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Abstract

Background: Many calssifiers which are constructed with chosen gene markers have been proposed to forecast
the prognosis of patients who suffer from breast cancer. However, few of them has been applied in clinical
practice because of the bad generalization, which results from the situation that markers selected by one method
are very different from those obtained by anohter mothod, and thus such markers always lack discriminative
capability in the other data sets.

Methods: In this work, a new ensemble classifier, on the basis of context specific miRNA regulation modules, has been
proposed to forecast the metastasis risk of cancer sufferers. First, we defined all of the miRNAs which regulate the same
context as a module that contains miRNAs and their regulating context, and applied the CoMi (Context-specific miRNA
activity) score in order to illustrate a miRNA’s effect which happened in a particular background; then the miRNA
regulation modules with distinguising abilities were detected and each of them was responsible for building a weak
classifier separately; at last, by using majority voting strategy, we integrated all weak classifiers to establish an
ensembled one that was applied to forecast the prognosis of patients who suffer from cancer.

Results: After comparing, the results on the cohorts containing over 1,000 samples showed that the proposed
ensemble classifier is superior to other three classifiers based on miRNA expression profiles, mRNA expression
profiles and CoMi activity patterns respectively. Significantly, our method outperforms the representative works.
Moreover, the detected modules from different data sets show great stability (with p-value of 6.40e-08). For
investigating the biological significance of those selected modules, case studies have been done by us and the
results suggested that our method do help to reveal latent mechanism in metastasis of breast cancer.

Conclusions: One context specific miRNA regulation module can uncover one critical biological process and its
involved miRNAs that are related to the cancer outcome, and several modules together can help to study the
biological mechanism in cancer metastasis, thus the classifer based on ensembling multiple classifers which were
built with different context specific miRNA regulation modules has showed promising performances in terms with
both prediction accuracy and generalization.

Background
For breast cancer, many classifiers based on gene signa-
tures were built to predict the prognosis of cancer patients
[1-4], with the purposes of ensuring the patients to receive
befitting therapy. However, two major problems have

occurrd in real applicaitons. Firstly, the performances of
these classifiers usually decline sharply in the datasets
different from the one used for the construction; secondly,
there are few common genes among these published
signatures, making the clinicians confused and found it
hard to believe the signatures are helpful. For instance,
two independent studies respectively identified a signature
composed of 70 genes [3] as well as another signature
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consisting of 76 genes [4] for forecasting cancer sufferers’
distant metastasis, both of which achieved classfication
accuracies between 0.6-0.7 [5] in their own patient
cohorts. However, these two gene sets have only one gene
in common [6]. Besides, each of the two gene sets per-
formed badly on each other’s dataset (with accuracy of less
than 0.55) [6]. The reason might be that the detected gene
sets just contain ‘passengers’ instead of ‘drivers’, resulting
from the fact that a large amount of passenger signals
buried in the expression profiles of tumor cells [1].
Recently, some researchers have proposed to extract
features from function gene sets to forecast prognosis of
cancer [7-9]. These gene-set signatures are more stable
than the gene signatures, however they still suffer from the
problem of low classification accuracy on independent test
sets (AUC no more than 0.7) [7].
As we all know that the expression levels of a miRNA

is not equal to its activity [10], thus a miRNA activity
calculation method, which was called Context-specific
miRNA activity (CoMi activity) estimate method, was
proposed to estimate a miRNA’s activity in a given
background (function gene set) in our earlier works
[11,12]. The statistical differences in expression profiles
between genes of targets’ and non-targets’ of a miRNA
in a particular context (function gene set) was calculated
as the CoMi activity score. To cheack whether the CoMi
activity patterns are a more informative feature space to
predict cancer prognosis, features selected from the
CoMi activity patterns were used for the construction of
a classifier to predict the metastasis risk of cancer
patients. As a result, CoMi activity patterns have been
proved to be superior to gene expression profiles in cancer
prognosis [11].
We thought that multiple miRNAs may affect the

prognosis of cancer sufferers by regulating a certain
biological process, and several biological processes may
co-affect on the patient’s prognosis, thus we stepped for-
ward in our recent work [12]. Several miRNAs regulating
the same biological process (Go Term) was defined as a
module, then a classifier was constructed based on each
discriminative module to forcast these individuals’ prog-
nosis. After that, the chosen module classifiers with classi-
fication capabilities were integrated to an combined
classifier by majority voting rules. In order to evaluate the
ensemble classifer, we first constructed three classifers
respectively based on miRNA expression profiles (miRNA
classifer), mRNA expression profiles (mRNA classifier)
and CoMi activity patterns (CoMi classifer); then we com-
pared the ensemble classifier with the three classifiers and
other representative classifiers reported before. Moreover,
the specificity as well as the steadiness of those dis-
tinguishing modules were studied. At last, we tried to
reveal some metastasis mechanisms by investigating the
regulation relations in the selected modules.

Methods
Datasets and preprocessing
To evaluate the methods, we downloaded five normal-
ized breast cancer date sets from NCBI GEO: GSE2034
[4], GSE4922 [13], GSE6532 [14], GSE7390 [15] and
GSE11121 [16]. In GSE6532,every patient is ER-positive,
and patients in the other four datasets are either ER-
positive or ER-negative. Furthermore, the data sets of
GSE4922 and GSE6532 contains patients with one of
the both kinds of lymph nodes (positive or negative),
while there are patients only with negative lymph node
in the other data sets [12,17]. We also downloaded
another breast cancer data set from TCGA [18], in
which there are 504 samples’ miRNA and mRNA micro-
array data. The mRNA microarray analysis was per-
formed with Agilent G4502A Genechips and the
platform to analyze the miRNA profiles was an Illumi-
naGA miRNASeq microarray. In this work, we used the
level 3 data [11] for both kinds of profiles.
Using the similar strategy in [7], we divided all

patients into bad prognosis and good prognosis groups
according to whether the events (distant metastasis for
the five NCBI data sets and death for the TCGA data
set) occured within the threshold (five years). As for the
TCGA data set, because the metastasis information is
rare, the survival information was used to divide the
samples into different risk groups (Supplementary Table 1
in Additional file 1).

The workflow for constructing the ensemble classifier
The main frame of our work is as follow (Figure 1[12]).
To begin with, based on the microRNA targets and the
GO term (GO Biological Process term is used in this
work, shorten as GOBP) genes, together with the gene
expression profiles, we calculated the CoMi score for
each miRNA-GOBP term pair by using two sample t-
test, which measured the miRNA’s activities on its regu-
lating context (GOBP); then we converted the gene
expression profile for each patients into CoMi activity
pattern made up of the CoMi scores; and then, all the
miRNAs regulating on the same GOBP term was
regarded as one module, which was like a star. In order
to make a prediction of the patient’s prognosis, each
module with more than five miRNAs was applied to

Table 1 Predictive power of the classifiers on the NCBI
data sets (AUC)

70g 76g Set-median Set-mean Ensemble

GSE2034 0.59 0.57 0.68 0.67 0.73

GSE4922
GSE6532
GSE7390

0.57
0.47
0.64

0.5
0.5
0.63

0.63
0.72
0.71

0.65
0.71
0.71

0.69
0.75
0.74

GSE11121 0.66 0.55 0.75 0.75 0.71
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establish a weak classifier, and all weak classifiers that
had classification capabilities (AUC ≥ 0.6 in this work)
were integrated into a combined classifier by majority
voting rule.

Computation of CoMi scores
We followed a series of steps mentioned previously [11]
to estimate a miRNA’s regulating activity in a particular
context (CoMi activity).

(1) Obtaining the union set of all miRNA targets
(including 680 different miRNAs in all) from two
tools: TargetScan [19-21] and RNA22 [22].
(2) Dividing the genes in the given gene list into dif-
ferent groups based on their GOBP term annotations.
One group consists of genes related to the same
GOBP term.

(3) Dividing the genes within a GOBP into targets
and non-targets of a miRNA by the intersection of
the two sets (GOBP genes and miRNA target genes).
Thus we can obtain a lot of miRNA-GOBP pairs;
each of them represents the miRNA and the term of
GOBP (Figure 1a) regulated by it. For making sure
the statistical significance of a miRNA’s action on a
given background, a two-step preprocess has been
done on each miRNA-GOBP pair. (a) if the size of
the interaction gene set was below a threshold (10 in
this work by experience), the miRNA-GOBP pair
would be discarded; (b) in the rest miRNA-GOBP
pairs, we tested the significance of the interaction by
hypergeometric cumulative distribution function, and
only the significant ones would be taken into account
(p-value ≤ 0.05). The significance is calculated by
hypergeometric cumulative distribution function

Figure 1 Workflow for constructing the ensemble classifier. The main frame of our work [12].
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which is shown as equation (1), where × stands
miRNA targets in the GOBP term, K represents all the
miRNA’s target genes, N stands the GOBP term gene
set and M represens all the genes in our calculation
(universe set).

p - value = 1 − F(x − 1/M,K,N) = 1 −
x−1∑
i=0

(
K

i

)(
M - K

N - i

)
(
M

N

) (1)

(4) According to our previous work, for each miRNA-
GOBP pair, the CoMi activity is calculated by t-test
(Figure 1c). The t-test is shown as equation (2), where
X is the average value of the miRNA target genes’
expression levels and Y is the average value of non-
target genes’ expression levels. Sx and Sy are the their
corresponding standard deviations, and n and m
are the sizes of two sets respectively (targets and non-
targets).

t =
X - Y√
S2x
n

+
S2y
m

(2)

Based on these steps, the samples’ CoMi activity profiles
can be got by calculating all the miRNA-GOBP pairs’
activity scores from their gene expression profiles. The
profiles are described by a two-dimensional array, in
which each column stands for a patient, each row repre-
sents a miRNA-GOBP. In addition, an element in the
array is the miRNA activity on the GOBP (Figure 1d).
In order to reduce noises, a total of 10% rows in the

matrix (the process is based on CoMi activity profiles in
GSE2034) with the smallest square deviations were dis-
carded. Moreover, if the elenments in two rows were the
same, the first row would be retained with the purpose of
removing the redundancy which may be caused by the
prediction tools.

Construction of ensemble classifier
One biological process may describe one aspect in cancer
prognosis, thus we regard the miRNAs acting on the same
GOBP as an entire module (Figure 1e). In the following
sections, the name of the GOBP is used as the name of
the whole module.
Now that multiple miRNAs may regulate a given bio-

logical process together, and have an effect on the prog-
nosis of patients, some modules may be discriminative
in the various risk groups of the cancer sufferers. There-
fore, for each module, a classifier was built based on it
to classify the patients into two groups, and the ones

with classification capability (AUC ≥ 0.6) were consid-
ered (Figure 1f).
We adopted the centroid classifier in our work. The

first reason is that the centroid classifier is suit for
microarray data, which has the character of large size of
features and few samples [23]. The second reason is that
the centroid classifier does not need to adjust parameter
and is as good as or more excellent than the famous
methods. What is more, the centroid classifier is hard to
be overfitting [7].
Suppose there are N breast cancer patients s1, .., sN

represented by the CoMi vectors, in which, n+patients
belong to positive class (good outcome), and n− ones
belong to negative class (bad outcome), N = n+ + n− .
Given a module containing M miRNAs that co-regulate
a specific GOBP term, then there are M CoMi activity
scores of the M miRNAs for each patient. If CoMi(i,j)
represents the CoMi activity score of the i-th miRNA of
the module in the j-th patient, then we can compute the
CoMi centroid (mean value) vector with M dimensions
of this module on each class according to equation (3)
and (4) respectively:

�C+ =
1
n+

∑
sj∈Class+

CoMi(i, j) (3)

�C− =
1
n−

∑
sj∈Class−

CoMi(i, j) (4)

Let �C = (�C+ + �C−)/2 be the mean vector of centroids,
�w = �C+ − �C− be the weight vector of the M miRNAs,
the unknown patient sample to be classified be
s̃ = (d1, ..., dM) (where di is the CoMi activity of
miRNA i corresponding to the specific module), then
the class of s̃ is determined by the sign of ywhich is
the inner product of two vectors, shown by equation (5):

y =< s̃ − �C, �w > (5)

If y > 0 , then s̃ is assigned to positive class; otherwise,
it is assigned to negative class.
GSE2034 was used to select the distinguishing mod-

ules. For each module, we constructed a centroid clas-
sifier and used five-fold cross validation to evaluate the
classification capability. And we chose the distingui-
shing modules by using the AUC (AUC ≥ 0.6). As
described above, one module could depict a feature
that influence the metastasis of tumor sufferers, thus
after combining the whole discriminative modules we
may reveal a more overall biological mechanism in
tumor outcome. Consequently, the weak classifiers
were integrated to a combined classifier by majority
voting rule (Figure 1f).
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Classifiers based on miRNAs, mRNAs and CoMis
For the purpose of comparison, we also built three clas-
sifiers from TCGA breast cancer data set with miRNAs,
mRNAs and CoMs as features respectively, by using the
same centroid classification model. The original data
contains the profiles to express both mRNA and
miRNA, and we can compute the CoMi activity patterns
by using our previous method [11].
In order to get the optimal classifiers, we first ranked the

features by the weight vector described as above, then we
constructed the centroid classifiers based on the features
ranking the top, and then we evaluated the classifiers by
the use of five-fold cross validation. We varied the feature
number from 1 to 200 when building the classifiers, and
adopted the classifier having the best performance (AUC
as the measure index) for the comparison purpose.

Representative classifiers
In order to evaluate our method, three typical methods
using in outcome forecasting of breast cancer were adopted
to compare with our method on the same data sets.
The fisrt one was the most famous gene marker classi-

fier in this filed [3]. They tarined a gene signature com-
posed of 70 genes, which was than used as the markers.
And then a classifier was constructed based on the 70
genes (denoted as 70g classifier in this work). In this
method, the average vectors of the 70 genes’ expression
levels of the two groups (distant metastasis groups and
non-distant metastasis groups) were calculated as the
patterns of the two classes, and the samples were
assigned to the more correlated groups using Pearson’s
correlation coefficients.
The second one was proposed by Wang et al. [4]. In

this method, a total of 76 genes were selected as gene
markers. Based on the 76 genes (denoted the classifier
as 76g), a risk score of each patient was defined as the
linearizing summation of weighted expression values,
where the weight is the Cox’s regression coefficient
[4,12]. At last, the patient is classified into high risk
group or low risk group according to whether the risk
score is larger than a threshold.
The last two methods used the gene set statistics as

features [7]. We gathered the function gene sets in the
database of MSigDB [24]. Then the statistical value was
calculated from the combination of each gene set and
expressional level of the samples. In terms of calculating
the statistical value, the statistical methods of Set Centroid
and Set Median were used because they were the best two
[7,12]. After acquiring the statistical value, we selected the
optimal sets and used them as features to establish a clas-
sifier (centroid method) for forecasting the individuals’
metastasis risks within 5 years. The optimal sets selection
and the classifier construction method are the same as
above section.

Evaluation of the specificity of the selected modules
We adopted the resampling method to test the specificity
of those selected modules. First, the identical number of
modules was randomly selected from all the generated
modules. Second, the randomly selected modules were
applied to establish weak classifiers and all these classifiers
were combined to an ensemble classifier on GSE2034,
which is then evaluated on the merged set of the other
four NCBI data sets. The process is repeated 10,000 times,
and all the performances (AUC) of the random ensemble
classifiers were used as null distribution, based on which,
we can calculate the significance p-value, which can be
used to assess the specificity of these selected modules.

Performance measures
As the severe unbalance between the two different risk
groups (For instance, compared with 154 low-risk patients,
there are only 28 high-risk patients in GSE11121). Many
measures indexes, such as sensitivity (SN), specificity (SP),
and accuracy (ACC), are not efficient enough to character
the performance of the classifiers.
In this work, the AUC (area under the receiver operating

characteristic curve) and MCC (Matthews Correlation
Coefficient) are applied as the two main measures to
evaluate our classifiers.
A ROC (operating characteristic curve) is created by

plotting the sensitivity versus one minus the specificity
at various threshold settings, and the AUC is the area
under the ROC, which is widely used to illustrate the
performance of a binary classifier.
MCC is also used as the major standard to evaluate

the performances of the classfiers in our study, for MCC
is a measure method which can provide us with the
most information when the samples in the dataset are
seriously unbalanced [25]. The MCC takes into account
the true and false positives and negatives, which is
described in detail in [12,26]. And the values of MCC
fluctuate between -1 and 1, with 1 indicating absolutely
correct prediction, 0 indicating meaningless prediction
and -1 indicating absolutely opposite prediction.

Results and discussions
Predictive power of our method
After using the CoMi activity estimate method, 14,122
CoMi activity socres was got for each sample. And then
347 miRNA regulation modules were acquired. As a
result, a total of 55 distinguishing modules were chosen
to establish the combined classifier (the performances of
the modules are listed in Supplementary Table 2 in
Additional file 1 and the detailed CoMi features are
shown in Additional file 2).
With the purpose of assessing our classifier, we

repeted five-fold cross vadiation for ten times using
GSE2034. Simultaneously, independent tests were done
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on the other four NCBI data sets (The detailed result is
shown in Supplementary Table 3 in Additional file 1).
All performances are shown by Figure 2, which illustrates
that the ensemble classfier achieved good and stable per-
formances on all the data sets. What is more, our method
has an AUC of over 0.70 on a majority of data sets, while
the AUCs of gene based methods or gene set based
methods, as far as we know, can hardly reach to 0.70
[7,9] on independent tests.

Comparison with miRNA, mRNA and CoMi classifiers
Performance of our method and other three constructed
classifers are shown in Figure 3, the ensemble classifier
can achieve an AUC of 0.78 (MCC of 0.42), the CoMi
classifier achieves an AUC of 0.73 (MCC of 0.31), the
miRNA classifier achieves an AUC of 0.71 (MCC of
0.28), the mRNA classifier has an AUC of 0.63 (MCC of
0.22). It is clearly that the ensemble classifier outper-
forms others, and the CoMi classifier is the second best,
while the mRNA classifier performs the worst. The

results illustrate the advantage of the CoMi activity
patterns, as well as the superiority of our combined
classifier.

Comparison with four published classifiers
Table 1 and Table 2 show the scores of AUC and MCC
respectively, both of which resulted from our method
and other four ones on the five data sets (one for train
and four for independent test). From Table 1 it is clear
that the two gene sets classifiers are better than the 70g
and 76g classifier (The detailed results of the four pub-
lished methods are shown in Supplementary Table 4
to 7 in Additional file 1). This result conforms to
the previous study [7]. Meanwhile our method has a
better performance than the others, expect in GSE11121
where our method is slightly worse than the gene set
classifiers.
As illustrated above, MCC is the bset measure index

for classifier to handle the lopsided cohorts as in our
work. Therefore, it also was used as the main measure
index. The comparing results of MCC have been shown
in Table 2. From this index it is obvious that the perfor-
mance of our method is the best. In addition, the table
also shows that except our method, all the other ones
had a worse performance on the GSE6532 and GSE4922
than the other data sets, particularly the ones based on
gene signatures. The reason may be that the former two
cohorts include both kinds of lymph-node samples,
whereas the others only include non-lymph metastasis
ones. Nevertheless, even in the two datasets, our method

Table 2 Predictive power of the classifiers on the NCBI
data sets (MCC)

70g 76g Set-median Set-mean Ensemble

GSE2034 0.17 0.142 0.25 0.25 0.29

GSE4922 0.15 0 0.07 0.08 0.24

GSE6532 -0.09 0 0.24 0.25 0.3

GSE7390 0.21 0.21 0.25 0.26 0.29

GSE11121 0.24 0.08 0.27 0.28 0.29

Figure 2 Predictive power of our method. The AUC and MCC of our classifier on the five data sets.
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had a very stable performance. Thus, our method is
obviously very robust.
With the purposes of comparing the performance of

our method and other classifier in a more directly way,
we average the AUCs and MCCs of our method and

others in the five data sets, which is shown in Figure 4.
Our classifier can reach an AUC of over 0.72, while the
two gene set classifiers have an AUC of about 0.7, as to
the two gene signature classifiers, they can only achieve an
AUC which is smaller than 0.6. The similar phenomenon

Figure 3 Comparison of ensemble classifier with miRNA, mRNA and CoMi classifiers. The AUC and MCC of our classifier, the CoMi
classifier, the miRNA classifier and the mRNA classifier on the TCGA breast cancer data set.

Figure 4 Comparison of ensemble classifier with representative classifiers. The average performance of our classifier and the other four
representative classifiers on the five NCBI data sets.
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can be seen from the indexes of the MCC: our classifier is
the best, then is the gene set classifiers, and the classifiers
based on the gene signatures are the worst.
To sum up, the conclusion is that our method is better

than the published classifiers, because it has a better
classification capability as well as a better generalization

Specificity of the selected modules
We have investigated those selected modules and found
that many miRNAs and GOBP terms have actually been
proven to be in relation with cancer or metastasis. For
examples, hsa-miR-34a, hsa-miR-34b and let-7 family,
having been reported to be cancer-related miRNAs [27],
are all included in the selected modules; Furthermore,
cell division [28], DNA repair [29], apoptosis [30], regula-
tion of cell cycle [31], cell death [32], autophagy [33] and
cell migration [34] are all important GO terms related to
cancer. They are also included in the discriminative mod-
ules. In addition, the module ‘cell adhesion’ (124 miRNAs
regulation on cell adhesion), with an AUC of 0.669, are
also reported to be biological meaningful [35].
To validate the specificity of our selected modules, we

calcuated the significance as described in the Method
section and got the p-value as 0.0155, which shows our
selected modules are with significant specificity.

Stabilization of the markers
From the description above, an essential problem in the
studies before is that the gene markers extracted from
various cohorts lack stability. For instance, in the two

most famous gene markers [3,4], there is only one com-
mon gene [6]. Therefore, the classifiers are in shortage
of generalization.
The difference between our work and previous

researchers is that we regard the all the miRNAs acting
in a biological process as an entire marker, each of
which is able to show one feature of the regulation
mechanism in distant metastasis, resulting in the stability
across various cohorts.
On the basis of GSE2034, a total of fifty five modules

were selected. In order to find out the statility of the
filtered modules, firstly we joined all other four NCBI
data sets together to form one data set. Thus we can
ensure that in both outcome groups, there are adequate
samples. After that, the same strategy in GSE2034 was
used to choose 98 distinguishing modules in the merge
data set. After studying the two distinguishing modules
sets, 33 common modules were got, which took up
60.00% of GSE2034, as well as 33.67% of the joined
cohort respectively. The results means that, calculated
by hypergeometric cumulative distribution function test
(Figure 5), the p-value is 6.40e-08. Consequently, in our
method the distinguishing modules extracted from var-
ious datasets have a greater stability, and thus can be
applied to various cohorts.

Biology meanings of the distinguishing markers
The CoMi score can reveal the effect of miRNAs as well
as the biological progress regulated by the miRNAs.
Therefore, we analyzed the chosen modules to examine

Figure 5 Intersection of two different selected module sets. The venny diagram of the interaction on the two different discriminative
module sets.
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if they are able to reveal certain concealed biological
mechanisam influencing cancer outcome. As a result,
most markers were indeed associated to tumor. In our
modules, most biological processes were metastasis-
associate, such as apoptosis [30], autophagy [33] and cell
migration [34]. Moreover, we have found some biologi-
cal processes which are related with cancer prognosis,
but such relationship was seldom reported previously.
An fascinating module selected in our work contains

seven miRNAs, hsa-miR-202, hsa-miR-34a, hsa-let-7b,
hsa-miR-132, hsa-miR-200a*, hsa-miR-503 and hsa-miR-
497, which are regulating ‘positive regulation of inflam-
matory response’ (Figure 6). Among the seven miRNAs,
hsa-let-7b is reported to show suppression action during
cancer progress [36], hsa-miR-34a shows tumor suppres-
sor activity in breast cancer by regulating p53 network
[37], hsa-mir-202 and hsa-miR-503 are related with tumor
genesis [38], hsa-miR-132 can influence cell proliferation
[39], and hsa-miR-497 is up-regulated in metastatic mela-
noma [40]. As to hsa-miR-200a*, its family member,
hsa-miR-200 can promote breast cancer cell colonization
to distant organs [41]. The module may describe that the
seven miRNAs act on the important biology process
which is related to the survival risk of cancer patients [42],
and the actions of the seven miRNAs on the important
biology process can impact the survival risk of breast
cancer sufferers. In addition, hsa-let-7b is reported to be
involved in inflammatory response [43], which may
demonstrate the regulation relation between hsa-let-7b
and the GO term ‘positive regulation of inflammatory
response’, as shown in our module.

What is interesting is that in most selected modules,
the differences of the CoMi scores between these two
groups are less than the most significant ones (data not
shown). But when the modules were put together, there
are actually obvious distinguishing abilities. This situation
may illustrate that our method concentrated on choosing
features which are related to particular biology process
when put together, instead of those which are prognosis-
related respectively, resulting in the situation that the cho-
sen modules were more likely being the “drivers” rather
than the “passengers”. Consequently, the established clas-
sifier is greatly robust across various data sets.

Conclusions
Now that a few miRNAs which regulate a biological pro-
cess can work together to affect the prognosis of tumor
sufferer, and a couple of biology processes may participate
in the prognosis for cancer, we offered to find out the
markers which contain the miRNAs and the GOBP regu-
lation by the miRNAs so as to establish a combined classi-
fier as a way to predict cancer prognosis. From the train
data set, fifty five modules were chosen as distinguishing
ones. Every chosen module was utilized in establishing
a weak classifier separately, all of which have been utilized
in constructing one integrated classifier with the rule of
majority voting. The results of experiment show that,
compared with other methods, the ensemble classifier has
a better performance. Furthermore, the chosen modules
has a high specificity and a stability across various data
sets, which can lead to the conclusion that our method

Figure 6 Module ‘positive regulation of inflammatory response’. The seven breast cancer-related miRNA are regulating on the GOBP
‘positive regulation of inflammatory response’ (GO: 0050729).
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performs both well and robust. The biological anylisis also
proves that the chosen modules are able to reveal hidden
metastasis mechanism in breast cancer.

Additional material

Additional file 1: Data sets and detailed performance of the
classifiers. This file contains the data sets used in our work (S.table 1),
performances of the weak classifiers constructed by the selected CoMi
modules (S.table 2), the detailed performance of the ensemble classifier
on NCBI data set (S.table 3), and results of the representative classifiers
on NCBI data sets (S.tables 4 - S.tables 7).

Additional file 2: CoMi features of the selected modules. This file
describes the detailed CoMi features of the 55 selected modules.
Features with the same GO term are regarded as a module.
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