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Abstract

Background: In many biomedical applications, there is a need for developing classification models based on noisy
annotations. Recently, various methods addressed this scenario by relaying on unreliable annotations obtained
from multiple sources.

Results: We proposed a probabilistic classification algorithm based on labels obtained by multiple noisy

annotators. The new algorithm is capable of eliminating annotations provided by novice labellers and of providing
a more accurate estimate of the ground truth by consensus labelling according to higher quality annotations. The
approach is evaluated on text classification and prediction of protein disorder. Our study suggests that the higher

alternatives.

levels of accuracy, effectiveness and performance can be achieved by the new method as compared to

Conclusions: The proposed method is applicable for meta-learning from multiple existing classification models
and noisy annotations obtained by humans. It is particularly beneficial when many annotations are obtained by
novice labellers. In addition, the proposed method can provide further characterization of each annotator that can
help in developing more accurate classifiers by identifying the most competent annotators for each data instance.

J

Background

In recent years, various groups studied the problem of
developing classification models based on examples
annotated by multiple labellers. The labels we integrate
come from not only human beings (e.g., data curation
tasks in modern biology, and crowdsourcing services)
but also machine-based classifiers (e.g., protein disorder
predictors).

From the methodology perspective of the multi-annotator
problem, one line of research focuses on annotator filter-
ing by identifying and excluding low-performing annota-
tors [1-3]. The other line of research aims at a single
consensus label by aggregating labels from multiple anno-
tators [4-18]. Both strategies demonstrate significantly
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improved performance against single-annotator strategy
and majority voting baselines.

Learning from multiple annotators is also applied to
bioinformatics. For example, manually labelled data is
successfully used together with mathematical models to
provide annotator-specific accuracy estimates based on
multi-annotator agreement [19,20]. In computer-aided
diagnosis (CAD), many computer-aided image diagnosis
systems [5,21-24] were built from labels (i.e., diagnoses)
assigned by multiple physicians who provide their estima-
tions of the gold standard, which can only be obtained from
dangerous surgical operations. Also, Valizadegan et al. [25]
developed a probabilistic approach for learning classifica-
tion models from opinions provided by multiple doctors
and applied the approach to Heparin Induced Thrombo-
cytopenia (HIT) electronic health records (EHR). In the
prediction of protein disorder, meta-learning is commonly
used (e.g., metaPrDos [26], MD [27], PONDR-FIT [28],
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MFDp [29], MetaDisorder [30], and disCoP [31]). Meta
predictors are typically developed relying on disorder/order
labelled training datasets. These datasets contain a very
small number of proteins which have not already been used
for development of the component predictors. In addition,
there is a potential problem of over-optimization for
the meta predictors when combining information from
multiple components. In contrast, here a meta predictor is
constructed in a completely unsupervised process without
use of confirmed disorder/order annotations [32].

In this study, we learn a classification model using
multiple noisy labels obtained by multiple annotators.
Specifically, we address a scenario where novice annota-
tors are dominant. Our method for integration of multiple
annotators by Aggregating Experts and Filtering Novices
will be called AEFN. Based solely on the information
obtained from the good annotators, in an iterative process
our method evaluates annotators to exclude low-quality
ones followed by re-estimation of the labels. In a scenario
considered in our study the noisy annotations are obtained
by a combination of humans and existing classification
models. Therefore, the new method is applicable to many
biomedical problems.

Compared to previous studies, the uniqueness of our
study lies in the following aspects:

+ The AEEN algorithm combines the removal of some
annotators with labelling based on consensus of the
remaining annotations. This is achieved without using
any ground truth information.

« It provides estimates of good annotators’ accuracy in
addition to removing novice annotators.

« It is applicable in situations where annotators’ accuracy
varies across the data subsets which are not the case with
previously proposed solutions (other than [9] and [10]).

» Compared to our previous study [33], AEFN algorithm
is explored in more details by conducting additional
experiments on prediction of protein disorder on CASP9
(i.e., the 9th Biannual Community Wide Experiment
on the Critical Assessment of Techniques for Protein
Structure Prediction held in year 2010) data. The new
experiments with machine-based classifiers provide a
complementary characterization to experiments on
human annotators reported at the preliminary version
[33]. In our solution, a combination of noisy annotations
obtained by humans and existing machine-based classifi-
cation models were integrated. Therefore, AEFN has the
potential to be applied as a solution to many biomedicine
and bioinformatics problems.

+ Based on AEEN algorithm, a way of deciding which
annotator is more appropriate to label new instances
has been investigated in our experiments. This is poten-
tially beneficial in any situation where annotating instances
is expensive.
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Methods

Given a dataset D={x;,, yil, e yiR}, where x; is an
instance, y/e {0,1} is #/s corresponding binary label which
is provided by the j-th annotator. For multi-annotator
problem the task is to get an estimation of the unknown
true label y;.

Majority Voting (MV), a commonly used approach for
this problem, has a limitation that the aggregated label
for an example is estimated locally by only estimating the
labels assigned to that example and not considering the
performance of the labels for other examples.

In order to solve that problem, [8] introduced an MAP-
ML algorithm. As [8] proposed “MAP-ML algorithm
models the accuracy of the annotator separately on the
positive and negative instances. If the true label is one, the
sensitivity (true positive rate) o/ for the j-th annotator is
the probability that the annotator labels it as one: o/ =Pr
[y/ =1| y; =1]. On the other hand, if the true label is zero,
the specificity (1-false positive rate) / is the probability
that annotator labels it as zero: f/=Pr[y/ =0| y; =0]. Then
MAP-ML corrects the annotator biases by jointly estima-
ting the annotator accuracy (i.e., ¢ and ) and the hidden
true label.” For details of MAP-ML, please refer to [8].

MAP-ML implicitly assumes that the performance of
the annotators (i.e., o and /) doesn’t depend on the
examples. To fix this problem, GMM-MAPML algo-
rithm takes into account that the annotators are not
only unreliable, but may also be inconsistently accurate
depending on the data. As [10] mentioned “GMM-
MAPML models the annotators to generate labels as
follows: given an instance «x; to label, the annotators find
the Gaussian mixture component which most probably
generates that instance. Then the annotators generate
labels with their sensitivities and specificities at the most
probable component.” For details of GMM-MAPML,
please refer to [10].

Our previous study [33] goes further. As [33] argued
“Recent experiments show that in some cases, a consensus
labelling of a few experts will achieve better performance
[32]. To further characterize the behaviour of annotators,
we define the ranking evaluation score as §'=|c/+f -1|.
Random annotations result in § near zero, while perfect
annotations correspond to §=1. Based on the ranking
evaluation score, we propose an AEFN algorithm by
extending the GMM-MAPML. In each iteration, ML esti-
mation measures annotators’ performance at each mixture
component (i.e., their sensitivity “{z and specificity ﬂi).
Then, we add a step to filter the low-quality annotators at
each Gaussian component according to the score (i.e., the
ranking evaluation score of the j-th annotator at the k-th
Gaussian component): if S, is smaller than a pruning
threshold, we filter the j-th annotator from the pool of
annotators at the k-th Gaussian component. Thus, we refit
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the MAP estimation with only the good annotators and
get the updated probabilistic labels z; based on the
Bayesian rule.” The algorithm is summarized at Algorithm 1
while details are provided at a preliminary version of this
study [33].

Algorithm 1: AEFN Algorithm

Input: Dataset D = {x;, yil,..., yf}ﬁl containing N
instances. Each instance has binary labels y! € {0, 1}
from R annotators.

1: Find the fittest K-mixture-component GMM for the
instances, and get the corresponding GMM parameters
and components responsibilities 1y, for each instance.

2: Initialize Ay ={1,...,R} the sets of good annotators
for each Gaussian component k=1,...,K.

3: Initialize z; = (1/R) Zijlyi. based on a majority
voting.

4: Initialize iteration indication iter<-O0.

5: repeat
6: (ML estimation) ‘
7: Vj € Ar, update the sensitivity Odz and specifi-

city ﬂi as follows

N N
; ‘
o=z, [ )
i=1 i=1

N ‘ N
Br= (m—z)(1 =) [ Y (v —za)
i=1 i=1

8:  Update the prior probability p; as o (w'x;).

9: (Low-quality annotators filtering)

10: if iter>0 (check from the second iteration)

11: for all k=1,..,K (all Gaussian components)
do

12: for all j € A, do

13: Update 8 = |o, + g — 1].

14: if Sjk < & (the pruning threshold)
then

15: A < A — {j}

16: end if

17: end for

18: end for

19: end if

20: (MAP estimation)

21: Vi=1,...,N restricted to the annotators in

the set Aj instead of integrating all R annotators, esti-
mate z; as follows

o aipi
“7 api+ bi(1—p)

where

pi = Prly; = 1|x;, w] = o (w'x;)
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R . yi . 1_%
a; = ]_{ [a{l] [1- oz{l]
j=

R I
m=qu—%ﬁ%f”
I

q = arg max(ty)
k=1,...K

22: iter<—iter+1(update the number of iterations)

23: until change of z; between two successive
iterations< & .

24: Estimate the hidden true label y; by applying a
threshold ¥ on z; That is, y;=1 if z;>¥ and y;=0
otherwise.

Output:
+ Detected low-quality annotators of all Gaussian
components in set {1,...,R} — Ay.

+ Good quality annotators of all Gaussian components
in A, with sensitivity o, and specificity ﬁ{e , for j € Ay,
k=1,..,K.

+ The probabilistic labels z; and the estimation of the
hidden true label y;, Vi=1,...,N.

All multi-annotator algorithms are unsupervised
meaning that integration of noisy labels is achieved
without using true labels. Following properties differ-
entiate the proposed AEFN algorithm from alternative
multi-annotator approaches (i.e., MV, MAP-ML, GMM-
MAPML): (1) It integrates labels globally (considers the
accuracies of annotators globally and automatically
assigns greater weights to more accurate annotators); (2)
It is data-dependent (applicable in situations where
annotators’ accuracy varies across the data subsets); and
(3) It filters novice annotators (eliminates novice annota-
tions and estimates the consensus ground truth based only
on expert annotations of high quality). Also we summarize
the properties of all multi-annotator algorithms in the
Table 1.

Results

In this section, we intend to validate the proposed AEFN
algorithm by doing experiments on a biomedical text clas-
sification task and a protein disorder prediction task. The
protein disorder prediction experiment with machine-
based classifiers provides a complementary characteri-
zation to the usage of human annotators reported in the
biomedical text classification experiments.

Biomedical text classification experiment

In the experiment, we used a 1,000-sentence scientific texts
corpus from Rzhetsky et al. [19]. For details of data pre-
processing and experimental settings, please refer to [33].
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Table 1 Properties of multi-annotator algorithms.
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Algorithms Unsupervised? Integrate labels globally? Data dependent? Filter novice annotation?
MV Y N N N
MAP-ML Y Y N N
GMM-MAPML Y Y Y N
AEFN Y Y Y Y

The comparisons of properties of multi-annotator algorithms are shown. ‘Y’ denotes that the algorithm has the property; ‘N’ denotes that the algorithm doesn’t

have the property.

Table 2 AEFN based accuracy estimates on the text evidence classification task without using ground truth.

First Component Second Component Third Component

Annotators Estimated Estimated Estimated Estimated Estimated Estimated
Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

Annotator 1 Filtered 0.7573 0.7737 Filtered

Annotator 2 0.8400 0.8445 0.8901 0.9303 0.8103 0.8798

Annotator 3 0.8984 0.9061 0.8150 0.8870 0.8235 0.8196

Annotator 4 0.7492 0.7553 Filtered 0.7184 0.8197

Annotator 5 0.8035 0.7810 0.7991 0.8199 0.8819 09152

The estimates by five annotators for three principal components on the text evidence task are shown.

Table 3 AEFN based accuracy estimates on the text focus classification task without using ground truth.

First Component Second Component Third Component

Annotators Estimated Estimated Estimated Estimated Estimated Estimated
Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

Annotator 1 0.7672 0.7749 0.8005 0.7969 0.7634 0.7907

Annotator 2 0.9373 0.8588 0.8753 0.8271 0.8958 0.8863

Annotator 3 0.7383 0.8258 Filtered Filtered

Annotator 4 0.8059 0.8652 0.9010 0.85%4 0.8318 0.8413

Annotator 5 Filtered Filtered Filtered

The estimates by five annotators for three principal components on the text focus task are shown.

In the preliminary version of this study [33], we showed
that our AEEN was slightly better than GMM-MAPML,
while it significantly outperformed other competitors,
when all annotations were from experts. Using the same
settings, our AEFN also selected a three-component
GMM model with covariance matrix )\DkADZfor the
biomedical text data. Shown in Table 2 and Table 3 are
the filtered annotators and estimated sensitivity and
specificity of each good annotator on the Evidence classi-
fication task and Focus classification task for each compo-
nent. For the Evidence classification task, Annotator 1 has
been filtered in the 1st and 3rd components, and Anno-
tator 4 has been filtered in the 2nd component. For the
Focus classification task, Annotator 5 has been filtered
in all three components and Annotator 3 has been filtered
in the 2nd and 3rd components. The tables show that for
different tasks the annotators perform in different man-
ners. For example, Annotator 5 is good at the Evidence
classification task, but not at the Focus classification task.
In addition, we found that the five annotators had compar-
able overall quality, and on average only one per component

was eliminated. These results are consistent with the results
of our preliminary version of this study [33].

In [33], we also showed that our AEFN has much better
AUCs than all competitor methods, especially when low-
quality annotators dominate (e.g., 90% low-quality anno-
tators and only 10% experts). To further characterize our
AEFN method on annotator-performance estimation, we
designed another experiment on the same biomedical text
data as follows: (1) Find the fittest K-mixture-component
GMM for all instances by using step 1 of AEFN. As
discussed in the previous paragraph, we found a three-
Gaussian-component model for the text data. (2) Randomly
split 40% of instances as training data and the remaining
60% as testing data. (3) On training data, estimate anno-
tators’ performance and identify the best annotator for each
Gaussian component by using our AEFN method. Here,
we used the estimated ranking evaluation score as the
criterion (the higher the better) to choose the best anno-
tator. For the Evidence classification task, Annotator 3 was
the best for the first component, Annotator 2 was the best
for the second component, and Annotator 5 was the best
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for the third component. For the Focus classification task,
Annotator 2 was the best for both the first and the third
components, and Annotator 4 was the best for the second
component. (4) On testing data, we compare three logistic
regression classifiers: a) Randomly Selected Annotator
that for each training data point used a label obtained by a
randomly picked annotator among the five available anno-
tators; b) AEFN Indicated Annotator that for each training
data point picked an annotator based on the suggestion
from (3); c) Ground Truth that is trained using an approxi-
mation of ground truth labels defined by the majority vote
of the eight annotators’ labels as previously discussed. The
accuracies of these classifiers were compared according to
5-fold cross-validation on the 60% testing data. The purpose
of using the 40% training data is to obtain annotator sugges-
tion for AEFN Indicated Annotator classifier.

The ROC comparisons for three logistic regression
classifiers on the Evidence and Focus classification tasks
are shown in Figure 1 and 2, respectively. The figures
show that when using the annotator’s labels suggested
by our AEFN method, a simple logistic regression
method clearly outperforms the classifier trained using
labels chosen randomly from five available annotators.
The results show that our AEFN method can rank
annotators by instance, and can help decide which
annotator is more appropriate to label new instances.
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This is an interesting and important potential in the
situation where annotating instances is expensive.

Protein disorder prediction experiment

Treating an individual predictor as an annotator, the
multi-annotator methods can be used to build meta-
predictors for protein disorder prediction. In this section
we experimentally validate the proposed algorithm on
the CASP9 protein disorder prediction task. CASP9 data
[34] consists of 117 experimentally characterized protein
sequences with 2,427 disordered and 23,656 ordered
residues. To reduce prediction noise due to experimental
uncertainty, we didn’t consider disorder segments shorter
than four residues in the evaluation process. We selected
15 predictors developed by groups at different institutions,
assuming that their errors are independent. Therefore we
can treat them as individual annotators.

In the study, a feature vector (20 dimensions) of each
residue was derived from the subsequence covered by a
moving window centred at the current position. Of the
20 dimensions, the first 19 features come from amino
acid frequencies composition and the last one is a local
sequence complexity feature (based on the observation
that low complexity regions are more likely to be disor-
dered than ordered). For details of amino acid feature vec-
tor construction, please refer to [35]. In this experiment,

ROC curve for classifier on text evidence classification task
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Figure 1 Three logistic regression classifier ROC comparisons on the text evidence classification task. The ROC comparison on the
biomedical evidence classification of three strategies for selecting an annotation source for logistic regression. Methods are sorted in the legend
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ROC curve for the classifier on text focus classification task
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Figure 2 Three logistic regression classifier ROC comparisons on the text focus classification task. The ROC comparison on the
biomedical focus classification of three strategies for selecting an annotation source for logistic regression. Methods are sorted in the legend of
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we set the size of the moving window as 21, which is based
on our previous study [32] as well as the ratio of short (<30
residues) disordered segments to long ones in the data.
Comparisons of 15 protein disorder predictors, the MV
algorithm, the MAP-ML algorithm, the GMM-MAPML
algorithm, and our AEFN algorithm on CASP9 data are
shown in Table 4. Methods were evaluated by two

Table 4 CASP9 comparison on labelled data.

Predictor Name Institution ACC AUC
AEFN 0.801 0.887
GMM-MAPML 0.785 0.874
MAP-ML 0.764 0.859
MV 0.735 0.776
PRDOS2 Tokyo Tech 0.754 0.855
MULTICOM-REFINE U of Missouri 0.750 0.822
BIOMINE_DR_PDB U of Alberta 0.741 0.821
GSMETADISORDERMD IIMCB in Warsaw 0.738 0816
MASON George Mason U 0.736 0.743
ZHOU-SPINE-D Indiana University 0.731 0.832
DISTILL-PUNCH1 UCD Dublin 0.726 0.800
OND-CRF Umea University 0.706 0.759
UNITED3D Kitasato University 0.704 0.780
CBRC_POODLE CBRC 0.694 0.830
MCGUFFIN University of Reading 0.688 0817
ISUNSTRUCT IPR RAS 0.676 0.739
DISOPRED3C ucL 0.670 0.853
ULG-GIGA University of Liege 0.588 0.726
MEDOR Aix-Marseille U 0.579 0679

Comparisons of AEFN vs. alternative multi-annotator methods (GMM-MAPML,
MAP-ML and MV) and individual CASP9 protein disorder predictors.

measures [36]: the average of sensitivity and specificity
(ACC), and the area under the ROC curve (AUC). Our
proposed AEFN algorithm significantly outperforms the
three competitor multiple-annotator methods (i.e., GMM-
MAPML, MAP-ML, and MV) and each individual protein
disorder predictor based on both ACC and AUC scores.

For CASP9 data, AEEN algorithm also finds that a three-
component GMM with the covariance matrix A; By. For
each component, estimated sensitivity and specificity of
the best predictors, as well as filtered less-accurate predic-
tors using AEFN, are shown in Figure 3. For comparison,
we also plot the actual sensitivity and specificity of each
individual predictor at each Gaussian component on the
same figure. Figure 3 clearly shows that the individual
CASP9 disorder predictors perform differently at different
components. For example, GSMETADISORDERMD per-
forms well in the first and third components, but it is
not among the best in the second component. BIOMINE-
DR-PDB performs well in the second component, but it is
not among the best in the first and third components. The
figure also demonstrates the main benefit of our proposed
AEEN algorithm: the predictors identified as experts with-
out relying on ground truth were indeed among the best
according to their actual prediction performance at each
component as verified by labelled data of confirmed
order/disorder residues.

For further analysis, we found that the first, the second,
and the third Gaussian components highly correlate with
N-terminus (defined as 20% of residues at the start of a
protein sequence), internal, and C-terminus (defined as
20% of residues at the end of a protein sequence) of protein
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(a) Accuracy estimates at the 1st component
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Figure 3 Analysis of CASP9 disorder predictors at three
components identified by AEFN. In panels a, b, and c: the black
cross plots the actual sensitivity and specificity of each predictor; the
red dot plots the sensitivity and specificity of the best predictors as
estimated by the AEFN algorithm; the green squares show the
predictors filtered as those less accurate in the experiment.

sequences respectively. For details of the CASP9 amino-
acid position distribution analysis, please refer to [10].
Based on the CASP9 analysis summarized in Figure 3
and the position distribution analysis, the only reliable
predictors for all three regions are PRDOS2 and MULTI-
COM-REFINE (they are also the best individual predic-
tors in the evaluation shown in Table 4). For N-terminal,
reliable predictors also include ZHOU-SPINE-D and
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GSMETADISORDERMD while for the internal region we
may also rely on BIOMINE_DR_PDB and for C-terminus
we may also use MCGUFFIN, MASON, and GSMETA-
DISORDERMD. The experiment provides evidence that
AEFN algorithm can potentially be used to provide helpful
suggestions on choosing the suitable disorder predictors
for each region (N-terminus, internal, or C-terminus) of
unknown protein sequences.

Conclusions

A probabilistic algorithm (i.e., AEFN) for the multi-
annotator classification problem is addressed in our study.
Without using any ground truth information, the pro-
posed AEFN algorithm is excluding lower quality annota-
tions of novice labellers and providing more accurate
classifications based on consensus of remaining experts’
annotations of higher quality. Evaluation on biomedical
text classification and prediction of protein disorder pro-
vides the evidence of the effectiveness of the proposed
method. In our experiments, AEFN significantly out-
performed alternatives that include the MV and multi-
annotator algorithms (GMM-MAPML and MAP-ML).
It was particularly beneficial when low-quality annota-
tors are dominant. We have also found that AEFN
algorithm can be used to determine which annotator is
appropriate to label new instances. This is potentially
beneficial in any situation where annotating instances
is expensive. In addition, AEFN can be used for devel-
oping more accurate patient-specific diagnostic models
by identifying groups of competent annotators for specific
instances.
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EHR: Electronic Health Record; MV: Majority Voting; ROC: Receiver Operating
Characteristic; CASP: Critical Assessment of Techniques for Protein Structure
Prediction.
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