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Abstract

wider application outside text mining research.

outperforming existing open-source solutions.

available at http://bioinformatics.ua.pt/gimli.

Background: Automatic recognition of biomedical names is an essential task in biomedical information extraction,
presenting several complex and unsolved challenges. In recent years, various solutions have been implemented to
tackle this problem. However, limitations regarding system characteristics, customization and usability still hinder their

Results: We present Gimli, an open-source, state-of-the-art tool for automatic recognition of biomedical names.
Gimliincludes an extended set of implemented and user-selectable features, such as orthographic, morphological,
linguistic-based, conjunctions and dictionary-based. A simple and fast method to combine different trained models is
also provided. Gimli achieves an F-measure of 87.17% on GENETAG and 72.23% on JNLPBA corpus, significantly

Conclusions: Gimliis an off-the-shelf, ready to use tool for named-entity recognition, providing trained and
optimized models for recognition of biomedical entities from scientific text. It can be used as a command line tool,
offering full functionality, including training of new models and customization of the feature set and model
parameters through a configuration file. Advanced users can integrate Gimli in their text mining workflows through
the provided library, and extend or adapt its functionalities. Based on the underlying system characteristics and
functionality, both for final users and developers, and on the reported performance results, we believe that Gimliis a
state-of-the-art solution for biomedical NER, contributing to faster and better research in the field. Gimliis freely

Background

In the biomedical field, a growing amount of data is
continuously being produced, resulting largely from the
widespread application of high-throughput techniques,
such as gene and protein analysis. This growth is accom-
panied by a corresponding increase of textual information,
in the form of articles, books and technical reports. In
order to organize and manage these data, several manual
curation efforts have been set up to identify, in texts, infor-
mation regarding entities (e.g., genes and proteins) and
their interactions (e.g., protein-protein). The extracted
information is stored in structured knowledge resources,
such as MEDLINE, Swiss-Prot and GenBank. However,
manual annotation of large quantities of data is a very
demanding and expensive task, making it difficult to keep
these databases up-to-date. These factors have naturally
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led to increasing interest in the application of Text Mining
(TM) systems to help perform those tasks.

One major focus of TM research has been on Named
Entity Recognition (NER), a crucial initial step in informa-
tion extraction, aimed at identifying chunks of text that
refer to specific entities of interest. Several NER systems
have been developed for the biomedical domain, using dif-
ferent approaches and techniques that can generally be
categorized as being based on rules, dictionary match-
ing or Machine Learning (ML). In this study we follow
an ML approach, the goal being to train statistical mod-
els focused on recognizing specific entity names, using a
feature-based representation of the observed data. This
presents various advantages over other approaches, such
as the recognition of new and short entity names. More-
over, ML solutions have been shown to achieve the best
results for this specific domain.

Various techniques for adapting and optimizing ML-
based solutions have been proposed in recent years.
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These can be categorized into one of the following sub-
tasks: pre-processing, feature extraction, modelling, and
post-processing. In the initial step, the input data is pre-
processed to make it readable by computers and to sim-
plify the recognition process. This sub-task is one of the
most important, since every single action will affect the
entire system behaviour. Tokenisation is a mandatory step,
in order to divide natural language texts into discrete
and meaningful units. There are several approaches to
implement it, depending on the input data and desired
output. For instance, Tsuruoka et al. [1] keep words
that contain a dash as a single token, while Leaman
and Gonzalez [2] create multiple tokens for the same
word.

In the feature extraction step, it is important to obtain
features that reflect the different characteristics of the sen-
tences and tokens. At the token level, orthographic [2-5]
and morphological [1,4,6,7] features are commonly used
in order to extract token formation patterns. It is also
common to encode domain knowledge as features [2,8]
using external resources, such as lexicons of gene and pro-
tein names. At the sentence level, linguistic [2,6,9] and
local context features [1,3,5,10], such as windows and con-
junctions of features, are used to model the links between
tokens.

The ultimate goal is to model the observed data using
the features extracted in the previous step, thus creat-
ing a probabilistic description of the data classes. This
task is accomplished using ML models, which can be
classified as being supervised or semi-supervised, depend-
ing on unannotated data being used or not. Supervised
learning, which only uses annotated data, has received
most research interest in recent years. Consequently, dif-
ferent supervised models have been used on biomedical
NER systems, such as Conditional Random Fields (CRFs)
[2,3,9,10], Support Vector Machines (SVMs) [8] and Max-
imum Entropy Markov Models (MEMMs) [1,5].

Finally, the post-processing stage aims to improve the
recognition results, cleaning annotation errors or refin-
ing incomplete annotations. The most common methods
consist of removing annotations with unmatched paren-
theses [7,10], adding the results of abbreviation resolu-
tion tools [2,8], and extending names using a domain
dictionary [10].

Although several open source solutions aimed at rec-
ognizing biomedical names have been proposed in recent
years, most present one or more of the following limita-
tions:

e are focused on a specific corpus and/or biomedical
domain;
do not take advantage of state-of-the-art techniques;
achieved performance results are deprecated and/or
not according to similar closed source solutions;
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e not configurable and/or easy to use;
® not easily extensible to new features and/or scalable.

In this article we present Gimli, a new open source
solution for automatic recognition of biomedical names,
namely gene/protein, DNA, RNA, cell type and cell line
names. It extends and optimizes the most advanced
state-of-the-art techniques in a simple and easy-to-use
tool. By default, Gimli already provides high-performance
trained models, supporting several known corpora for-
mats. Moreover, it also allows easy and flexible devel-
opment of new solutions focused on different semantic
types, as well as training new ML models with different
feature sets and characteristics.

Implementation

This section presents a detailed description of the
resources used and methods implemented, following the
workflow of ML-based NER solutions. Figure 1 illustrates
Gimli’s architecture, presenting the connections between
the various steps.

Tools and resources

Gimli takes advantage of various publicly available tools
and resources. The implementation of Conditional Ran-
dom Fields for statistical natural language processing is
provided by MALLET [11]. GDep [12] is used for tok-
enization and linguistic processing, namely lemmatiza-
tion, Part-of-Speech tagging, chunking and dependency
parsing. In terms of lexical resources, we use BioThe-
saurus [13] for gene and protein names, and BioLexicon
[14] as the resource for biomedical domain terms.

Corpora

There are several publicly available corpora that can be
used for training and evaluation of NER systems. To allow
direct comparison with other tools, we selected two of the
most used corpora: GENETAG and JNLPBA. GENETAG
[15] is composed of 20000 sentences extracted from MED-
LINE abstracts, not being focused on any specific domain.
It contains annotations of proteins, DNAs and RNAs
(grouped in only one semantic type), which were per-
formed by experts in biochemistry, genetics and molec-
ular biology. This corpus was used in the BioCreative
I challenge [16], providing 15000 sentences for training
and 5000 sentences for testing. On the other hand, the
JNLPBA corpus [17] contains 2404 abstracts extracted
from MEDLINE using the MeSH terms “human’, “blood-
cell” and “transcription factor”. The manual annotation of
these abstracts was based on five classes of the GENIA
ontology [18], namely protein, DNA, RNA, cell line, and
cell type. This corpus was used in the Bio-Entity Recog-
nition Task in BioNLP/NLPBA 2004 [17], providing 2000
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Figure 1 Overall architecture of Gimli. Overview of Gimli's architecture, presenting the workflow of required steps, tools and external resources.

abstracts for training and the remaining 404 abstracts for
testing.

Since GENETAG is not focused on any specific biomed-
ical domain, its annotations are more heterogeneous than
those of IJNLPBA. A brief analysis, considering protein,
DNA and RNA classes, shows that GENETAG contains
almost 65% of unique entity names, as opposed to the 36%
found in JNLPBA.

Pre-processing

In recent years, various tokenisation solutions have been
developed for several domains and languages. Gimli
uses the tokeniser from GENIA Tagger [1] (included in
Gdep) which is developed for biomedical documents and
presents state-of-the-art results in this domain. However,
words containing the symbols “/’; “-” or 7 are not always
split into multiple tokens. When working at the token
level, this may create inconsistencies with the human
provided annotations, constraining the model learning
process and the recognition of some entity names. For
instance, consider that “BRCA-1/2” is taken as one token
and that in the gold standard only “BRCA-1” is tagged
as an entity name. In the model training phase, the
token “BRCA-1/2” as well as its local and contextual
features will be considered as a “negative’, which will
directly affect the final model. Thus, we decided to make

the tokenizer behaviour more consistent, by breaking
words containing the symbols “/’; “-” or “’ into multiple
tokens.

To train ML models, each token in the training data
must be identified as being part, or not, of an entity name.
We use the BIO encoding scheme, which is the de facto
standard. In this scheme tokens are tagged as being at the
beginning (tag“B”), inside (tag “I”) or outside (tag “O”) of
an entity name.

Features

Feature extraction is a crucial NER task, since the pre-
dictions will be performed based on the information that
they encode. Nadeau and Sekine [19] present a complete
survey on features used in general NER solutions. Gimli
implements a rich set of features, including orthographic,
morphological, linguistic parsing, external resources and
local context features. We also propose improvements on
various features, in order to optimize their behaviour and
performance results.

The purpose of orthographic features is to capture
knowledge about word formation. For example, a word
that starts with a capital letter could indicate the occur-
rence of an entity name (e.g., in the protein name
“MyoD”). Figure 2 lists the formation patterns used by
Gimli to extract orthographic features from tokens.
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Figure 2 Orthographic features. List of orthographic features organized by category.

Morphological features, on the other hand, reflect
common structures and/or sub-sequences of characters
among several entity names, thus identifying similarities
between distinct tokens. To accomplish this goal, three
distinct types of morphological features are considered:
suffixes and prefixes, char n-grams and word shape pat-
terns. Particular prefixes and suffixes could be used to
distinguish entity names. For instance, suffixes like “ase’,
“ome” and “gen” frequently occur in gene/protein names
[20]. A char n-gram is a subsequence of n characters from
a given token. This feature type has an identical role to
prefixes and suffixes, however it also finds common sub-
sequences of characters in the middle of tokens. Finally, it
is also important to extract the token’s structure. Collins
[21] proposed a method to generate a sequence of char-
acters to reflect how letters and digits are organized in
the token. We extended this idea to support symbols too.
Thus, three distinct types of word shapes are used by
Gimli:

wyn

e Word Shape Type I: replace sequence of digits by “*
(e.g., the structure of “Abc1234” is expressed as
“Abc*”);

e Word Shape Type II: replace each letter, digit and
symbol by a morphological symbol (e.g., the structure
of “Abc:1234” is expressed as “Aaa#1111”).

e Word Shape Type IIL: replace each sequence of
letters, digits and symbols by a morphological symbol
(e.g., the structure of “Abc:1234” is expressed as
“a#tl”).

The most basic internal feature is the token itself. How-
ever, in most cases, morphological variants of words have

similar semantic interpretations, which can be considered
as equivalent. For this reason, lemmatisation is commonly
used to group together all inflected forms of a word, so
that they can be analysed as a single item. On the other
hand, it is also possible to associate each token with a
particular grammatical category based on its definition
and context, a procedure called Part-of-Speech (POS) tag-
ging. Moreover, we also use chunking, dividing the text
into syntactically correlated chunks of words (e.g., noun or
verb phrases). The BIO encoding format is used to prop-
erly indicate the beginning and end of each chunk. For
instance, considering two consecutive tokens that make
part of a noun phrase chunk, the tag “B-NP” is asso-
ciated with the first token and the tag “I-NP” with the
second one. In the end, each tag is used as a feature of the
respective token.

The previous features provide a local analysis of the
sentence. To complement these with information about
relations between the tokens of a sentence, we use features
derived from dependency parsing. Namely, we follow a
strategy similar to the one presented by Vlachos [22], con-
sidering only those dependencies that could indicate the
presence of an entity name. Thus, we add as features of
each token, the lemmas corresponding to each of the fol-
lowing: verbs for which the token acts as subject; verbs for
which the token acts as object; nouns for which the token
acts as modifier; and the modifiers of that token.

Gimli is further optimized by adding biomedical knowl-
edge to its features. To provide this knowledge, dictionar-
ies of specific domain terms and entity names are matched
in the text and the resulting tags are used as features.
Thus, the tokens that make part of a matched term contain
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a feature that reflect such information. For instance, if the
term “BRCA” is matched, the feature “LEXICON=PRGE”
is added to the token. Two different types of dictionaries
are used in Gimli:

e Gene and protein names: BioThesaurus is the most
complete and up-to-date lexical resource for gene
and protein names, containing almost 17 million
unique names. Due to its size, we decided to filter this
lexicon considering only human genes and proteins,
obtaining almost 400 thousand unique names. In the
end, this lexicon is used to indicate the presence of
curated gene and protein names. Since these names
could be present in text with small orthographic
variations, the matching is performed according the
following variation rules, adapted from [23]:

— Replace white spaces per hyphens, and
vice-versa;

— Remove white spaces and hyphens;

— Insert an hyphen on letter-digit sequences;

— Replace Roman by Arabic numbers, and
Arabic numbers by Greek letters;

— Add the prefix “h” and the suffix “p” to

acronyms

e Trigger words: specific domain terms may indicate
the presence of biomedical names in the surrounding
tokens. Instead of using words from training data as
proposed in [20], we apply a more general solution,
by matching the terms in BioLexicon. This lexical
resource contains more than two million relevant
biomedical terms, including nouns, verbs, adjectives
and adverbs (e.g., “stimulation”, and “activation”).

Higher level relations between tokens and extracted fea-
tures can be established through windows or conjunctions
of features, reflecting the local context of each token. The
application of windows consists of adding selected fea-
tures from preceding and succeeding tokens as features
of each token. On the other hand, conjunction of features
consists of creating new features by grouping together fea-
tures of the surrounding tokens. For instance, considering
the sentence “Pharmacologic aspects of neonatal hyper-
bilirubinemia”” and a {-1,1} range of tokens, the following
features are added to the token “neonatal”:

e Windows: the tokens “of” and “hyperbilirubinemia”;
e Conjunctions: the new conjunction feature
“of@-1_&_hyperbilirubinemia@1”.

Our tests showed that the best results were obtained
using conjunctions. However, Gimli does not use all of
the features to generate conjunctions, since this would
become impracticable, generating millions of new fea-
tures. Tsai et al. [9] proposed the use of tokens of
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the following windows to generate the conjunctions:
{-3,-1}, {-2,-1}, {-1,0}, {-1,1} and {0,1}. To improve the
context knowledge, we propose a different approach,
using lemmas and POS tags instead of tokens, since
lemma conjunctions better reflect the pairwise patterns of
words, and the POS tags conjunctions provide grammar-
based relations and patterns. Following the previous
example, instead of the simple token-based conjunction
feature, the token “neonatal” now has two conjunction fea-
tures: POS=IN@-1_& POS=NN@1 and LEMMA-=of@-
1_&_LEMMA=hyperbilirubinemia@l. The benefits of
these choices were confirmed through various experi-
ments.

Model

When ML techniques are applied to NER, an algorithm
must build a feature and statistical-based representation
of target entity names from training data, in order to
develop an appropriate response to unseen data. Such
methodologies are commonly categorized as being super-
vised or semi-supervised. Semi-supervised solutions use
both annotated and unannotated data, in order to obtain
features of the entity names that are not present in the
annotated data. Specifically for this task, the usage of
unannotated data could contribute to a better abstract
learning of the named entities. However, the application
of such techniques is computationally heavy and could be
implemented as an extension to an equivalent supervised
solution. Thus, we decided to follow a supervised training
approach, through the application of Conditional Ran-
dom Fields (CRFs) [24]. Such technique present various
advantages over other methods. Firstly, CRFs avoid the
label bias problem [24], a weakness of Maximum Entropy
Markov Models (MEMMs). Additionally, the conditional
nature of CRFs (a discriminative model) relaxes strong
independence assumptions required to learn the parame-
ters of a generative model, such as Hidden Markov Models
(HMMs) [25]. Finally, Support Vector Machines (SVMs)
follow a different approach and have been shown to
deliver comparable results to CRFs [26]. However, train-
ing complex SVM models for NER may take more time
[27,28].

Conditional Random Fields (CRFs) were first intro-
duced by Lafferty et al. [24]. Assuming that we have an
input sequence of observations (represented by X), and
a state variable that needs to be inferred from the given
observations (represented by Y), a “CRF is a form of undi-
rected graphical model that defines a single log-linear
distribution over label sequences (Y) given a particular
observation sequence (X)” [25]. This layout makes it pos-
sible to have efficient algorithms to train models, in order
to learn conditional distributions between Y; and feature
functions from the observable data. To accomplish this, it
is necessary to determine the probability of a given label
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sequence Y given X. First, the model assigns a numerical
weight to each feature, and then those weights are com-
bined to determine the probability of Y;. Such probability
is calculated as follows:

1

pOlx, ) = Z(x)exp(lz 2iEj (9, %)), @

where A; is a parameter to be estimated from training
data and indicates the informativeness of the respective
feature, Z(x) is a normalization factor and Fj(y,x) =
Z:’Ilﬁ(yi,l,yi,x, i), where each fi(y;—1,y:,%,i) is either
a state function s(y;_1,%;,%,i) or a transition function
t(yi—l’yirxr i) [25]

When considering higher-order models, each label
depends on a specific number of o previous labels. Thus,
the probability will consider not only the previous obser-
vation and its features, but o-previous observations and
features, which better models dependencies and may pro-
vide improved results, depending on the target data and
task. However, the training complexity of higher-order
models increases exponentially with the pre-defined order
o [29].

Model combination

The most recent results on biomedical NER clearly indi-
cate that better performance results can be achieved by
combining several systems with different characteristics.
As an example, the top five systems of the BioCreative
II gene mention challenge [16] used ensembles of NER
systems, combining distinct models or combining models
with dictionary and/or rule-based systems. Additionally,
the application of machine learning-based harmonization
solutions have been shown to deliver high improvements
in terms of performance results [30].

We propose a new and simple combination strategy
based on confidence scores. To achieve this, each model
provides a confidence value for the annotations predicted
for a given sentence. If the models that produced the
overlapping annotations predict the same entity class, we
follow a straightforward strategy, selecting the annota-
tions from the model that has the highest confidence score
and rejecting the predictions of other model(s). On the
other hand, if we need to combine annotations of models
that predict different entity classes (e.g., as in the INLPBA
corpus), this strategy is extended in order to allow dis-
tinct entity types in the same sentence. Thus, instead of
selecting a single model to provide the predictions for the
entire sentence, this choice is made for each annotation
in the sentence. When two or more models provide dif-
ferent annotations for the same chunk of text, we select
the annotation given by the model with the highest confi-
dence score. If only one model provides an annotation for
a chunk of text, that annotation is accepted.
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Post-processing

In order to solve some errors generated by the CRF
model, Gimli integrates a post-processing module that
implements parentheses correction and abbreviation res-
olution. To perform parentheses correction, the number
of parentheses (round, square and curly) on each anno-
tation is verified and the annotation is removed if this
is an odd number, since it clearly indicates a mistake by
the ML model. We also tried to correct the annotations
by removing or adding tokens up to the next or previous
parenthesis. However, this solution provided worse results
than simply removing the annotations.

Regarding abbreviation resolution, we adapt a sim-
ple but effective abbreviation definition recognizer [31],
which is based on a set of pattern-matching rules to
identify abbreviations and their full forms. Such patterns
consider some constraints, namely: a)the first character of
the acronym has to be the first character of the first word
in the corresponding long form; ) the long form should
be longer than the corresponding acronym; and c) the
long form should not contain the candidate acronym. In
the end, we are able to extract both short and long forms
of each abbreviation in text. Thus, if one of the forms
is annotated as an entity name, the other one is added
as a new annotation. Additionally, if one of the forms
is not completely annotated, Gimli expands the annota-
tion boundaries using the result from the abbreviation
extraction tool.

Results and discussion

To analyse the impact of various techniques and com-
pare the final results with other existing solutions, we
use common evaluation metrics: Precision (i.e., positive
predictive value) the ability of a system to present only rel-
evant items; Recall (i.e., sensitivity) the ability of a system
to present all relevant items; and F-measure, the har-
monic mean of precision and recall. These measures are
formulated as follows:

TP TP PR

P=———, R=—, 1=2 2)
TP + FP TP + FN

P+R’

where TP is the amount of true positives, FP the number
of false positives and FN the amount of false negatives.

Preliminary experiments

During the development of Gimli, various optimizations
and decisions had to be performed to achieve the best
possible results. In order to run such experiments, we
randomly split the training part of each corpus into train-
ing and development sets, using 80% of the data for
training and the remaining 20% for development testing.
Accordingly, from the 15000 sentences of the training
part of GENETAG, 12000 sentences are used for training
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and 3000 sentences for development testing. Regarding
JNLPBA, considering the 2000 training abstracts, we now
use 1600 abstracts for training and the remaining 400
abstracts for development testing. Most experiments on
the development stage, namely tokenization and feature
set optimization, were performed using first-order CRF
models with forward (left to right) text parsing.

Tokenization

To evaluate the impact of the tokenization changes intro-
duced in Gimli, we compared the results achieved against
the use of the original tokenization. This analysis only
applies to the GENETAG corpus, since JNLPBA is pro-
vided as tokenized text. Using the development set, an
improvement of 8.28% in F-measure was achieved when
applying a model trained on tokens provided by our pro-
posed tokenization as compared to using the original
version of GENIA Tagger. When applied to the final test
set, and considering the alternative annotations provided,
the improvement in F-measure is 2.53%. Such results
clearly show the positive contribution of our tokenization
approach on Gimli.

Feature set

Each feature encodes specific characteristics of target
annotations, providing a different contribution in the
learning process. In order to evaluate their impact in the
recognition performance, we initially grouped features
that encode similar information into logical sub-classes
for each feature type, as shown in Figure 3. We then fol-
lowed a backward elimination approach to find the best
feature set for each entity type, by removing each sub-class
from the complete feature set and analysing its impact in
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the results. Although small improvements or drops may
not be significant regarding performance improvements,
they indicate that adding or removing a specific feature
may have an impact on the final performance results,
which is relevant when considering the inclusion (or not)
of that feature. When such cases occurred, we decided to
keep the feature when a small improvement occurred and
remove it when a small drop is present. In the end, the
features that presented a negative impact when removed
from the initial set were included in the final feature set,
as indicated in Figure 3. For instance, our trigger words
approach provides a slight positive impact in the recogni-
tion of gene and protein names in GENETAG, resulting in
an F-measure improvement of 0.11%. However, a negative
impact is observed on JNLPBA, with a 0.39% decrease of
F-measure. We believe that the obtained results are a con-
sequence of the corpus specificity, since BioLexicon terms
may point to the presence of entity names that were not
considered in the specific corpus and/or entity type.

This approach helps experts to better understand the
linguistic characteristics of each entity type on each cor-
pus. Thus, the final feature sets seem to reflect the com-
plexity and heterogeneity associated with each entity type
and corpus. For instance, the absence of the original
tokens for protein, cell line and cell type on JNLPBA may
indicate less heterogeneity, as the use of lemmatization
appears to better reflect and generalize the target names.
Overall, the feature set required by GENETAG is more
complex than the ones used on JNLPBA, discarding the
original tokens and some orthographic and morphologi-
cal features. This is consistent with the idea that the entity
names present on GENETAG are more heterogeneous
than those present on JNLPBA, as suggested before.

GENETAG JNLPBA
Protein | Protein| DNA | RNA| Cell Type| Cell Line
Base Token X X X
Capitalization X X X X X
Orthographic Counting X X X X X
Symbols X X X X X
Lemma X X X X X X
Linguistic POS X X X X X
Chunk X X X X X
Dependency Parsing X X X X X X
Char n-grams X X X
. Suffix X X X X X X
Morphological Prefix| X X | x| x X X
Word Shape X X X X X X
Lexicons Gene/Protein X X
Trigger Words X
Local Context Conjunctions X X X X X X
Figure 3 Feature set per corpus and entity. Feature set applied to each corpus and entity type. Features marked with an “X" are used in the final
feature set for that entity type.
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Conjunctions VS Windows

Local context, as encoded in windows or conjunctions of
features, has a great impact in recognition performance.
We therefore analysed in detail the impact of using these
two alternatives, considering basic and improved solu-
tions. Thus, four different configurations are considered
in our analysis:

e Token conjunctions: form conjunctions as the
concatenation of tokens taken from the following
windows {-3,-1}, {-2,-1}, {-1,0}, {-1,1} and {0,1};

e Optimized conjunctions: the same windows as the
previous configuration but using lemmas and POS
tags for the conjunctions, instead of tokens;

e Windows tokens: use each token from the window
{'212};

e Windows optimized: use lemmas, lexicon matching,
biomedical concepts matching and tokens in the
window {-3,3}, and all the features in the window
{-1,1}.

Figure 4 presents the performance (F-measure)
achieved with the four approaches. Results are shown
for CRF models of order 1 and 2 with forward and back-
ward parsing directions, as explained in the next section.
Optimized conjunctions present the best results on both
corpora, considerably outperforming conjunctions with
tokens. Conjunctions of features seem to perform better
than windows for this task, as indicated by the fact that
using simple token conjunctions provided better results
than even the optimized windows of features. Interest-
ingly, while the optimized windows present better results
than windows with tokens on GENETAG, in the case
of INLPBA using just the tokens provides better results
for the models trained with backward parsing direc-
tion. Overall, optimized conjunctions present the most
constant behaviour, presenting the best results and less
deviation. On the other hand, using tokens resulted in
higher deviation on both approaches.

This analysis indicates that choosing the right method to
encode local context is fundamental, since an untidy deci-
sion may deliver considerably worse results. As we can see,
the average F-measure differences between the best and
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GENETAG
Order 1| Order 2
Protei FW | 77.46% | 77.83%
rotein
BW | 76.80% A FEERY
JNLPBA
Order 1| Order 2
. FW | 80.10% | 79.44%
Protein
BW 79.82%
FW [ 68.19%
DNA
BW | 69.18%
FW [ 75.35%
RNA
BW| 75.92% | 73.71%
FW | 71.45% | 71.28%
Cell Type
BW WERWPAZN 72.47%
. FW [ 67.81%
Cell Line
BW| 67.77%
Figure 5 Preliminary results on development sets. Preliminary
F-measure results achieved by Gimli in the development sets of both
corpora, considering exact matching evaluation, different model
orders and text parsing directions. The best combination of model
order and parsing direction for each entity type is highlighted. FW:
Forward, and BW:Backward.

worst solutions on GENETAG and JNLPBA are of 2.13%
and 1.73%, respectively.

Model combination analysis
The usual direction to parse a text is from left to right
(forward). However, previous studies [10,32] have shown
that parsing the text from right to left (backward) may
provide better results, which has been shown to be a
consequence of the asymmetric implementation of CRF
models in MALLET [32]. Additionally, we believe that
using CRFs with different orders will extract different con-
text based characteristics from text. Thus, we decided to
train first and second order CRF models, considering both
forward and backward text parsing.

Initial evaluation results on GENETAG and JNLPBA
are presented in Figure 5, using the previously selected
feature set (Figure 3). As we can see, the application

GENETAG JNLPBA
Order 1 Order 2 Order 1 Order 2
FW BW FW BW FW BW FW BW
Conjunctions Optimized| 77.46% 76.80%|77.83% 78.53%| 77.65% =+ 0.73% 75.75% 76.29%|75.38% 76.06% | 75.87% = 0.39%
Tokens| -2.64% -1.37% | -0.82% -0.53% | 76.32% + 1.45% -0.89% -0.05% | -1.16% -0.34% | 75.26% =+ 0.90%
Windows Optimized| -2.11% -1.64% | -1.04% -1.85% | 75.99% =+ 0.86% -0.58% | -2.15% | -1.93% -2.27% | 74.14% =+ 0.74%
Tokens| -3.20% -2.47% | -1.47% -1.42% | 75.52% + 1.44% -1.30% -0.92% | -2.38% -1.47% | 74.35% =+ 0.99%

Figure 4 Comparison of windows and conjunctions results on development sets. Comparison of F-measure results achieved by token-based
and optimized windows and conjunctions in the development sets of both corpora, considering exact matching evaluation, different model orders
and text parsing directions. Results for the JNLPBA corpus indicate the overall performance, i.e. across entity types. FW: Forward, and BW:Backward.
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GENETAG
Order 1 | Order 2
FW BW/|FW BW F1

X
X X [79.00%
Protein | X X X |78.81%
X | X X |78.82%
X X | X X |78.87%

JNLPBA
Order 1 | Order 2
FW BW/|FW BW F1

X 80.33%
X X 80.80%
Protein | X X X |80.81%
X X | X 80.61%
X X |180.34%
B X 70.25%]
X X [70.38%
DNA X | X X |69.86%
X X X 170.32%
B X 77.27%]
X | X 76.49%
RNA X X 77.62%
X X X 77.18%
X X X |76.84%
B x  73.02%]
Cell type X X [73.19%
X X X 172.85%
X | X X |72.49%
X X 68.73%
Cellline| X X [ X 68.39%
X X X [69.48%
X X | X X [68.96%

Figure 6 Combination results on development sets. F-measure
results achieved for each class with the combination of several
models in the development sets of both corpora, considering exact
matching evaluation. The combination results are compared with the
best performing model obtained in previous experiments (Figure 5).
FW: Forward, BW:Backward, and F1: F-measure.

of different CRF orders and parsing directions provides
significant performance differences. For instance, consid-
ering RNA on JNLPBA, the difference between different
parsing directions is above 3%, and the difference between
different CRF orders is approximately 2%. Overall, back-
ward models present the best results, which confirms the
benefit of using backward text parsing. Moreover, due to
the different entity names’ heterogeneity existent in both
corpora, different model orders are required. On GENE-
TAG, the best results are achieved using second order
models. On the other hand, the best results for protein and
cell type on JNLPBA are achieved using first order models.
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To combine the various models for each class on each
corpus, we performed a sequential analysis of the com-
bination results. Thus, we first combined the two best
models for each class and, if the performance was better
than the best model alone, we kept adding models to the
two best, in order to find the best set. If the combination
result of the two best models was not better than the best
model, we tried combining the best model with others,
until a better combination was obtained. If the combina-
tion did not improve the results, only the model with the
best result was used. Figure 6 presents the results of our
analysis. Even with the simple combination approach used
by Gimli, the harmonisation strategy improves the best
model results. An average improvement of 0.5% is veri-
fied. Overall, the best combination results are achieved
by combining the two best performing models. Moreover,
models with low performance results also contribute to
a better model combination, by providing heterogeneity
that is not present in other models. For instance, on cell
line the best model combination is achieved by adding the
worst performing model.

Figure 7 presents the final results achieved on both cor-
pora, considering the final and unseen test data of both
corpora. Note that the evaluation strategies of the two
challenges are slightly different. On JNLPBA only full
matches are considered correct, requiring both left and
right boundaries to match exactly. On the other hand,
GENETAG evaluation allows minor mistakes, based on
alternative names that were previously accepted by human
annotators during the preparation of the corpus.

Feature contributions

In order to evaluate the overall contribution of some
high-end features implemented by Gimli, we performed
an analysis on both corpora, considering the removal of
such features from the best feature set for each entity
type. Figure 8 presents the observed differences, reflecting
the features’ contribution. Overall, removing conjunc-
tions causes the highest negative impact, considerably

GENETAG

Protein
P 90.22%
R 84.32%
F1 87.17%

JNLPBA

Protein| DNA RNA | Cell Type | Cell Line | Overall

P| 71.53% | 74.56% | 68.42%| 80.44% | 61.54% | 72.85%
R[ 78.11% | 64.68% | 66.10%| 62.73% | 56.00% | 71.62%
F1[ 74.68% |69.27%|67.24%| 70.49% | 58.64% |72.23%
Figure 7 Final results. Final Precision (P), Recall (R) and F-measure
(F1) results achieved by Gimli on test data of both corpora.
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GENETAG JNLPBA

Protein Protein| DNA RNA | Cell type | Cell line
Best performance 87.17% 74.68% | 69.27%|67.24%| 70.49% | 58.64%

-External resources -0.28% -0.42% - - - -
-Dependency parsing -0.07% -0.27% | -1.18% | 0.28% | -0.23% | -0.63%
-Conjunctions -1.16% | -2.05% H -0.57%| -1.11% | -0.94%
-Post-processing -0.12% -0.06% | -0.07% | 0.00% | -0.04% | -0.12%

Figure 8 Key features’ contribution. F-measure contribution of key features on GENETAG and JNLPBA considering all semantic types.

reducing the performance results. Dependency parsing
also contributes positively to the final results, namely on
DNA and cell line. On the other hand, removing depen-
dency parsing features from RNA improves the results.
However, this is a consequence of the algorithm to com-
bine the models of different entity types. When evaluated
alone, RNA recognition presents an F-measure of 68.97%.
Removing dependency parsing features, this value drops
slightly to 68.91%, reflecting the positive contribution
of such features. As expected, lexicons also provide a
positive contribution, increasing the models’ precision.
Post-processing, on the other hand, introduces just a
small positive contribution. For instance, on RNA, the
absence of post-processing methods does not affect the
performance in any way.

Performance analysis

To evaluate Gimli and understand its behaviour in com-
parison with existing solutions, we collected the best open
and closed source systems for biomedical named entity
recognition. Figure 9 presents a summary description

of the systems’ characteristics, comparing them against
Gimli. Overall, we collected a total of 12 systems, where
seven are open source and five closed source. Our study of
these systems allowed to identify some current trends of
biomedical NER systems:

The most used ML model is CRF (6 systems);
Almost all the discriminative ML models use
orthographic, morphological and basic-linguistic
(POS tags and lemmas) features;

e Only 3 systems use model combination, all of which
are closed source;

e Only 5 systems use post-processing techniques,
where 4 are closed source.

e 8 systems support GENETAG and 6 systems support
JNLPBA;

e Only 3 systems support both corpora, where 2 are
open source;

Based on these facts, we can argue that closed source
solutions are commonly developed for a specific corpus,

Open Source Closed Source
2005 2008 2008 2005 2007 2010 2004 2008 | 2004 2007 2006 | 2004
ABNER | BANNER | CBR-Tagger | GENIA Tagger* Lingpipe [ NERSuite* | POSBioTM J AIIAGMT | Fin04 | IBM Watson | NERBio [ Zho04
Reference 3] [2) [32] 1] [33] [6] [4) o] | 5] 171 9] | [20]
Pr:)grammmg Java Java Java C++ Java C++ Java
Corpora GENETAG X X X X X X X X
IJNLPBA| X X X X X X X
Orthographic] X X X X X X X X X X
Morphological| X X X X X X X X X X
Features Linguistic| X X X X X X X X X
Context| X X X X X X X X
Lexicons X X X X
CRF X X X X X X
MEMM X X
HMM X X
SVM X
Model CBR X
ASO X
Semi-supervised X
Combination X X X
Parentheses| X X X
Post-Processing Abbrewapon X X
Lexicon X
Pattern-based X
*No complete information is available. Extracted from source code analysis.
Figure 9 Biomedical NER systems overview. Summary of the open and closed source systems’ characteristics, presenting the used programming
languages, features, models and post-processing techniques. CBR-Tagger [33] and Lingpipe [34] were also included in this analysis.
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95%
90%
85%
80%
75%
70%
65%
60%
55%

50%

AIIAGMT [10] | IBM Watson [7] Gimli BANNER[2] | NERSuite[6] | Lingpipe [26] NERBio [9] | CBR-Tagger [25]] ABNER [3]
= p 88.95% 88.48% 90.22% 88.66% 88.81% 72.95% 92.67% 76.01% 86.93%
= 87.65% 85.97% 84.82% 84.32% 82.34% 88.49% 68.91% 64.11% 51.49%
—&F1 88.30% 87.21% 87.17% 86.43% 85.45% 79.97% 79.05% 69.56% 64.68%

Figure 10 Results comparison on GENETAG corpus. Comparison of the Precision (P), Recall (R) and F-measure (F1) results achieved by Gimli on
GENETAG corpus, comparing with both open and closed source solutions. Results of closed source solutions are shown with a shaded background.

being focused on only one specific goal. However, those
solutions present the most advanced techniques. On the
contrary, open source solutions do not always take advan-
tage of high-end techniques.

Figures 10 and 11 present the results obtained on
GENETAG and JNLPBA corpus respectively, comparing
Gimli against open and closed source systems. On the
GENETAG corpus, Gimli outperforms all the open source
solutions, achieving an F-measure of 87.17%. It presents
a significant improvement of 0.74% over the second best
system, BANNER. In comparison with NERSuite, Gimli
presents an improvement of 1.72%. Overall, it presents the
best results both on precision and recall. Regarding closed
source solutions, Gimli presents the third best result, with

a similar performance as the winner of the BioCreative II
Gene Mention challenge [16] (IBM Watson), which uses
semi-supervised ML and forward and backward model
combination. Overall, AITAGMT presents the best result
on this corpus (with 88.30% of F-measure). However,
the presented solution was prepared specifically for this
corpus, applying a complex combination strategy that
requires eight different CRF models using two different
CRF frameworks.

Considering the JNLPBA corpus, Gimli outperforms
all the open source solutions, achieving an overall
F-measure of 72.23%. It presents a significant improve-
ment of F-measure in comparison with the second best
system, GENIA Tagger. Compared to the best java-based

80%

75%

70%

65%

60%

55%

50%

NERBio [9] Zho04 [19] Gimli GENIA Tagger [1]|  NERSuite [6] ABNER [3] Fin04 [5] POSBioTM [4]
== Protein 75.12% 73.77% 74.68% 72.79% 72.74% 72.60% 72.67% 69.07%
== DNA 70.00% 69.83% 69.27% 66.20% 68.58% 65.10% 67.86% 60.08%
== RNA 72.65% 64.10% 67.24% 64.29% 67.23% 61.60% 68.83% 64.07%
== Cell Type 72.77% 75.13% 70.49% 74.31% 72.11% 72.00% 69.06% 64.48%
== Cell Line 57.39% 59.23% 58.64% 57.81% 56.11% 56.00% 52.40% 57.33%
=#Overall 72.98% 72.55% 72.23% 71.37% 71.07% 70.50% 70.06% 66.28%

Figure 11 Results comparison on JNLPBA corpus. Comparison of the F-measure results achieved by Gimli on JNLPBA corpus, comparing with
both open and closed source solutions. The overall result reflects the achieved performance considering the five entity types, and the results of
closed source solutions are shown with a shaded background.
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solution (ABNER), Gimli presents an improvement of
1.73% of F-measure. It considerably outperforms open
source systems in recognition of protein, DNA, RNA and
cell line names. However, it is outperformed in the recog-
nition of cell types. Regarding closed source solutions,
Gimli presents the third best result, with similar results
as the winner of the NLPBA Shared Task [17] (Zho04).
When compared with the second best participant of this
challenge (Fin04), Gimli presents an overall improve-
ment of 2.17% of F-measure. NERBio, the best system
on this corpus, implements a rule-based post-processing
method that was prepared specifically for this corpus.
Moreover, NERBio presents a very low performance result
(79.05% of F-measure) on GENETAG, which could indi-
cate some limitations in adapting this solution to different
corpora.

Considering a non-blind model combination strategy,
as taken by Hsu et al. [10], Gimli presents slightly better
results, achieving an F-measure of 87.36% on GENETAG
and 72.69% on JNLPBA. Such results outperform all the
systems that participated on both challenges.

Overall, Gimli significantly outperforms all the existent
open source solutions on both GENETAG and JNLPBA,
by simply adapting the feature set used for each corpora
and entity type. Moreover, it also presents competitive
results when compared with similar closed source solu-
tions for both corpora.

Speed analysis

The various experiments to check training and tagging
speed were performed in a machine with 8 processing
cores @ 2.67 GHz and 16GB of RAM.

The training speed varies with the corpus size, feature
set complexity and model order. Considering the training
parts of both corpora and the final feature set, a second-
order CRF model takes on average one hour to be trained.
On the other hand, a first-order CRF model requires on
average 30 minutes.

In order to check tagging speed and Gimli tractability,
we developed a simple algorithm to annotate MEDLINE
abstracts using multi-threading processing. This solution
includes input XML parsing, sentence splitting, Gimli
integration and output generation in XML. It uses a sin-
gle second-order CRF model, but model combination
can be easily integrated with reduced speed impact, tak-
ing advantage of multi-threaded processing. During this
analysis, we considered various configurations of Gimli,
enabling and disabling the most resource expensive tech-
niques. Thus, if users prioritize annotation speed over
high performance results, windows can be used instead
of conjunctions and dependency parsing can be removed
from the workflow. Moreover, in order to use the avail-
able resources as much as possible, the number of running
threads must be inversely proportional to the complexity
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of the used techniques, since complex techniques require
more processing resources. The following results were
obtained:

¢ Conjunctions with dependency parsing: 4 threads, 20
sentences/second;

e Conjunctions without dependency parsing: 6 threads,
86 sentences/second;

e Windows without dependency parsing: 8 threads, 232
sentences/second.

Conclusions

This article presents Gimli, a new open source and high-
performance solution for biomedical named entity recog-
nition on scientific documents, supporting the automatic
recognition of gene/protein, DNA, RNA, cell line and cell
type names. Gimli implements a machine learning-based
solution, taking advantage of Conditional Random Fields.
Moreover, it supports a rich set of features, including
orthographic, morphological, linguistic-based and also
domain knowledge features, through the implementa-
tion of a lexicon matching technique. Additionally, Gimli
implements advanced conjunctions of features, creating
new features based on windows of lemmas and part-of-
speech tags. In order to correct mistakes generated by the
CRF models, Gimli also integrates a post-processing mod-
ule, implementing parentheses correction and abbrevia-
tion resolution, aimed at extending incompletely tagged
names. Finally, Gimli also combines several forward and
backward models to achieve the best results.

In order to evaluate Gimli and compare it against exist-
ing systems, we used two well-known corpora: GENETAG
and JNLPBA. In the end, it achieved F-measure results of
87.17% and 72.23% on each corpora, respectively. These
results were compared to the systems that participated in
the challenges where the corpora were used, BioCreative
IT Gene Mention and NLPBA Shared Task. Gimli outper-
forms all existing open source solutions on both corpora,
presenting significant improvements both in results and
techniques used.

Gimli is an off-the-shelf solution that can be used
through two different endpoints, thinking on users with
different goals and expertise:

e Command Line Interface (CLI): automatic scripts
with easy access to main functionalities, allowing the
annotation of documents using provided models, and
training new models focused on different entity types,
using a configuration file to customize the feature set
and model parameters;

e Application Programming Interface (API): provides
complete access to implemented features and
associated infrastructure, allowing the easy
integration of Gimli in complex text mining
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workflows, by using, extending and/or adapting the
provided functionalities.

Overall, we believe that Gimli provides various char-
acteristics that make it a state-of-the-art solution for
biomedical NER:

e High-end techniques: Gimli applies various state-of-
the-art techniques and proposes optimizations on
various methods, presenting innovative and
high-performance alternatives. Moreover, it
integrates various solutions that are only present on
closed source solutions, such as dependency parsing,
chunking and model combination;

e Flexible: Gimli was built thinking on flexibility,
founded on a strong infrastructure that allows adding
new features and extending or changing existing
ones. Moreover, Gimli offers the only CLI that allows
feature set and model parameters definition;

e Scalable: the internal infrastructure is ready to scale,
supporting the development of more complex
solutions. Moreover, Gimli is ready to be used on
multi-threaded applications, in order to process
millions of documents;

e Documentation: we provide complete and detailed
documentation of Gimli, in order to use both CLI
and API. Together with the associated simplicity and
self-explanatory code, we believe that Gimli is easy to
use, change and extend.

Developers and researchers of the biomedical domain,
especially text mining experts, can take advantage of
the presented characteristics to develop their own NER
and/or post-NER applications. Gimli reduces the required
effort to develop innovative NER solutions, increasing the
users’ time to focus on their main goals. Thus, it can
be used to support the development of various multi-
disciplinary solutions: @) NER using different corpora and
target entity names, such as disorders and chemicals;
b) normalization; c) relation extraction, such as protein-
protein interactions; and d) information retrieval.

With the results achieved and the characteristics pre-
sented by our system, we strongly believe that Gimli is
a state-of-the art solution for biomedical named entity
recognition, contributing to faster and better research in

the field.

Future Work

Although Gimli already incorporates various improve-
ments on existing tools, some aspects can be further
explored. We are currently investigating other approaches
for model combination, considering for example the intro-
duction of domain knowledge information and/or con-
text based harmonisation through the use of dictionar-
ies or machine learning-based solutions [30]. As for the
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recognition of particular entity types such as DNA, RNA,
cell type and cell line, we are working on improving the
lexicons in order to achieve better precision. An interest-
ing area to explore is the use of feature induction [35] to
automatically extract informative features from texts, in
order to improve the feature set and obtain “hidden” char-
acteristics of the tokens. The second technique that could
be studied is semi-supervised learning [36], using both
annotated and unannotated data in order to extract char-
acteristics of the unlabelled data that could contribute to
better recognition of entity name boundaries. Regarding
the use of Gimli, it could be interesting to implement a
set of web services to streamline its integration in other
tools and disseminate the simple and fast annotation of
scientific documents. Furthermore, although Gimli offers
a simple to use command-line application, developing a
GUI interface could simplify the analysis of the generated
annotations.

There are already various solutions being developed on
top of Gimli, such as: a) a framework for biomedical infor-
mation extraction supporting ML and dictionary-based
methodologies for normalization of biomedical concepts;
b) a solution based on semi-supervised NER for gene and
protein names recognition; and ¢) an information retrieval
solution for knowledge discovery focused on degenerative
diseases.

Availability and requirements

e Project name: Gimli

¢ Project home page: http://bioinformatics.ua.pt/
gimli
Operating system(s): Platform independent
Programming language: Java
Other requirements: Java 1.6 or higher
License: Creative Commons
Attribution-NonCommercial-ShareAlike 3.0
Unported License
® Any restrictions to use by non-academics:

Non-commercial use
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