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Abstract

Background: Predicting protein complexes from protein-protein interaction data is becoming a fundamental
problem in computational biology. The identification and characterization of protein complexes implicated are crucial
to the understanding of the molecular events under normal and abnormal physiological conditions. On the other
hand, large datasets of experimentally detected protein-protein interactions were determined using High-throughput
experimental techniques. However, experimental data is usually liable to contain a large number of spurious
interactions. Therefore, it is essential to validate these interactions before exploiting them to predict protein complexes.

Results: In this paper, we propose a novel graph mining algorithm (PEWCC) to identify such protein complexes.
Firstly, the algorithm assesses the reliability of the interaction data, then predicts protein complexes based on the
concept of weighted clustering coefficient. To demonstrate the effectiveness of the proposed method, the
performance of PEWCC was compared to several methods. PEWCC was able to detect more matched complexes than
any of the state-of-the-art methods with higher quality scores.

Conclusions: The higher accuracy achieved by PEWCC in detecting protein complexes is a valid argument in favor of
the proposedmethod. The datasets and programs are freely available at http://faculty.uaeu.ac.ae/nzaki/Research.htm.

Background
Protein complexes are groups of associated polypeptide
chains whose malfunctions play a vital role in disease
development [1]. Complexes can perform various func-
tions in the cell, including dynamic signaling, and can
serve as cellular machines, rigid structures, and post-
translational modification systems. Many disorders are
consequences of changes in a single protein, and thus,
in its set of associated partners and functionality. There-
fore, mapping proteins and their interactions through the
identification of protein complexes is a critical challenge
in modern biology and can lead to significant applica-
tions for the diagnosis and treatment of diseases. Several
outstanding computational approaches are developed to
predict the structure of protein complexes from protein-
protein interaction (PPI) networks. PPI is often modeled
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as the graph G = (V ,E), where V is a set of nodes (pro-
teins) and E is a set of edges (interactions) connecting
pairs of nodes. A protein complex in this case is mod-
eled as a dense subgraph of proteins, where the density is
defined as the fraction of edges out of all possible vertex
pairs. Two of the most frequently used algorithms for pre-
dicting protein complexes via the dense protein subgraph
model are Markov clustering (MCL) [2] and repeated
random walks (RRW) [3]. They both simulate random
walks on the underlying PPI network. Another method is
restricted neighborhood search clustering (RNSC), [4,5]
which uses principles of local search algorithms such as
restricted neighborhood search, tabu search, and diversi-
fication schemes to ensure good performance and speed.
Leung et al. [6] developed an algorithm called Core based
on the core-attachment idea, and Zaki et al. [7] recently
proposed a novel method for detecting protein complexes
in PPI based on a protein ranking algorithm (ProRank).
ProRank quantifies the importance of each protein based
on the interaction structure and evolutionary relation-
ships between proteins in the network. Methods based on
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protein clustering with overlapping neighborhood expan-
sion, such as CFinder [8], which is one of the oldest
overlapping clustering methods and the recently pub-
lished method known as ClusterONE [9] have also been
introduced. The ClusterONE method initiates from a sin-
gle seed vertex before a greedy growth procedure begins
to add or remove vertices in order to find groups with
high cohesiveness. The cohesiveness is defined as follows:
Letwin(V ) andwbound(V ) denote the total weight of edges
contained entirely by a group of proteins V, and the total
weight of edges that connect the group with the rest of
the network, respectively. Following [9], the cohesiveness

of V is then given by f (V ) = win(V )

win(V )+wbound(V )+p|V | , where

p|V | is a penalty term whose purpose is to model the
uncertainty in the data by assuming the existence of yet
undiscovered interactions in the protein interaction net-
work. ClusterONE-derived complexes from various yeast
datasets and managed to show better agreement with ref-
erence complexes drawn from the Munich Information
Center for Protein Sequence (MIPS) catalog and the Sac-
charomyces Genome Database (SGD) than the results of
several other popular methods. However, one weakness
in the process is that it is dependent on the quality of
the PPI data mainly produced by high-throughput exper-
iments. Such experiments are believed to be noisy and
fragmented due to the limitations of the corresponding
experimental techniques and the dynamic nature of pro-
tein interaction maps, which may have a negative impact
on the performance of complex recognition algorithms
[10]. For example, it is thought that the false positive rate
of Y2H screens could be as high as 64%, and the false
negative rate can vary from 43% to 71% [11]. Sprinzak
et al. [12] showed that the reliability of high-throughput
yeast two-hybrid assays is around 50%, and that the size
of the yeast interactome is estimated to be 10,000 to
16,000 interactions. Xiaoli Li et al. [13] have also shown
that improvement in protein complex detection could be
achieved if the quality of the underlying PPI data is consid-
ered adequately to minimize the undesirable effects from
the irrelevant and noisy sources. To solve this problem,
several methods, such as the molecular complex detec-
tion (MCODE) algorithm [14], was proposed to assess
the reliability of high-throughput protein interaction data.
The MCODE algorithm depends on the vertex weight-
ing phase in which a score is assigned to each vertex
(measuring the cliquishness of the neighborhood of the
vertex). The vertex weight percentage controls how much
difference is allowed between the scores of the vertices
within the same complex and those outside the com-
plex. By proposing weighting schemes based on the num-
ber of common neighbors, other authors were able to
improve several clustering algorithms such as CDdistance
[15] and FSWeight [16]. To this end, Liu et al. [10]

have recently developed an algorithm, referred to as Clus-
tering, which is based on Maximal Cliques (CMC) for
discovering protein complexes in weighted PPI networks.
They used an iterative scoring method called AdjstCD
to assign weights to protein pairs. The AdjstCD weight
in this method indicates the reliability of the interaction
between protein pairs. The AdjstCD iterative algorithm
[15,17,18] is mainly based on the number of common
protein-pair neighbors in the PPI network. The CD-
distance [17] between two neighbor proteins u and v is
defined as:

CD(u, v) = 1 − 2|Nu ∩ Nv|
|Nu| + |Nv| (1)

whereNu andNv are the numbers of neighbors of proteins
u and v, respectively. Equation (1) was further modified by
Chua et al. [18] to decrease the CD-distance for proteins
with insufficient number of interactions:

AdjstCD(u, v) = 2|Nu ∩ Nv|
max(|Nu|,Navg) + max(|Nv|,Navg)

(2)

where Navg =
∑

x∈V |Nx|
N is the average number of neigh-

bors in the network and N is the total number of nodes in
the network.
Equations (1) and (2), show how many 3-cliques can be

generated from the interactions between proteins u and v,
but do not take into account groups of the 3-cliques based
on other outgoing interactions from proteins u and v. To
solve this problem, Chua et al. [18] suggested an iterative
method which considers all 3-cliques from all neighbor
proteins u and v:

wk(u,v)

=
∑

x∈Nu∩Nv(w
k−1(x,u)+wk−1(x,v))

max(
∑

x∈Nuw
k−1(x,u),wk−1

avg)+max(
∑

x∈Nv w
k−1(x,v),wk−1

avg)

(3)

where w0(x,u) = 1, if x and u interact, w0(x,u) = 0,
otherwise;wk−1

avg =
∑

x∈V
∑

y∈Nx w
k−1(x,y)

n is the average num-
ber of weights at (k − 1)th step; w1(x,u) = AdjstCD(x,u)

and eventually wk(u, v) will determine the reliability of
interaction between proteins u and v. It was shown that
the iterative scoring method can significantly improve the
performance of CMC and some other well known pro-
tein complex detection methods such as MCL [2],CFinder
[8] and MCODE [14]. However, CMC works accurately
on reasonably clean protein interaction data (few miss-
ing interactions). It is quite difficult to identify unreliable
edges or to find maximal cliques when the data is noisy.
This weakness is demonstrated by Figure 1. The reliabil-
ity weight of the edge e1 using AdjstCD depends on the
outgoing edges e6, e7, ..., e10. In a case of noisy network
there is a possibility that many of the outgoing edges such



Zaki et al. BMC Bioinformatics 2013, 14:163 Page 3 of 9
http://www.biomedcentral.com/1471-2105/14/163

e8

e9

e10

e6

e7

e2

e4 e5

e3

e1

Figure 1 Reliability weight of the edge e1 using AdjstCD
depends on the outgoing edges e6, e7, ..., e10. However, in a case
of noisy network there is a possibility that many of these outgoing
edges may not be reliable. Therefore, the reliability of the edge e1
should not be influenced by all of the outgoing edges.

as e6, e7, ..., e10 may not be reliable. Moreover, the relia-
bility of the edge e1 should not be influenced by all of the
outgoing edges.
In this paper, we propose a simple yet effective method

for protein complex identification. We are aware of the
fact that, in addition to improving graph mining tech-
niques, it is necessary to obtain high quality benchmarks
by assessing protein interaction reliability. Therefore, we
propose a novel method for assessing the reliability of
interaction data and detecting protein complexes. Unlike
CMC, this method finds near-maximum cliques (maximal
cliques without unreliable interactions). We employ the
concept of weighted clustering coefficients as a measure
to define which subgraph is the closest to the maximal
clique. The clustering coefficient of a vertex in this case is
the density of its neighborhood [19].

Methods
Computational approaches for detecting protein com-
plexes from PPI data are useful complements to the limita-
tion of the experimental methods such as TandemAffinity
Purification (TAP) [20]. Beside the improvement in graph
mining techniques, the success of accurate detection of
a protein complex depends on the availability of high-
quality benchmarks. The bottleneck of different compu-
tational methods remains to be the noise associated with
the protein interaction data. Therefore, a rigorous assess-
ment of protein interactions reliability is essential. In this
section, we introduce a novel method PEWCC which has
two main steps: first, assess the reliability of the pro-
tein interaction data using the PE-measure. Second, detect
protein complexes using weighted clustering coefficient
[19,21] (WCC). In the subsequent sections, we describe
these two steps in details.

Assessing the reliability of protein interactions
In this section we introduce the PE-measure, a new
measure for protein pairs interaction reliability. PE-
measure enables us to reduce the level of noise
associated with PPI networks and it is defined as follows:

Given a PPI network with N proteins, we represent the
PPI network by an undirected graph G = (V ,E), where
the vertex set V represents the proteins, and the edge set
E represents the set of interactions between pairs of pro-
teins. The elements (p0)ij of the initial (N × N) reliability
matrix P0 are equal to 0.5 (given that i interacts with j).
We then calculate the elements (pk)ij of the matrix Pk in k
iterations as:

(pk)ij = 1 −
∏

vl

(1 − (pk−1)il · (pk−1)jl) (4)

where we take the product by all vl : (vl, vi) ∈ E, (vl, vj) ∈
E.
To illustrate the weighting scheme, consider a hypothet-

ical network as shown in Figure 2.
Suppose we would like to determine the weight of the

edge e1 (between protein 1 and protein 2). According to
Equation (4), the probabilities that protein 3 and protein 4
do not “support” the edge e1 are (1 − p1,3 · p2,3) and (1 −
p1,4 · p2,4), respectively. Thus, the probability that protein
3 and 4 do not “support” the edge e1 is (1−p1,3 ·p2,3) · (1−
p1,4 · p2,4). Therefore, the probability that protein 1 and
protein 2 interact (and supported by protein 3 and protein
4) is the complementary probability 1−[ (1 − p1,3 · p2,3) ·
(1 − p1,4 · p2,4)].
We start with the initial probability matrix P0 (where

p1,3, p2,3, p2,4, p1,4 and p3,5 are all equal to 0.5). In the
first iteration (k = 1) the PE-measure of the edge e1 is
1−[ (1 − (p1,3.p2,3) · (1 − (p1,4 · p2.4)]= 7

16 . Similarly, the

Figure 2 A simple hypothetical network of 5 proteins and 6
interactions to illustrate how the weight of the edge e1 is
determined.
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PE- measures of edges e2, e3, e4 and e5 are all equal to 1
4

while the measure of edge e6 is equal to 0. All of the PE-
measures are updated before the second iteration (k = 2)
starts.
For each protein in the PPI network, we calculate the

average PE-measures (wavg)i of all outgoing edges as fol-
lows:

(wavg)i =
∑
vl
pil

Ni
, (5)

where vl : (vl, vi) ∈ E,Ni is the number of the neighbors of
vi and i = 1, ...,N . If the PE-measure pil is less than the
average (wavg)i then the edge between proteins i and l is
considered unreliable and therefore, it should be removed
from the network.
Applying Equation (4) on the hypothetical network

shown in Figure 2, we could see that the edge e6 yields a
lower weight which is equal to 0 and therefore, it could be
a noise and should be removed from the network.

Detecting protein complex using weighted clustering
coefficient
For each protein vi in the PPI network, we first create
the neighborhood graph, calculate the weighted clustering
coefficient and then calculate the degree of each node in
the neighborhood graph; the “degree” of a node being the
number of its neighbors. The weighted clustering coeffi-
cient ci in this case is calculated according to the following
formula:

ci = 2 · N3cliques

N2
i · (Ni − 1)

(6)

where N3cliques is the number of 3-cliques in the neigh-
borhood graph. Once the degree is calculated, we sort the
sequence of proteins in the neighborhood graph accord-
ingly from minimum to maximum. The protein vj with
the lowest degree and its corresponding interactions are
removed from the neighborhood graph and ci is recalcu-
lated. This process stops when the neighborhood graph
contains only 3 proteins and the sequence of proteins with
the highest ci is returned as a valid core protein complex.
This concept is illustrated in Figure 3.
In Figure 3 (a), if i = 1 then N1 in this case is equal to 5

(the central protein 1 is not considered), N3cliques = 7 and
therefore, according to Equation 6, c1 = 2×7

52×(5−1) = 0.14.
Based on the sequence of the degree, node 5 has only 2
outgoing connections and therefore, it should be removed
from the subgraph. In Figure 3 (b), the subgraph is now
reduced to 4 nodes, N3cliques = 5 and therefore, c1 = 0.21.
Based on the sequence of the degree there exists a tie
and therefore either nodes 3 or 4 should be randomly
removed. If the node 3 is removed as shown in Figure 3 (c)
then we end up with a subgraph with only 3 nodes. The

c1 in this case is equal to 0.33 and therefore, the subgraph
which contains the central protein 1 and three nodes (2, 4
and 6) is a valid core protein complex. Once the core pro-
tein complex is identified, we examine the main subgraph
once again and re-join any protein which interacts with
more than t% of the proteins in the core protein complex.
In the case of t = 50, protein 3 will join the subgraph and
the final complex predicted is shown in Figure 3 (d).

Assessing the quality of predicted complexes
To evaluate the accuracy of the proposedmethod, we used
the Jaccard index which defined as follows:

MatchScore(K ,R) = |VK ∩ VR|
|VK ∪ VR| (7)

where K is a cluster and R is a reference complex. VK
and VR are the set of proteins in K and R, respectively.
The complex K is defined to match the complex R if
MatchScore(K ,R) ≥ α where α = {0.25, 0.5, 0.6, 0.7, 0.8
or 0.9} (because different methods were evaluated with
different values of α).
To estimate the cumulative quality of the prediction,

assume a set of reference complexes R = {R1,R2, ...,Rn}
and a set of predicted complexes P = {P1,P2, ...,Pm} the
recall (Rec) and precision (Prec) at the complex level are
then computed as follow:

Rec = |{Ri|Ri ∈ R�∃P,KjmatchesRi}|
|R| (8)

and

Prec = |{Kj|Kj ∈ P�∃Ri ∈ R,RimatchesKj}|
|P| (9)

Following Brohee and van Helden [22] and Nepusz et
al. [9], we used the geometric mean of two other mea-
sures, namely the clustering-wise sensitivity (Sn) and the
clustering-wise positive predictive value (PPV ). Both Sn
and PPV are based on the confusionmatrix T =[ tij] of the
complexes. Given n reference andm predicted complexes,
let tij denote the number of proteins that are found both
in reference complex i and predicted complex j, and let ni
denote the number of proteins in reference complex i. Sn
and PPV are then defined as follows:

Sn =
∑n

i=1maxmj−1tij∑n
i=1 ni

(10)

and

PPV =
∑m

j=1maxni−1tij∑m
j=1

∑n
i=1 tij

(11)

Since Sn can be inflated by putting every protein in the
same cluster, while PPV can be maximized by putting
every protein in its own cluster, the accuracy (Acc), which
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a b c d
Figure 3 Illustration of how a protein complex is detected: (a) A simple hypothetical network of 6 proteins and 12 interactions, (b) based
on the sequence of the degree, node 5 has only 2 outgoing connections and therefore, it is removed from the protein network, (c) based
on the sequence of the degree, node 3 is removed and therefore, the subgraph which contains the central protein 1 and three nodes (2,4
and 6) remains as a valid core protein complex, (d) protein which interacts with more than 50% such as protein 3 rejoins the protein
network and the final complex is predicted.

is simply the geometric mean of the clustering-wise sen-
sitivity and the positive predictive value was defined as
follows:

Acc = √
Sn × PPV (12)

Following Nepusz et al. [9], we also evaluated our
method using the maximum matching ratio (MMR). The
MMR measure is based on a maximal one-to-one map-
ping between predicted and reference complexes. The
motivation for Nepusz et al. [9] to use the MMR is the fact
that the PPV tends to be lower if there are substantial over-
laps between the predicted complexes, which could limit
the prediction accuracy when using overlapping cluster-
ing algorithms. The algorithm used to calculate the MMR
is available in the supplementary material (Additional
file 1).
The experimental works were conducted on a PC with

Intel(R) Core(TM)2, CPU 6400 @ 2.13GHz and 3 GB of
RAM.

Results and discussion
In this section, we first describe the datasets and evaluate
the current methods for protein complex detection, and
then study the performance of PEWCC and the impact
of the PE-measure. The effectiveness of our method is
evaluated using two different PPI datasets. The first is a
combined PPI dataset (PPI-D1) developed by Liu et al.
[10] and it contains yeast protein interactions generated

by six different experiments, including interactions char-
acterized by the mass spectrometry technique [23-26],
and interactions produced using two-hybrid techniques
[27,28]. The second dataset (PPI-D2) is an entire set of
physical protein-interaction in yeast from BioGRID [29].
The properties of the PPI-D1 and PPI-D2 datasets used in
the experiments are shown in Table 1.
Three reference sets of protein complexes are used in

these experiments. The first set of complexes (Cmplx-
D1) comprises of 162 hand-curated complexes fromMIPS
[30]. The second dataset (Cmplx-D2) which contains 63
complexes is generated by Aloy et al. [31]. The third ref-
erence set (Cmplx-D3) of 203 complexes was developed
by Nepusz [9] and it consists of the most recent version
of the MIPS catalog of protein complexes. Both datasets
Cmplx-D1 and Cmplx-D2 were used by Liu et al. [10] to
evaluate the performance of the CMCmethod. Complexes
with sizes greater or equal to 4 proteins were considered.
In the first experimental work, we attempted to find

the optimal value of the re-join parameter t which will
lead to the best performance of the proposed method. In
Figure 4, we show the effect of varying parameter t and the
corresponding complex detection accuracy measured in
terms of Acc. Based on PPI-D1 and the reference datasets
Cmplx-D1 and Cmplx-D2, the results show that the best
performance of the proposed method is achieved when
t ≥ 0.3. For t > 0.3 we will still obtain similar accu-
racy. However, increasing the value of t will increase the

Table 1 Properties of the two PPI datasets used in the experimental work

Dataset Proteins Interactions Network density Clustering Av. no. of Isolated
coefficient neighbors proteins

PPI-D1 3, 869 19, 165 0.002 0.157 8.957 8

PPI-D2 5, 640 59, 748 0.004 0.246 21.187 0
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Figure 4Measuring the effect of varying the values of the re-join
parameter (t) in terms of Acc. For t > 0.3 we will still obtain similar
accuracy however, increasing the value of t will increase the number
of complexes detected and therefore, t is considered equal to 0.3.

number of complexes detected which will decrease the
Prec. Therefore, in all the following experimental works t
was considered to be equal to 0.3 . The parameter k (num-
ber of iterations) was set to 2 in all the experiments since
no significant performance improvement was achieved
when k > 2.
In Table 2 we compare the performance of the PEWCC

method to CMC [10], ClusterONE [9], MCL [2], CFinder
[8] and MCODE [14] based on PPI-D1 and different ref-
erence datasets Cmplx-D1 and Cmplx-D2. In this case
more than one quality score were used to assess the per-
formance of each algorithm: Prec, Rec and F1 (where
F1 = 2 · Prec·Rec

Prec+Rec ). The fraction of matched complexes
with a given overlap score threshold Acc(K ,P) was set to
be ≥ 0.5. For each algorithm, final results were obtained
after optimizing the algorithm parameters to yield the
best possible results. For the CMC, the algorithm is pri-
marily affected by the overlap threshold and the merge
threshold. The overlap threshold determines the highly
overlapping score between two clusters and the merge

threshold which determines what to do with two highly
overlapping clusters (merged or removed). The overlap
threshold and the merge threshold shown good perfor-
mance when both were set to 0.5 and 0.25, respectively.
The iterative scoring parameter k was set to 2. For Clus-
terONE, we used the default parameters density threshold
set to 0.5. The merging threshold was set to 0.8 and the
penalty value of each node was 2. The MCL has a single
parameter called inflation, which tunes the granularity of
the clustering and it was set to 1.8. ForMCODE, the depth
was set to 100, node score percentage to 0, and percent-
age for complex fluffing to 0.2 (as suggested by [22]). For
CFinder, we set k-clique size to 4. The rest of the param-
eters were set to their default values. The summary of the
parameters setup for all the methods is available in the
supplementary materials (Additional file 2).
As shown in Table 2, the proposed method was able to

detect more matched complexes than any of the state-of-
the-art methods with higher F1 value.
To analyze the performance of PEWCC, ClusterONE

and CMC in a noisy interaction dataset, we added differ-
ent random sets of interaction pairs to Cmplx-D1 (1000
PPI pairs at a time). In Figure 5 (a), we show the number of
matched complexes detected using PEWCC, ClusterONE
and CMC in the presence of different sets of random
interaction pairs. In Figures 5 (b), (c) and (d) we com-
pare the performances of the three mentioned methods
in terms of the number of matched complexes F1, PPV
and MMR scores respectively. The solid performance of
PEWCC is quite obvious in the existence of additional sets
of random interaction pairs (noise). The performances
of ClusterONE and CMC deteriorated when the noise
increases. In Figure 5 (c), ClusterONE showed better PPV
score than PEWCC however, the latest showed consistent
performance.
Furthermore, the impacts of the PE-measure and the

AdjstCD measure on improving the detection of matched
complexes were assisted using the datasets PPI-D1 and
Cmplx-D1. In Table 3 we show the performance of
CMC and ClusterONE with and without filtering method
such as AdjstCD and PE measures. In this case the

Table 2 Performance comparison of PEWCC, CMC, ClusterONE, MCL, CFinder, andMCODE, withAcc(K ,P) ≥ 0.5
Cmplx-D1 Cmplx-D2

Method Matched Cmplx Prec Rec F1 Matched Cmplx Prec Rec F1

PEWCC 58 0.435 0.469 0.451 61 0.468 0.910 0.618

CMC 56 0.297 0.346 0.320 57 0.385 0.889 0.537

ClusterONE 52 0.204 0.387 0.267 48 0.231 0.872 0.365

MCL 51 0.353 0.315 0.333 52 0.448 0.825 0.581

MCODE 39 0.330 0.241 0.279 34 0.386 0.540 0.450

CFilter 46 0.379 0.284 0.325 43 0.463 0.683 0.552



Zaki et al. BMC Bioinformatics 2013, 14:163 Page 7 of 9
http://www.biomedcentral.com/1471-2105/14/163

1000 5000 10000
30

40

50

60

70

80

90

100

Number of the randomely added PPI pairs

N
um

be
r 

of
 M

at
ch

ed
 C

om
pl

ex
es

(a)

1000 5000 10000
0.1

0.2

0.3

0.4

0.5

Number of the randomely added PPI pairs

F
1

(b)

1000 5000 10000
0.1

0.15

0.2

0.25

0.3

0.35

Number of the randomely added PPI pairs

P
P

V

(c)

1000 5000 10000
0.1

0.15

0.2

0.25

0.3

0.35

Number of the randomely added PPI pairs

M
M

R

(d)

PEWCC
ClusterONE
CMC

Figure 5 Comparing PEWCC, ClusterONE and CMC in the presence of additional sets of random PPI pairs in terms of the number of
matched complexes detected, F1, PPV andMMR scores.

performances of CMC and ClusterONE in conjunction
with the PE measures were significantly improved.
For generalization purposes PEWCC was further

compared to several state-of-the-art methods based
on the protein interaction dataset PPI-D2 and the
reference dataset Cmplx-D3. PPI-D2 and Cmplx-D3
were recently published and used to evaluate the
performance of ClusterONE [9] in detecting pro-
tein complexes. In this case more than one quality
score were used to assess the performance of each
algorithm: following [9] the fraction of matched com-
plexes with a given overlap score threshold Acc(K ,P) ≥
0.25 and the geometric accuracy. The performance
of methods such as (RNSC) [4,5] and (RRW) [3]
were included in the comparison. Please note that
RNSC algorithm does not take into consideration the

weights of the PPI graph edges. The summary of
the parameters setup for all the methods used in
the comparison is available in the supplementary
materials (Additional file 2).
As shown in Table 4, the PEWCC method was able

to detect more matched complexes (122 matching com-
plexes) than any of the state-of-the-art methods with
higher quality scores. It takes approximately 22 and 48 sec-
onds for PEWCC to detect complexes from PPI-D1 and
PPI-D2, respectively.

Conclusion
In this paper, we have provided a novel method (PEWCC)
for detecting protein complexes from a PPI network of
yeast. We have shown that our approach, which first
assesses the quality of the interaction data and then detect

Table 3 The performance of CMC and ClusterONE with and without filteringmethod such as AdjstCD and PEmeasures
withAcc(K ,P) ≥ 0.5
Method Clusters Matched Cmplx Perc. of successful Rec Prec PPV F1

predicted Cmplx

CMC 133 45 28 0.217 0.263 0.172 0.238

ClusterONE 498 77 47.5 0.372 0.118 0.301 0.180

AdjstCD+CMC 127 75 46.3 0.362 0.455 0.277 0.404

AdjstCD+ClusterONE 139 78 48.2 0.377 0.393 0.294 0.385

PE+CMC 112 77 47.5 0.372 0.446 0.313 0.406

PE+ClusterONE 110 81 50 0.391 0.464 0.318 0.424

PE+WCC 128 89 54.9 0.435 0.469 0.262 0.451
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Table 4 Compare PE-WCC to ClusterONE, RNSC, RRW, CMC, MCL andMCODE, whereAcc(K ,P) ≥ 0.25
Method Clusters Matched Cmplx Perc. of successful Sn PPV Acc MMR

predicted Cmplx

PEWCC 468 122 60.1 0.551 0.430 0.491 0.348

ClusterONE 473 88 43.3 0.454 0.427 0.440 0.195

RNSC 209 79 38.9 0.399 0.441 0.419 0.192

RRW 253 75 36.9 0.276 0.429 0.344 0.178

CMC 73 53 26.1 0.323 0.404 0.487 0.176

MCL 338 37 18.2 0.346 0.350 0.348 0.083

MCODE 85 21 10.3 0.285 0.284 0.285 0.048

the protein complex based on the concept of weighted
clustering coefficient, is more accurate than most of the
well known methods.
The noise associated with the PPI network and the focus

on dense subgraphs have restricted researchers from cre-
ating an effective algorithm that is capable of identifying
small complexes and PEWCC is no exception. In fact,
we cannot recall any method that can effectively detect
complexes (≤ 3 proteins) using only the topology of the
PPI network. We understand that PEWCC stops when
the neighborhood graph contains only 3 proteins which
restricts it from identifying small complexes (≤ 3 pro-
teins). It was possible for us to discover the clustering
coefficient was ci = 1 for dense graphs of size 3 (with 3
nodes and 3 edges) and ci = 0 for other subgraphs of size
3 (with 3 nodes and 2 edges). We are currently conducting
a systematic research of nested complexes (the case where
one complex is a sub-complex of a bigger one) in order to
identify strategies that could be useful in improving the
capability of PEWCC in identifying small complexes.
The performance of PEWCC can also be tested when

the edges were randomly removed from the original
graph. However, we strongly believe that the main issue
concerning PPI data is the noise associated with false
interactions (edges). There are many interactions that are
not reliable and by removing them, the prediction accu-
racy was improved by using PE measure and AdjstCD.
Moreover, if we remove edges uniformly over the PPI net-
work, then the PEWCC algorithm will still work, because
it calculates relative density (one subgraph with respect to
another). It means that if we have two subgraphs G1 and
G2 and the density ofG1 is less than the density ofG2, then
following the random deletion of some edges fromG1 and
G2, the probability that the density of G1 will be less than
the density of G2, will still be very high.
In the future, we would like to compare the performance

of PE to the recently published novel weighting schemes
for noise reduction in PPI network by graphs by Kritikos
et al. [32]. In this research work, only the topological prop-
erties of PPI graphs were taken into consideration while
it has been proved that integrating additional biological

knowledge helps the weighting schemes to generate more
reliable PPI graphs. Therefore, an interesting open chal-
lenge is to study the incorporation of additional biological
knowledge of protein complexes. To this end, a probabilis-
tic calculation of the affinity score between two proteins
[33] could further improve the performance of the pro-
posed method.
Furthermore, the idea of decomposing the PPI network

into overlapping clusters will be explored as it shows great
potential in recent works [9,34-36].

Additional file

Additional file 1: The algorithm to calculate the MMR.

Additional file 2: The summary of the parameters setup.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
NZ and DF designed the method and conceived the study. JB implemented
the method. NZ performed the experiments and wrote the paper. All authors
read and approved the final manuscript.

Acknowledgements
The authors would like to acknowledge the assistance provided by the
Emirates Foundation (EF Grant Ref. No. 2010/116), the National Research
Foundation (NRF Grant Ref. No. 21T021) and the Research Support and
Sponsored Projects Office and the Faculty of Information Technology at the
United Arab Emirates University (UAEU).

Author details
1Intelligent Systems, College of Information Technology, UAEU, Al Ain, UAE.
2Faculty of Mechanics and Mathematics, Moscow State Uni., Moscow, Russia.

Received: 27 December 2012 Accepted: 9 May 2013
Published: 20 May 2013

References
1. Zaki NM, Berengueres J, Efimov: ProRank: A method for detecting

protein complexes. In Proceedings of the ACMGenetic and Evolutionary
Computation Conference (GECCO). Philadelphia; 2012:209–216.

2. Dongen SM: Graph Clustering by Flow Simulation. Domplein 29, 3512 JE
Utrecht, Netherlands: University of Utrecht; 2000.

3. Macropol K, Can T, Singh A: RRW: repeated randomwalks on
genome-scale protein networks for local cluster discovery. BMC
Bioinformatics 2009, 10(283).

4. Andrew DK, Przulj N, Jurisica I: Protein complex prediction via
cost-based clustering. Bioinformatics 2004, 20(17):3013–3020.

http://www.biomedcentral.com/content/supplementary/1471-2105-14-163-S1.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-14-163-S2.pdf


Zaki et al. BMC Bioinformatics 2013, 14:163 Page 9 of 9
http://www.biomedcentral.com/1471-2105/14/163

5. Przulj N, Wigle D A, Jurisica I: Functional topology in a network of
protein interactions. Bioinformatics 2004, 20(3):340–348.

6. Leung H, XIANG Q, Yiu S M, Chin F: Predicting protein complexes from
ppi data: A core-attachment approach. J Comput Biol 2009,
16(2):133–139.

7. Zaki NM, Berengueres J, Efimov D: Detection of protein complexes
using a protein ranking algorithm. Proteins: Struct, Funct, Bioinformatics
2012, 80(10):2459–2468.

8. Adamcsek B, Palla G, Farkas IJ, Derenyi I, Vicsek T: CFinder: locating
cliques and overlapping modules in biological networks.
J Bioinformatics 2006, 22(8):1021–1023.

9. Nepusz T, Yu H, Paccanaro A: Detecting overlapping protein
complexes in protein-protein interaction networks. Nat Methods
2012, 9:471–472.

10. Guimei L, Wong L, Chua HN: Complex discovery fromweighted PPI
networks. Bioinformatics 2009, 25(15):1891–1897.

11. Kuchaiev O, Rasajski M, Higham DJ, Przulj N: Geometric de-noising of
protein-protein interaction networks. PLoS Comput Biol 2009, 5(8):454.

12. Sprinzak E, Sattath S, Hargalit H: How relaiable are experimental
protein-protein interaction data. J Mol Bio 2003, 327:919–923.

13. Xiaoli L, Min W u, Kwoh CK, See-Kiong N: Computational approaches
for detecting protein complexes from protein interaction networks:
a survey. BMC Genomics 1186, 10:.

14. Bader GD, Christopher WH: An automated method for finding
molecular complexes in large protein interaction networks.
BMC Bioinformatics 2003, 4:2.

15. Brun C etal: Functional classification of proteins for the prediction of
cellular function from a protein-protein interaction network.
Genome Biol 2003, 5(1):R6.

16. Chua H etal: Using indirect protein-protein interactions for protein
complex predication. J Bioinform Comput Biol 2008, 6:435–466.

17. Hon NC, Sung WK, Wong L: Exploiting indirect neighbours and
topological weight to predict protein function from protein-protein
interactions. Bioinformatics 2006, 22(13):1623–1630.

18. Chua HN, Ning K, Sung WK, Leong HW, Wong L: Using indirect
protein-protein interactions for protein complex prediction.
J Bioinform Comput Biol 2008, 6(3):435–466.

19. Watts DJ, Strogatz SH: Collective dynamics of ’small-world’ networks.
Nature 1998, 393(6684):409–410.

20. Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M: A generic protein
purification method for protein complex characterization and
proteome exploration. Nat Biotechnol 1999, 17(10):1030–1032.

21. Efimov D, Zaki NM, Berengueres J: Detecting protein complexes from
noisy protein interaction data. In Proceedings of the 11th International
Workshop on DataMining in Bioinformatics (BIOKDD’12), Beijing, China. New
York: ACM; 2012:1–7.

22. Brohee S, van Helden J: Evaluation of clustering algorithms for
protein-protein interaction networks. BMC Bioinformatics 2006, 7:488.

23. Ho Y: Systematic identification of protein complexes in
saccharomyces cerevisiae by mass spectrometry. Nature 2002,
415:180–183.

24. Gavin AC, et al: Functional organization of the yeast proteome by
systematic analysis of protein complexes. Nature 2002, 415:141–147.

25. Gavin AC, et al: Proteome survey reveals modularity of the yeast cell
machinery. Nature 2006, 440:631–636.

26. Krogan NJ: Global landscape of protein complexes in the yeast
saccharomyces cerevisiae. Nature 2006, 440:637–643.

27. Uetz P, et al: A comprehensive analysis of protein-protein
interactions in saccharomyces cerevisiae. Nature 1999, 403:623–627.

28. Ito T, et al: A comprehensive two-hybrid analysis to explore the yeast
protein interactome. Proc Natl Acad Sci 2001, 98:4569–4574.

29. Stark C, et al: Biogrid: a general repository for interaction datasets.
Nucleic Acids Res 2006, 34(1):D535–D539.

30. Mewes HW, et al:MIPS: analysis and annotation of proteins from
whole genomes. Nucleic Acids Res 2004, 32:41–44.

31. Aloy P, et al: Structure-based assembly of protein complexes in yeast.
Science 2004, 303:2026–2029.

32. Kritikos GD, Moschopoulos C, Vazirgiannis M, Kossida S: Noise reduction
in protein-protein interaction graphs by the implementation of a
novel weighting scheme. BMC Bioinformatics 2011, 12:239.

33. Xie Z, Kwoh CK, Li XL, Wu M: Construction of co-complex score matrix
for protein complex prediction from ap-ms data. Bioinformatics 2011,
27:i159–i166.

34. Tak Chien C, Young-Rae C: Accuracy improvement in protein complex
prediction from protein interaction networks by refining cluster
overlaps. Proteome Sci 2012, 10:S3.

35. Becker E, Robisson B, Charles E, Gunoche A, Brun C:Multifunctional
proteins revealed by overlapping clustering in protein interaction
network. Bioinformatics 2012, 28(1):84–90.

36. Zhang XF, Dai DQ, Ou-Yang L, Wu MY: Exploring overlapping
functional units with various structure in protein interaction
networks. PLoSONE 2011, 7(8):e43092.

doi:10.1186/1471-2105-14-163
Cite this article as: Zaki et al.: Protein complex detection using interaction
reliability assessment and weighted clustering coefficient. BMC Bioinfor-
matics 2013 14:163.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Assessing the reliability of protein interactions
	Detecting protein complex using weighted clustering coefficient
	Assessing the quality of predicted complexes

	Results and discussion
	Conclusion
	Additional file
	Additional file 1
	Additional file 2

	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

