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Abstract

reasonable computation times.

Background: Many models have been proposed to detect copy number alterations in chromosomal copy number
profiles, but it is usually not obvious to decide which is most effective for a given data set. Furthermore, most methods
have a smoothing parameter that determines the number of breakpoints and must be chosen using various heuristics.

Results: We present three contributions for copy number profile smoothing model selection. First, we propose to
select the model and degree of smoothness that maximizes agreement with visual breakpoint region annotations.
Second, we develop cross-validation procedures to estimate the error of the trained models. Third, we apply these
methods to compare 17 smoothing models on a new database of 575 annotated neuroblastoma copy number
profiles, which we make available as a public benchmark for testing new algorithms.

Conclusions: Whereas previous studies have been qualitative or limited to simulated data, our annotation-guided
approach is quantitative and suggests which algorithms are fastest and most accurate in practice on real data. In the
neuroblastoma data, the equivalent pelt.n and cghseg.k methods were the best breakpoint detectors, and exhibited

Background

The need for smoothing model selection criteria

DNA copy number alterations (CNAs) can result from
various types of genomic rearrangements, and are impor-
tant in the study of many types of cancer [1]. In particular,
clinical outcome of patients with neuroblastoma has been
shown to be worse for tumors with segmental alterations
or breakpoints in specific genomic regions [2,3]. Thus,
to construct an accurate predictive model of clinical out-
come for these tumors, we must first accurately detect the
precise location of each breakpoint.

In recent years, array comparative genomic hybridiza-
tion (aCGH) microarrays have been developed as
genome-wide assays for CNAs, using the fact that
microarray fluoresence intensity is proportional to DNA
copy number [4]. In parallel, there have been many new
mathematical models proposed to smooth the noisy sig-
nals from these microarray assays in order to recover the
CNAs [5-12]. Each model has different assumptions about
the data, and it is not obvious to decide which model is
appropriate for a given data set.
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Furthermore, most models have parameters that con-
trol the degree of smoothness. Varying these smoothing
parameters will vary the number of detected breakpoints.
Most authors give default values that accurately detect
breakpoints on some data, but do not necessarily gener-
alize well to other data. There are some specific criteria
for choosing the degree of smoothness in some models
[13-15], but it is impossible to verify whether or not the
mathematical assumptions of these models are satisfied
for real noisy microarray data.

To motivate the use of their cghFLasso smoothing
model, Tibshirani and Wang write “The results of a CGH
experiment are often interpreted by a biologist, but this is
time consuming and not necessarily very accurate” [8].

In contrast, this paper takes the opposite view and
assumes that the expert interpretation of the biologist is
the gold standard which a model should attain. The first
contribution of this paper is a smoothing model training
protocol based on this assumption.

In practice, visualization tools such as VAMP are used
to plot the normalized microarray signals against genomic
position for interpretation by an expert biologist looking
for CNAs [16]. Then the biologist plots a model and varies
its smoothness parameter, until the model seems to cap-
ture all the visible breakpoints the data. In this article, we

© 2013 Hocking et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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make this model training protocol concrete by using an
annotation database to encode the expert’s interpretation.

The particular type of annotations that we propose
are counts of breakpoints in genomic regions. By visual
inspection of the noisy signal, it is not obvious to locate
the exact location of a breakpoint, but it is easy to deter-
mine whether or not a region contains a breakpoint.
So rather than defining annotations in terms of precise
breakpoint locations, we instead define them in terms of
regions. For every region, we record the number of break-
points that an expert expects in that region. These anno-
tated regions can then be used to select an appropriate
model, as shown in Figures 1 and 2.

We note that using databases of visual annotations is
not a new idea, and has been used successfully for object
recognition in photos and cell phenotype recognition in
microscopy [17,18]. In array CGH analysis, some mod-
els can incorporate prior knowledge of locations of CNAs
[19], but no models have been specifically designed to
exploit visual breakpoint annotations.

Our second contribution is a protocol to estimate the
breakpoint detection ability of the trained smoothing
models on real data. In the Methods section, we propose
to estimate the false positive and false negative rates of
the trained models using cross-validation. This provides a
quantitative criterion for deciding which smoothing algo-
rithms are appropriate breakpoint detectors for which
data.

The third contribution of this paper is a systematic,
quantitative comparison of the accuracy of 17 common
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smoothing algorithms on a new database of 575 annotated
neuroblastoma copy number profiles, which we give in
the Results section. There are several publications which
attempt to assess the accuracy of smoothing algorithms,
and these methods fall into 2 categories: simulations
and low-throughput experiments. GLAD, DNAcopy, and
a hidden Markov model were compared by examining
false positive and false negative rates for detection of a
breakpoint at a known location in simulated data [20].
However, there is no way to verify if the assumptions of
the simulation hold in a real data set, so the value of the
comparison is limited. In another article, the accuracy of
the CNVfinder algorithm was assessed using quantitative
PCR [21]. But quantitative PCR is low-throughput and
costly, so is not routinely done as a quality control. So in
fact there are no previous studies that quantitatively com-
pare breakpoint detection of smoothing models on real
data. In this paper we propose to use annotated regions
for quantifying smoothing model accuracy, and we make
available 575 new annotated neuroblastoma copy number
profiles as a benchmark for the community to test new
algorithms on real data.

Several authors have recently proposed methods for
so-called joint segmentation of multiple CGH profiles,
under the hypothesis that each profile shares break-
points in the exact same location [22,23]. These mod-
els are not useful in our setting, since we assume that
breakpoints do not occur in the exact same locations
across copy number profiles. Instead, we focus on learn-
ing a model that will accurately detect an unknown,
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Figure 1 Breakpoint annotations quantify the accuracy of a smoothing model. Model agreement to annotated regions can be measured by
examining the positions of predicted breakpoints b* (vertical black lines) observed in the smoothing model §* (green lines). Black circles show

logratio measurements y plotted against position p for a single profile i = 375. Chromosomes are shown in panels from left to right, and different
values of the smoothing parameter A in the flsa model are shown in panels from top to bottom. Models with too many breakpoints (A = 0.5) and
too few breakpoints (A = 10) are suboptimal, so we select an intermediate model (A = 7.5) that maximizes agreement with the annotations, thus

detecting a new breakpoint on chromosome 7 which was not annotated.
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Figure 2 Selecting the model that minimizes the breakpoint annotation error. Training error functions for global and local models plotted against
smoothing parameter A. The original annotation data set was used to calculate the annotation error. In the top row panels, we plot £9°P2! (1) from
Equation 6, and in the other rows, we plot Eloca'(k) from Equation 5. Each column of plots shows the error of a particular algorithm, and the minimum
chosen using the global training procedure is shown using a vertical grey line. Note that the local model training error can be reduced by moving
from the globally optimal smoothing parameter A to a local value i;, as in profile i = 375 for dnacopy.sd. For the local models trained on single
profiles, many smoothing parameters attain the minimum. So we use the protocol described in the “Selecting the optimal degree of smoothness”

different number of breakpoints in each copy number
profile.

To summarize, this article describes a quantitative
method for DNA copy number profile smoothing model
selection. First, an expert examines scatterplots of the
data, and encodes her interpretation of the breakpoint
locations in a database of annotated regions. To repeat,
the annotations represent an expert’s interpretation, not
the biological truth in the tumor samples, which is
unknown. We treat the annotated regions as a gold stan-
dard, and compare them to the breakpoints detected by
17 existing models. The best model for our expert is
the one which maximizes agreement with the annotation
database.

Results and discussion

The 17 smoothing models described in the Algorithms
section were applied to 575 neuroblastoma copy num-
ber profiles, described in the Data section. After fitting
the models, we used breakpoint annotations to quantify
the accuracy of each model. We constructed 2 annotation
databases based on 2 different experts’ interpretations of

the same 575 profiles (Table 1). The “original” annotations
were created by typing 0 or 1 in a 6-column spreadsheet
after systematic inspection of the same 6 regions on each
profile. The “detailed” annotations were constructed by
using GUIs which allow zooming and direct annotation
on the plotted profiles. The 2 annotation data sets are
mostly consistent, but the detailed annotations provide
more precise breakpoint locations (Figure 3).

For both annotation databases, we calculated the global
and local error curves E8°P3l()) and E%OCal()L), which quan-
tify how many breakpoint annotations disagree with the
model breakpoints. As shown in Figure 2 for the original
set of annotations, the smoothness parameter A is chosen
by minimizing the error curves.

Among global models, cghseg.k and pelt.n exhibit the
smallest training error

The global model is defined as the smoothness parame-
ter i that minimizes the global error Eglobal 3y “which is
the total number of incorrect annotations over all profiles.
Training error curves for cghseg.k, pelt.n, flsa.norm, and
dnacopy.sd are shown in Figure 2. An ideal global model
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Table 1 Counts of annotations in two annotation data sets
of the same copy number profiles

Original Detailed
protocol Systematic Any
annotated profiles 575 575
annotated chromosomes 3418 3730
annotations 3418 4359
Obreakpoints 2845 3395
1breakpoint 0 521
>Q0breakpoints 573 443

For the two annotation data sets (columns), we show the annotation protocol,
counts of annotated profiles and chromosomes, and counts of annotations.

would have zero annotation error Eg°bal (i) = 0 for some
smoothness parameter . However, none of the global
models that we examined achieved zero training error in
either of the two annotation databases. The best global
models were the equivalent cghseg.k and pelt.n models,
which achieved the minimum error of 2.2% and 6.1% in
the original and detailed data sets.

The ROC curves for the training error of the global
models for each algorithm are traced in Figure 4. It is
clear that the default parameters of each algorithm show
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relatively large false positive rates. The only exception
is the pelt.default algorithm, which showed low false
positive and true postive rates. The models chosen by
maximizing agreement with the breakpoint annotation
data also exhibit smaller false positive rates at the cost
of smaller true positive rates. The ROC curves sug-
gest that the equivalent cghseg.k and pelt.n models are
the most discriminative for breakpoint detection in the
neuroblastoma data.

Among local models, cghseg.k and pelt.n exhibit the
smallest training error

Since there is no global model that agrees with all of
the annotations in either database, we fit local models
with profile-specific smoothness parameters A;. For every
profile i, the local model is defined as the smoothness
parameter X; that minimizes the local error E}Ocal(k), the
number of incorrect annotations on profile i. As shown
in Figure 2, the local model fits the annotations at least
as well as the global model: El»ocal():,’) < E}Ocal(i). How-
ever, the local model does not necessarily attain zero error.
For example, Figure 2 shows that dnacopy.sd does not
detect a breakpoint in profile i = 362 even at the smallest
parameter value, corresponding to the model with the
most breakpoints.
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Figure 4 ROC curves compare breakpoint detection of global models on two annotation data sets. ROC curves for the training error with
respect to the breakpoint annotation data are shown as colored lines. The curves are shown in 3 panels zoomed to the upper left region of ROC
space to avoid visual clutter. Each curve is traced by plotting the error of a model as the degree of smoothness is varied, and an empty black circle
shows the global model chosen by minimizing the error with respect to all annotations. Algorithms with no tuning parameters are shown as black
dots. Note that some ROC curves appear incomplete since some segmentation algorithms are not flexible enough for the task of breakpoint
detection, even though we ran each algorithm on a very large range of smoothness parameter values.

original detailed

algorithm error FP FN error FP FN
peltn m 03 07 02 21 53 1.0
cghseg.k m 03 07 02 23 56 1.1
gada W 06 16 05 25 63 1.2
dnacopy.sd 25 75 1.5 5.1 141 22
glad.]Jambdabreak ™ 64 2.1 7.3 8.0 7.1 7.2
flsa.norm = 1.2 30 08 87 195 49
flsa m 1.3 14 13 89 206 49
glad.haarseg 90 1.6 105 95 60 90
pelt.default 80 422 11 139 590 1.0
dnacopy.alpha m 179 14 212 168 72 169
glad MinBkpWeight m 197 0.7 23.6 184 46 194
dnacopy.prune ®m 259 2.8 305 236 89 24.1

glad.default 274 16 327 260 50 277
dnacopy.default 405 0.7 485 380 48 41.1
cghseg. mBIC 41.0 0.0 492 385 20 423
gada.default 80.7 00 969 827 0.1 921

cghFLasso 809 00 972 838 0.8 93.1

Figure 5 Training error, false positive (FP) and false negative (FN) were calculated for all 17 algorithms applied to the original and the
detailed annotation databases. For each profile and algorithm, the smoothing parameter with minimal breakpoint annotation error was selected,
and we report the mean training error across all profiles. Squares show the same colors as in the figures, and are absent for default models that have
no smoothness parameters.
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In Figure 5, we compare the fitting ability of the local
models on the 2 annotation data sets. It clearly shows that
some models are better than others for fitting the expert
annotations of the neuroblastoma data. In particular, the
equivalent cghseg.k and pelt.n local models show the best
fit, with 0.3% and 2.1% error in the original and detailed
data sets. Note that these are lower error rates than the
global models, as expected.

But even if the local models are better at fitting the given
breakpoint annotations, they do not generalize well to un-
annotated breakpoints, as we show in the next section.

Global models detect un-annotated breakpoints better
than default models

Leave-one-out cross-validation was used to estimate the
breakpoint detection of each model. Figure 6 shows
the error rates of each model, across both annotation
data sets. It is clear that the training procedure makes
no difference for models pelt.default, glad.default, dna-
copy.default, cghseg.mBIC, gada.default and cghFLasso,
which are default models with no smoothness parameters.
Each of these models is inferior to its respective global
model in terms of breakpoint detection. The large error of
these models suggest that the assumptions of their default
parameter values do not hold in the neuroblastoma data
set. More generally, these error rates suggest that smooth-
ness parameter tuning is critically important to obtain an
accurate smoothing of real copy number profiles.

To show an example of how the learned models out-
perform default models, Figure 7 shows one represen-
tative profile with many breakpoints. Note that the
models were trained on other profiles, so the shown
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annotations can be used for model evaluation. For this
profile, dnacopy.default shows 2 false positives and 2
false negatives, and dnacopy.sd shows no improvement
with 4 false negatives. The pelt.default and cghseg.mBIC
show 11 and 3 annotation errors, respectively. The cgh-
seg.k and pelt.n global models show only 2 annotation
errors, demonstrating the usefulness of annotation-based
model training.

In addition, Additional file 1: Figure S1-S5 compares
these default and global models. Again, the global models
were learned on other profiles, so the shown annotations
can be used for model evaluation.

Global models detect un-annotated breakpoints better
than local models

The leave-one-out cross-validation results in Figure 6 also
allow comparison of global and local models. For dna-
copy.prune, glad.MinBkpWeight, glad.lambdabreak, dna-
copy.sd and flsa, there is little difference between the local
and global training procedures. For models flsa.norm,
gada, pelt.n, and cghseg.k, there is a clear advantage for
the global models which share information between pro-
files. The equivalent cghseg.k and pelt.n models show the
minimal test error of only 2.1% and 4.4% in the original
and detailed data sets.

Only a few profiles need to be annotated for a good global
model

To estimate the generalization error of a global model
trained on a relatively small training set of ¢ annotated
profiles, we applied | n/t]-fold cross-validation to the n =
575 profiles.

annotations: original annotations: detailed
peltn- + + LK)
cghseg.k I+ L
flsa.norm LI L
gada- Il + 4 L]
pelt.default ] L]
glad.haarseg LI L]
€ flsa{l *+ model
< dnacopy.sd = # *
5 dlad.lambdabreak - Il - ¥ m= global
ko] dnacopy.alpha " L — local
® glad.MinBkpWeight - & &
glad.default 5 L] &
dnacopy.prune - Il i L)
dnacopy.default - L] ]
cghseg.mBIC L] L]
gada.default - L]
cghFLasso L]
T T T T T T T T
0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75
Leave—one—-out test error (mean =1 standard deviation)
Figure 6 Global models are better breakpoint detectors than local models. L eave-one-out cross-validation over the annotions on each profile
was used to compare breakpoint detection error of global and local models. The two panels show the two annotation data sets, and each row
shows the performance of one of the models described in the Algorithms section. After selecting the smoothness parameter A by minimizing either
the global or local annotation error, we plot the mean and standard deviation over 10 test sets. Each default model does not have a smoothness
parameter, and shows equivalent local and global model error. Squares show the same colors as the other figures and tables, and are absent for
default models that have no smoothness parameters.
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Figure 7 Learned global models are better breakpoint detectors than default models. Chromosomes with detailed annotations for
neuroblastoma copy number profile i = 207 are plotted in panels from left to right, and each row shows the breakpoints detected by a model as
vertical black lines. The bottom 3 rows show default models trained using no annotations, and the top 2 rows show global models trained using
annotations of other profiles. The equivalent cghseg.k and pelt.n global models show only 2 annotation errors compared to 3 and 11 in the
corresponding default models. Furthermore, the equivalent cghseg.k and pelt.n global models perform better than dnacopy.sd, which shows 4

For several training set sizes f, we plot the accu-
racy of the cghseg.k, pelt.n, gada, flsa.norm, dnacopy.sd
and glad.lambdabreak models in Figure 8. It shows that
adding more annotations to the training set increases
the breakpoint detection accuracy in general, but at a
diminishing rate. Each model quickly attains its spe-
cific maximum, after only about ¢ = 10 training
profiles.

In Figure 9, we used |n/t]-fold cross-validation in the
detailed annotations to estimate the error rates of all 17
models trained using only ¢t = 10 profiles.

The equivalent cghseg.k and pelt.n models show the
best performance on these data, with an estimated break-
point detection error of 7.7%.

Global models generalize across annotators

We assessed the extent to which the annotator affects the
results by comparing models trained on one data set and
tested on the other. Figure 8 shows that test error changes
very little between models trained on one data set or the
other. This demonstrates that global models generalize
very well across annotators.

Timing PELT and cghseg

The PELT and cghseg models use different algorithms to
calculate the same segmentation, which showed the best
breakpoint detection performance in every comparison.
But they are slightly different in terms of speed, as we
show in Figure 9.

When comparing the global models, cghseg.k is some-
what faster than pelt.n. For cghsegk, pruned dynamic
programming is used to calculate the best segmenta-
tion ,uk for k € {1,...,20} segments, which is the slow
step. Then, we calculate the best segmentation for A €
{A1, ..., 2100}, based on the stored uX values. In contrast,
the Pruned Exact Linear Time algorithm must be run for
each A € {A1,...,A100}, and there is no information shared
between A values.

Timing the PELT and cghseg default models without
tuning parameters shows the opposite trend. In particu-
lar, the default cghseg.mBIC method is slower than the
pelt.default method. This makes sense since cghseg must
first calculate the best segmentation /,Lk for several k,
then use the mBIC criterion to choose among them. In
contrast, the PELT algorithm recovers just the X which
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and panels from top to bottom specify the annotations that were used to test. Note that the results change very little even when training on one
data set and testing on another. For each training set size t, the profiles were partitioned into training sets of approximately size t, then were
evaluated using the annotations from all the other profiles. Results on these data indicate increasing accuracy (lines) and decreasing standard
deviation (shaded bands) as the training set increases. The accuracy of each model quickly attains its maximum, after only about t = 10 profiles. In
Figure 9, we show the results for all algorithms when trained on t = 10 profiles from the detailed data set, and tested on the other profiles in the
detailed data set (vertical black line).

algorithm error  sd fn sd fp sd Timings
peltn = 77 18 179 98 41 34 9.49
cghsegk m 78 18 178 97 43 32 2.79
gada W 95 15 282 126 36 28 7.54
gladhaarseg ® 132 14 122 12 11.7 1.8 32.62
pelt.default 139 0.1 590 03 1.0 0.0 0.08
flsanorm m 146 13 393 131 65 3.6 0.12

dnacopy.sd m 158 29 428 242 7.1 5.6 61.90
glad.lambdabreak ® 174 19 254 159 13.1 44 17.02
dnacopy.alpha m 178 0.8 81 02 178 0.9 29.38

flsam 201 12 562 256 85 58 0.06

glad. MinBkpWeight m 255 1.0 78 30 265 14 42.39
glad.default 260 0.1 50 02 277 0.1 1.34
dnacopy.prune ® 267 1.0 195 48 249 20 41.34
dnacopy.default 380 02 48 0.1 41.1 02 2.02
cghseg.mBIC 385 01 20 0.1 423 0.1 1.81
gada.default 827 0.1 01 0.0 921 0.1 0.20
cghFLasso 8.8 01 08 0.1 931 0.1 0.18

Figure 9 The n/t-fold cross-validation protocol was used to estimate error, false positive (fp), and false negative (fn) rates in the detailed
annotations of the n = 575 profiles. Squares show the same colors as in the figures, and are absent for default models that have no smoothness
parameters. The smoothness parameter was chosen using annotations from approximately t = 10 profiles, and mean and standard deviation (sd) of
test error over |n/t] = 57 folds are shown as percents. The Timings column shows the median number of seconds to fit the sequence of
smoothing models for a single profile.
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corresponds to the Schwarz Information Criterion penalty
constant B = logd. So if you want to use a particu-
lar penalty constant 8 instead of the annotation-guided
approach we suggest in this article, the default PELT
method offers a modest speedup over cghseg.

Annotation-based modeling is feasible for high-density
microarrays

Although not the main focus of this paper, we have
already started to apply annotation-based modeling to
high-density microarrays. For example, Figure 10 shows
part of chromosome 2 from an Affymetrix SNP6 microar-
ray. This microarray offers almost 2 million probes, and
we show annotated breakpoints around 3 CNAs from ~
1Mb to ~ 10 kb. As long as there is GUI software that
supports zooming and annotation, it is feasible to apply
annotation-based modeling.
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Conclusions

We proposed to train breakpoint detection models using
annotations determined by visual inspection of the
copy number profiles. We have demonstrated that this
approach allows quantitative comparison of smoothing
models on a new data set of 575 neuroblastoma copy num-
ber profiles. These data provide the first set of annotations
that can be used for benchmarking the breakpoint detec-
tion ability of future algorithms. Our annotation-based
approach is quite useful in practice on real data, since it
provides a quantitative criterion for choosing the model
and its smoothing parameter.

One possible criticism of annotation-based model
selection is the time required to create the annotations.
However, using the GUIs that we have developed, it takes
only a few minutes to annotate the breakpoints in a
profile. This is a relatively small investment compared
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Figure 10 Zooming allows creation of small annotated regions on high-density profiles. Top: three regions of chromosome 2 from a
high-density Affymetrix SNP6 array are shown along with some breakpoint annotations. There are almost 2 million probes on the array, 153663
probes on chromosome 2, and 2549 probes shown in these 3 windows. Bottom: zoom to show detail of windows 2 and 3. Annotations can be
used to ensure that a smoothing model accurately recovers breakpoints around small & 10kb alterations such as those shown in windows 2 and 3.




Hocking et al. BMIC Bioinformatics 2013, 14:164
http://www.biomedcentral.com/1471-2105/14/164

to the time required to write the code for data analy-
sis, which is typically on the order of days or weeks.
In addition, in the neuroblastoma data, we observed
that annotating only about 10 of 575 profiles was suf-
ficient to learn a smoothness parameter that achieves
the model-specific optimal breakpoint detection. More
generally, our results suggest that after obtaining a
moderately sized database of annotations, data analy-
sis time is better spent designing and testing better
models. Additionally, the learned models generalized
very well between annotators. So breakpoint annota-
tions are a feasible approach for finding an accurate
model and smoothing parameter for real copy number
profiles.

We compared local models for single profiles with global
models selected using annotations from several profiles.
We observed that local models fit the given annota-
tions better, but global models generalize better to un-
annotated regions. In contrast with our results, it has been
claimed that local models should be better in some sense:
“it is clear that the advantages of selecting individual-
specific A values outweigh the benefit of selecting constant
A values that maximize overall performance” [15]. How-
ever, they did not demonstrate this claim explicitly, and
one of the contributions of this work is to show that global
models generalize better than local models, according to
our leave-one-out estimates.

It will be interesting to apply annotation-based model
training to other algorithms and data sets. In both anno-
tation data sets we analyzed, cghseg.k and pelt.n showed
the best breakpoint detection, but another model may be
selected for other data.

Our results indicate that even the best models have
non-zero training and testing breakpoint detection error,
which could be improved. To make a model that perfectly
fits the training annotations, a dynamic programming
algorithm called SegAnnot was proposed to recover the
most likely breakpoints that are consistent with the anno-
tation data [24]. The test error of the cghseg model can
be lowered by choosing chromosome-specific A parame-
ter values as a function of features such as variance and
the number of points sampled [25]. Developing a model
that further lowers the test error remains an interesting
direction of future research.

We have solved the problem of smoothness parameter
selection using breakpoint annotations, but the question
of detecting CNAs remains. By constructing a database
of annotated regions of CNAs, we could use a similar
approach to train models that detect CNAs. Annotations
could be actual copy number (0,1,2,3,...) or some sim-
plification (loss, normal, gain). We will be interested in
developing joint breakpoint detection and copy number
calling models that directly use these annotation data as
constraints or as part of the model likelihood.
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Methods

GUIs for annotating copy number profiles

Assume that we have n DNA copy number profiles,
and we would like to accurately detect their break-
points. The first step of annotation-based modeling is
to plot the data, visually identify breakpoints, and save
these regions to an annotation database. We created 2
annotation graphical user interfaces (GUIs) for this pur-
pose: a Python program for low-density profiles called
annotate breakpoints.py, and a web site for larger
profiles called SegAnnDB.

We used Tkinter in Python’s standard library to write
annotate breakpoints.py, a cross-platform GUI
for annotating low-density DNA copy number profiles.
The annotator loads several profiles from a CSV file, plots
the data, and allows annotated regions to be drawn on
the plot and saved to a CSV file for later analysis. The
annotator does not support zooming so is not suitable
for annotating high-density profiles. It is available in the
annotate regions package on the Python Package
Index:

http://pypi.python.org/pypi/annotate_regions

SegAnnDB is a web site that can be used to anno-
tate low to high-density copy number profiles. After copy
number data in bedGraph format is uploaded, the site
uses D3 to show plots which can be annotated [26]. The
annotations can then be downloaded for later analysis. As
shown in Figure 10, the plots can be zoomed for detailed
annotation of high-density copy number profiles. The
free/open-source software that runs the web site can be
downloaded from the breakpoints project on INRIA
GForge:

https://gforge.inria.fr/scm/viewvc.php/webapp/?root=
breakpoints

Definition of breakpoints in smoothing models

For each profile i € {1,...,n}, we observe d; € N noisy
logratio measurements y; € R%. Assume that we have a
model with smoothness parameter A that takes the vector
of logratios y; and outputs a smoothed signal y* € R%. For
simplicity of notation, let #* € R” be the smoothed signal
sampled at positions p; < --- < p,, on one chromosome
of one profile. We define the breakpoints predicted by this
model as the set of positions where there are jumps in the
smoothed signal:

b = {(pj+l9j+1)/2 | 56,)“ 755“;?\“’ Vie{l,...,m— 1}]
(1)

Note that this set is drawn using vertical black lines in
Figures 1 and 7.
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Definition of the annotation error

For every profile and chromosome, we judge the accu-
racy of the predicted set of breakpoints b* using a set
of visually-determined regions and corresponding anno-
tations. Every annotation a = [g,4] is an interval that
specifies the expected number of changes in the corre-
sponding region r. For example, we defined 3 types of
annotations: ¢ = [0,0] for Obreakpoints annotations,
a = [1,1] for 1breakpoint annotations, and a = [1, 0c0)
for >0Obreakpoints annotations. A region is an interval of
base pairs on the chromosome that corresponds to b*, for
example » = [1000000, 2000000].

The false positives (FP) and false negatives (FN) are cal-
culated by comparing the estimated number of changes in
each region |b* N r| to the annotated number of changes a
using the zero-one loss:

A 1if Il;A Nrl>a
FP(b",r,a) = ’ 2
®%r.a) { 0 otherwise. @)

2 1if |l;)‘ Nr|<a

EN(Y",r,a) = “
N&r.a) { 0 otherwise. )

Note that >0breakpoints annotations can never have false
positives FP(ZAJA, r,[1,00)) = 0 and Obreakpoints annota-
tions can never have false negatives FN(IAa)‘, 7,[0,0]) = 0.
The annotation error is defined as the sum of false posi-
tives and false negatives:

0 if |lA1A Nr|lea
1 otherwise.

(4)

Note that this loss function gives the same weight to false
positives and false negatives. Re-weighting schemes could
be used, but uniform weighting is justified in the data we
analyzed since each annotation took approximately the
same amount of time to create.

e(b*,r,a) = FP(0*, r,a)+EN(b", 1, a) = {

Definitions of error and ROC curves
For each profile i, we define the local error as the total
annotation error over all annotated regions:

Eiocal ()\,) — Z

(b*,r,a)on profile i

e, r,a). (5)

We define the global error as the total annotation error
over all profiles:

n
Eglobal()\) — ZE;OC&I()\.) (6)
i=1
For a given algorithm, a ROC curve is drawn by plot-
ting the true positive rate TPR(A) against the false positive
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rate FPR()) for all values of A. For one annotation, the true
positive indicator function is

Lif|p* Nr|>a
0 otherwise.

TP(b",r,a) = { 7)
To define the true positive rate, we first define the set of
positive annotations (Bi,R+,A+) as all the annotations
a € A; such that there is at least one breakpoint ¢ > 1.
The true positive rate over all positive annotations is

TPR(L) = i' > TP, 1, a). (8)

lAgl . —~
(b*,ra)e(B Ry ,AL)

To define the false positive rate, we first define the set of
negative annotations (E’); ,R_,A_) as all the annotations
that could possibly have a false positive: 2 < co. Then the
false positive rate over all negative annotations is

FPR(A) = 1 > EP(b*, 1, a). )

A
(b*r,a)e(B*,R_,A_)

Selecting the optimal degree of smoothness

We assume that A is a tuning parameter that is mono-
tonic in the number of breakpoints, which is the case for
the models considered in this paper. Fix a set of smooth-
ing parameters A € A, and run the smoothing algorithm
with each of these parameters. Intuitively, we should select
the value of A that maximizes agreement with annotation
data. For global models, we minimize the global error, and
there is usually one best value:

A= arg min Eglobal iy
reA

(10)

For the local model for profile i, we want to minimize
the local error:

hi= arg min E}Ocal(k).
reA

(11)

Since the training set consists of only the annotations of
one profile i, there may be several smoothing parameters
A that minimize the error. We propose to choose between
models that achieve the minimum error based on the
shape of the error curve, and these cases are illustrated in
Figure 2.

1. When the minimum error is achieved in a range of
intermediate parameter values, we select a value in
the middle. This occurs in the local error curves
shown for flsa.norm and cghseg.k.

2. When the minimum is attained by the model with
the most breakpoints, we select the model with the
fewest breakpoints that has the same error. This
attempts to minimize the false positive rate. This
occurs for profile i = 375 with the dnacopy.sd model.
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3. When the minimum is attained by the model with
the fewest breakpoints, we select the model with the
most breakpoints that has the same error. This
attempts to minimize the false negative rate, and
occurs for profile i = 362 with the dnacopy.sd model.

More complicated smoothing parameter estimators could
be defined, but for simplicity in this article we explore only
the global A and local A; models.

Leave-one-out cross-validation for comparing local and
global models

To compare the breakpoint detection performance of local
and global models, we propose to leave one annotation per
profile aside as a test set. The input parameter V is the
number of times the procedure is repeated. In our analysis
we took V' = 10 repetitions. For each repetition,

1. On each profile, randomly pick one annotated region
and set it aside as a test set.

2. Using all the other annotations as a training set,
select the best A using the protocol described in
Section “Selecting the optimal degree of smoothness”
For local models we learn a profile-specific A; that
minimizes E;OC"‘I, and for global models we learn a

global A that minimizes E8°P2!,

3. To estimate how the model generalizes, count the
errors of the learned model on the test regions.

The final estimate of model error shown in Figure 6 is the
average error over all V repetitions.

Ln/t]-fold cross-validation to estimate error on
un-annotated profiles

Since the annotation process is time-consuming, we are
interested in training an accurate breakpoint detector with
as few annotations as possible. Thus we would like to
answer the following question: how many profiles ¢ do
I need to annotate before I get a global model that will
generalize well to all the other profiles?

To answer this question, we estimate the error of a
global model trained on the annotations from ¢ profiles
using cross-validation. We divide the set of # annotated
profiles into exactly |n/¢] folds, each with approximately ¢
profiles. For each fold, we consider its annotations a train-
ing set for a global model, and combine the other folds as
a test set to quantify the model error. The final estimate of
generalization error is then the average model error over

all folds.

Data: neuroblastoma copy number profiles

We analyzed a new data set of # = 575 copy number
profiles from aCGH microarray experiments on neurob-
lastoma tumors taken from patients at diagnosis. The
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microarrays were produced using various technologies, so
do not all have the same probes. The number of probes
per microarray varies from 1719 to 71340, and the median
spacing between probes varies from 40 Kb to 1.2 Mb.
In this article we analyzed the normalized logratio mea-
surements of these microarrays, which we have made
available as neuroblastoma$profiles in R package
neuroblastoma on CRAN.

Two different expert annotations were used to construct
2 annotation databases based on these profiles (Table 1).
The 2 annotation data sets are mostly consistent, but
the detailed annotations provide more precise breakpoint
locations (Figure 3).

The “original” annotations were created using the
“Systematic” protocol. First, a set of 6 genomic regions
was chosen. Then, each of these regions was inspected on
scatterplots of each profile. Breakpoint annotations were
recorded by typing O or 1 in spreadsheet with one row
for each of the 575 profiles and one column for each of
the 6 regions. Entries with 0 were Obreakpoints annota-
tions a = [0,0] and entries with 1 were >O0breakpoints
annotations ¢ = [1,00). These annotations are avail-
able as neuroblastoma$annotations in R package
neuroblastoma on CRAN.

The “detailed” annotations were constructed using the
“Any” protocol. The data were shown as scatterplots in
a graphical user interface (GUI) that allows zooming
and direct annotation on the plotted profiles. Annota-
tors were asked to label any regions for which they were
sure of the annotation. These annotations are available
as neuroblastomaDetailed in R package bams on
CRAN.

Algorithms: copy number profile smoothing models

We considered smoothing models from the bioinformat-
ics literature with free software implementations avail-
able as R packages on CRAN, R-Forge, or Bioconductor
[27-29]. For each algorithm, we considered three types of
training for the smoothness parameter A:

e Default models can be used when functions give
default parameter values, or do not have smoothness
parameters that vary the number of breakpoints.

¢ Local models choose a smoothness parameter that
maximizes agreement with the annotations from a
single profile.

¢ Global models choose a smoothness parameter that
maximizes agreement with the entire database of
training annotations.

In the following paragraphs, we discuss the precise
meaning of the smoothness parameter A in each of
the algorithms. The code that standardizes the outputs
of these models can be found in the list of functions
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smoothers in R package bams on CRAN. For some
algorithms (GADA, GLAD, DNAcopy) the smoothing
7" € R? is defined for an entire profile y € R%, but in oth-
ers (cghseg, pelt, flsa) the smoothing #* € R™ is defined
in terms of probes on a single chromosome x € R™.
Note that to decrease computation time, the model fitting
may be trivially parallelized for profiles, algorithms, and
smoothing parameter values.

We used version 1.0 of the gada package from R-
Forge to calculate a sparse Bayesian learning model [11].
We varied the degree of smoothness by adjusting the
T parameter of the BackwardElimination function,
and for the gada.default model, we did not use the
BackwardElimination function.

We used version 1.3 of the £1sa package from CRAN to
calculate the Fused Lasso Signal Approximator [10]. The
FLSA solves the following optimization problem for each
chromosome:

A . 1 m m m—1

&= argmin o 3 (i — u)*+ 20 Y lwil+ e Y i il
peRm™ 25 i=1 i=1

(12)

We define a grid of values A € {107>,...,10'%}, take
A1 = 0, and consider the following parameterizations
for Aq:

o flsa: gy = A.

e flsa.norm: Ay = Am x 10°/[ where m is the number
of points and ! is the length of the chromosome in
base pairs.

We used version 1.18.0 of the DNAcopy package from
Bioconductor to fit a circular binary segmentation model
[7]. We varied the degree of smoothness by adjusting
the undo. SD, undo.prune, and alpha parameters of
the segment function. However, the dnacopy.prune algo-
rithm was too slow (> 24 hours) for some of the profiles
with many data points, so these profiles were excluded
from the analysis of dnacopy.prune.

We used version 0.2.1 of the cghFLasso package from
CRAN, which implements a default fused lasso method
[8], but does not provide any smoothness parameters for
breakpoint detection.

We used version 2.0.0 of the GLAD package from Bio-
conductor to fit the GLAD adaptive weights smoothing
model [5]. We varied the degree of smoothness by adjust-
ing the lambdabreak and MinBkpWeight parameters
of the daglad function. For the glad.haarseg model, we
used the smoothfunc="haarseg" option and varied
the breaksFdrQ parameter to fit a wavelet smoothing
model [9].

To fit a Gaussian maximum-likelihood piecewise con-
stant smoothing model [6], we used pruned dynamic pro-
gramming as implemented in version 0.1 of the cghseg
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package from R-Forge [30]. For the default cghseg.mBIC
model, we used the modified Bayesian information
criterion [14], which has no smoothness parameter,
and is implemented in the uniseg function of the
cghseg package. For the cghseg.k model, we used
the segmeanCO function with kmax=20 to obtain
the maximum-likelihood piecewise constant smoothing
model uf € R fork € {1,. . .,20} segments. Lavielle sug-
gested penalizing k breakpoints in a signal sampled at m
points using Ak, and varying X as a tuning parameter [13].
We implemented this model selection criterion as the cgh-
seg.k model, for which we define the optimal number of
segments

1 m
k*(A) = argmin Ak + — Z(xi — 12, (13)
i=1

kefl,...,20) m =

and the optimal smoothing &* = pK*®,

We used the cpt . mean function in version 1.0.4 of the
changepoint package from CRAN to fit a penalized
maximum likelihood model using a Pruned Exact Lin-
ear Time (PELT) algorithm [12]. PELT defines uX in the
same way as cghseg, but defines the optimal number of

segments as

k*(B) = argmin B(k — 1) + Z(xi — b2,

kefl,...,m} i=1

(14)

For the pelt.default model, we wused the default
settings which specify penalty="SIC" for the
Schwarz or Bayesian Information Criterion, mean-
ing B = logm. For the peltn model, we specified
penalty="Manual" which means that the value
parameter is used as B, and the cpt.mean function
returns X ). We defined the same grid of A val-
ues that we used for cghseg.k, and let B = Xd. Note
that this model is mathematically equivalent to cgh-
seg.k, but shows small differences in the results, since
there are rounding errors when specifying the penalty
cpt.mean (value=sprintf ("nx%£f", lambda))
for pelt.n.
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