence). The activation and deactiva-
tion of the regulated gene are modeled by two transi-
tions connecting its presence states, which are triggered
according to the truth value of logical formulas depend-
ing on the presence of the gene X and the signal SX.
Note that in the logical formulas the green symbol ∨
represents the logical connective OR while the orange

symbol ∧ the logical connective AND. Note also that in
the logical formulas for any element X, the expression
X = 1 is abbreviated as X and the expression X = 0 is
abbreviated as X̄.
Our approach for modeling simple regulation is non-

ambiguous, because motifs s1 and s2 are represented by
two different SCs. See again Figure 3A for our model
and compare it with the ambiguity deriving from Shin
and Nourani model shown in Figure 2B, where the
same SC is used to describe both s1 and s2. Mapping
different motifs onto the same SC is a potential source
of problems when the mapping is inverted (i.e., from the
SC to motifs) because it is not clear whether the SC
should be mapped on both the original motifs (thus,
possibly leading to an over-specification) or it should be
mapped on only one of them.
Moreover the Shin and Nourani model for coherent

simple regulations shown in Figure 2B is incomplete,
because it implicitly assumes that the regulating gene X
is always expressed. But ignoring the situation where X
is not expressed can be significant if, for example, the

Figure 3 Our Statecharts models. (A) - Our models of the coherent simple regulation motifs s1 (left) and s2 (right). The green symbol ∨
represents the logical connective OR and the orange symbol ∧ the logical connective AND. (B) - A possible modification to the Shin and
Nourani [17] model of coherent simple regulations trying to solve their incompleteness problem. (C) - Our models of the incoherent simple
regulation motifs s3 (left) and s4 (right).
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same gene has a repression role in other parts of the
network. If we try to solve their incompleteness problem
by adding another state for X = 0 then we have to dupli-
cate the states for Y = 0 and Y = 1, thereby obtaining
the SC of Figure 3B and losing the scalability advantage
of SCs.
In fact, their model does not fully exploit the concur-

rency features of SC. This determines sub-optimality,
because it does not allow to reduce the size of the sys-
tem. Their method is therefore not scalable: the com-
plexity of their models grows faster than their size.
Moreover, since the states of the regulated gene are
modeled as substates of the regulating gene, and not as
concurrent states, it is not possible to model networks
containing genes which reciprocally regulate each other
(see the model of feedback loop presented below). Note
that these problems of [17] just described with reference
to coherent simple regulations also affect the modeling
of the other, more complex, motifs.
Similar considerations also apply to the modeling of

the incoherent simple regulation motifs s3 and s4,
whose SCs models with our approach are shown in
Figure 3C.

Model of feedback loop
The feedback loop motif is not addressed by the model-
ing approach defined by Shin and Nourani [17] and we

will shortly prove that it cannot be. We first note that
the authors themselves observe in the “Further Discus-
sion” section of their paper [17] that feedback loop
motif is not part of their modeling scheme and that
they intend to incorporate it in the future. We observe
that this is not possible in their method, because it
requires the states of the regulated gene to be substates
of the states of the regulating gene. Since in the feed-
back loop motif X and Y act as both regulated and regu-
lating genes, this requirement cannot be fulfilled.
Our modeling approach does not have this limitation

because, as already mentioned, the genes and the signals
are modeled as concurrent states.
The double-positive feedback loop motif has two

genes X and Y which reciprocally activate each other.
The model for this motif can easily be obtained from
the model of the coherent simple regulation motif s1
(previously shown in Figure 3A) by adding the states for
the signal SY and the transitions between the states for
the gene X which correspond to the regulation of the
gene X by Y. The resulting model and the motif are
shown in Figure 4A.
From now we shall discuss also the temporal behavior

of each SCs model representing a given in vitro motif so
as to determine how closely each model is able to repro-
duce the corresponding in vitro behavior. Note that
since a SC is a discrete model the state of the regulated

Figure 4 Double-positive feedback loop motif. (A) - The double-positive feedback loop motif (left) and its model according to our approach
(right). (B) - The temporal behavior of our model of the double-positive feedback loop motif with different initial states for X and Y.
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Figure 5 Double-negative feedback loop motif. (A) - The double-negative feedback loop motif (left) and its model according to our approach
(right). (B) - The temporal behavior of our model of the double-negative feedback loop motif with different initial states for X and Y.

Figure 6 Negative feedback loop motif. (A) - The negative feedback loop motif (left) and its model according to our approach (right). (B) -
The temporal behavior of our model of the negative feedback loop motif.
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gene at time instant t + 1 depends on the state of its
regulating gene at time instant t. Also note that the
results of this investigation are a priori limited by the
fact that since our SCs models are boolean any behavior
requiring more than two values in the domain cannot
be reproduced.
The temporal behavior of the SCs model of the dou-

ble-positive feedback loop motif is shown in the dia-
grams reported in Figure 4B. In particular, when X and
Y are initially both present or both absent, it exhibits
the “joint bistability” behavior [31], that is X and Y are
either both always “off” or both always “on”, as shown
in Figure 4B (left and middle). But, as you can see in
Figure 4B (right), when the initial state for X and Y is
different, the temporal behavior, due to the approxima-
tion of the boolean domain where only two values are
available, is not able to escape from the oscillating pat-
tern to fall into one of the two steady states that are
known from the in vitro experiments [5,31].
Our approach allows us also to build the model for

the double-negative feedback loop motif, where the two
genes X and Y reciprocally repress each other (see
Figure 5A).

Also in this case, our SCs model is able to reproduce
the temporal behavior of the motif, that is, X always
“on” and Y always “off”, or viceversa (this is called
“exclusive bistability” in [31]). The corresponding dia-
grams are reported in Figure 5B (left and middle). Once
again, the roughness of the boolean model does not
allow the temporal behavior to be attracted into one of
the two steady states when the initial states of X and Y
are the same, see Figure 5B (right).
For completeness, we also show the SCs model of the

negative feedback loop motif (Figure 6A), and the dia-
gram of its temporal behavior (Figure 6B), where the
oscillatory behavior known for this kind of motif [32] is
reproduced. Some variations of this motif exhibit a
damped oscillatory behavior: as said above, the rough-
ness of the boolean model does not allow our modeling
approach to reproduce it. We are working on an exten-
sion to overcome these limitations.

Model of coherent feedforward loop
The c1 FFL motif with the AND combination of X’s and
Y’s regulations on Z has been used as a model of the
arabinose system in E. coli. This motif, already

Figure 7 Coherent type-1 feedforward loop motif. (A) - The c1 feedforward loop motif (top) and its model according to our approach
(bottom). (B) - The temporal behavior of our model of the c1 FFL motif.
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illustrated in Figure 1C and reported for convenience in
Figure 7A (top), can be modeled in our approach by
using the SC of Figure 7A (bottom), which, despite its
discrete nature, is able to exhibit the same temporal
behavior of the in vitro system, consisting in (i) a
delayed activation of Z after the activation of X, and (ii)
an immediate de-activation of Z when X disappears
(such a behavior is called “sign-sensitive delay” in [13]).
A diagrammatic representation of the temporal beha-

vior of the considered SCs model is reported in Figure
7B, where it can be observed (right) that there is no
delay in the deactivation of Z (Z and Y become both
inactive at time instant t = 3 immediately after X disap-
pears at time instant t = 2), but its activation (left) is
delayed (only Y is active in the time instant t = 3 right
after X appears at time instant t = 2, and Z becomes
active only in the step after Y’s activation, that is at time
instant t = 4).

Model of incoherent feedforward loop
The i1 FFL motif (once again, with the AND combina-
tion of X’s and Y’s regulations on Z) has been used as a
model of the galactose system in E. coli [33] where it
produces an impulsive behavior in the regulated gene

which first rises very quickly and afterwards soon goes
down.
The i1 FFL motif, already illustrated in Figure 1C and

reported for convenience in Figure 8A (top), is modeled
by using the SC of Figure 8A (bottom) which can repro-
duce pulse-like dynamics, as shown in the temporal dia-
gram presented in Figure 8B. Soon after X becomes
active at time instant t = 2 (left), also Z gets activated at
time instant t = 3 together with Y but, after one more
time step, the repressive action of Y deactivates Z at
time instant t = 4. Of course, the approximation of the
boolean domain only allows a unit time impulse, but
that is is enough to show that our SCs model is able to
reproduce the dynamic behavior typical of this motif.
When X becomes inactive at time instant t = 2 (right)
there is no effect on Z which remains inactive, while Y
becomes inactive in the next step at time instant t = 3.
On the other side, our SCs model is not able to

express the response acceleration dynamics of the i1
FFL motif with respect to simple regulation [33], as pre-
viously said in the discussion of the intrinsic limitation
of the boolean domain. We are currently working on
the extension of our SCs-based approach to the more
general case of a many-valued discrete domain.

Figure 8 Incoherent type-1 feedforward loop motif. (A) - The i1 feedforward loop motif (top) and its model according to our approach
(bottom). (B) - The temporal behavior of our model of the i1 FFL motif.
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Model of autoregulation
The negative autoregulation motif is a very common
and widely studied pattern of regulation.
Experimental results [34] have shown that it behaves as

an accelerator of the gene response (with respect to the
simple regulation motif), in presence of a high initial con-
centration of the self-regulating gene. The opposite beha-
vior is exhibited by the positive autoregulation motif
which slows down the production of the gene [35].
Our models for the negative autoregulation motif (see

Figure 9A) and the positive autoregulation motif (see
Figure 9B) are inherently boolean: therefore they do not
have the means of reproducing the acceleration and
deceleration which can be observed in vitro. The dia-
grams of their temporal behavior are shown in Figure
9C (left) and (right), respectively. As already mentioned,
we plan to extend our modeling approach to take into
account these aspects.
On the other side, note that Shin and Nourani have

observed in [17] that with their modeling approach both
negative and positive autoregulation are identical to sim-
ple regulation in logical domain (see in [17] their

Figures 2 and 3 and their discussion of autoregulation).
But as you can see by comparing our SCs models for
simple regulation (Figures 3A and 3C) to our SCs mod-
els for negative and positive autoregulations (to the
right in both Figures 9A and 9B), our modeling
approach allows to fully distinguish, in the logical
domain, the various cases. This is true even if we build
with our approach the SCs models for exactly the same
autoregulation motifs considered by Shin and Nourani
in [17] (shown in Figure 10A) where Y is regulated by
the AND combination of itself and an additional activat-
ing gene X. Such SCs models are presented for comple-
teness in Figures 10B (positive autoregulation) and 10C
(negative) and the temporal dynamics of Y when X is
expressed is the same shown in Figure 9C.

Conclusions
We have presented a Statecharts-based approach for
modeling motifs of gene regulatory networks which (i)
avoids the representation problems (incompleteness,
no-concurrency, ambiguity) of a previous proposal
[17], (ii) is able to model motifs that were not possible

Figure 9 Autoregulation motifs. (A) - The negative autoregulation motif (left) and its model according to our approach (right). (B) - The
positive autoregulation motif (left) and its model according to our approach (right). (C) - The temporal behavior of our models of the
autoregulation motifs: (left) negative autoregulation and (right) positive autoregulation.
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to model by following the approach of [17], (iii) pro-
duces more faithful models for the autoregulation
motifs than [17], and (iv) is able to exhibit a temporal
dynamics which qualitatively follows the actual biologi-
cal dynamics.
More specifically, we have been able to represent sim-

ple regulation, feedforward loop, feedback loop, and
autoregulation, which represent the basic motifs that
can be used to model more complex networks. Further-
more, our approach, even if intrinsically boolean and
discrete, allows us to give a faithful qualitative descrip-
tion of the temporal behavior in the coherent type-1
feedforward loop motif (c1 FFL), in the incoherent type-
1 feedforward loop motif (i1 FFL), in feedback loop
motifs, and in the positive autoregulation motif.

We are now planning, as future work, to extend our
approach to consider also quantitative information, so
as to provide a more realistic executable model of GRN
motifs and their temporal dynamics.
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GRN: Gene Regulatory Network; SC: Statechart; FFL: FeedForward Loop.
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