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Abstract

Background: Pulsed field gel electrophoresis (PFGE) is currently the most widely and routinely used method by
the Centers for Disease Control and Prevention (CDC) and state health labs in the United States for Salmonella
surveillance and outbreak tracking. Major drawbacks of commercially available PFGE analysis programs have been
their difficulty in dealing with large datasets and the limited availability of analysis tools. There exists a need to
develop new analytical tools for PFGE data mining in order to make full use of valuable data in large surveillance
databases.

Results: In this study, a software package was developed consisting of five types of bicinformatics approaches exploring
and implementing for the analysis and visualization of PFGE fingerprinting. The approaches include PFGE band
standardization, Salmonella serotype prediction, hierarchical cluster analysis, distance matrix analysis and two-way
hierarchical cluster analysis. PFGE band standardization makes it possible for cross-group large dataset analysis. The
Salmonella serotype prediction approach allows users to predict serotypes of Salmonella isolates based on their PFGE
patterns. The hierarchical cluster analysis approach could be used to clarify subtypes and phylogenetic relationships among
groups of PFGE patterns. The distance matrix and two-way hierarchical cluster analysis tools allow users to directly visualize
the similarities/dissimilarities of any two individual patterns and the inter- and intra-serotype relationships of two or more
serotypes, and provide a summary of the overall relationships between user-selected serotypes as well as the distinguishable
band markers of these serotypes. The functionalities of these tools were illustrated on PFGE fingerprinting data from
PulseNet of CDC.

Conclusions: The bioinformatics approaches included in the software package developed in this study were
integrated with the PFGE database to enhance the data mining of PFGE fingerprints. Fast and accurate prediction
makes it possible to elucidate Salmonella serotype information before conventional serological methods are
pursued. The development of bioinformatics tools to distinguish the PFGE markers and serotype specific patterns
will enhance PFGE data retrieval, interpretation and serotype identification and will likely accelerate source tracking
to identify the Salmonella isolates implicated in foodborne diseases.

Background

Food safety remains an important concern due in part
to the globalization of food supply and foodborne ill-
nesses create an important public health burden in the
United States. CDC data indicates that nearly 48 million
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people become ill, 128,000 are hospitalized, and 3,000
die due to foodborne illnesses each year, and non-
typhoidal Salmonella enterica is one of the leading
causes of illnesses among the top 31 known foodborne
pathogens [1]. The characteristics of Salmonella infec-
tions has changed over time, including changes in the
frequency of antimicrobial-resistant Salmonella subtypes
implicated and the frequency of different serotypes
among isolates associated with human infections [2].
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Multiple phenotypic and genotypic Salmonella subtyp-
ing methods have been developed to efficiently detect
the cases of human salmonellosis [3]. These methods
include traditional phenotype-based approaches such as
serotyping [4]; genotype-based methods such as Pulsed
Field Gel Electrophoresis (PFGE) [3,5]; DNA sequence-
based methods including DNA microarray analysis,
multi-locus sequence typing (MLST) [6,7], multi-locus
variable-number tandem repeat analysis (MLVA) [8,9]
and next-generation sequencing (NGS) [10-14]. Each of
the subtyping approaches has been applied in Salmo-
nella outbreak strain identification and source tracking;
however they each have their own strengths and
weaknesses in terms of sensitivity, cost, speed, and
robustness.

Large amounts of molecular subtyping data have been
generated by academia, private companies and govern-
ment agencies. Along with the development of new tech-
nologies, it is anticipated that new analytical methods will
be applied more often in combination with the conven-
tional assays to characterize and subtype foodborne
isolates, therefore, enhancing the current food safety and
regulatory science paradigm [15]. Facing the large
amount of emerging data and technologies, one of the
major challenges is the data management, storage, analy-
sis and retrieval, and how to build up the connections
and communication for data developed by various sub-
typing methods. Data mining seeks to find new interest-
ing patterns and relationships in huge amounts of data.
Data mining involves the bioinformatics approaches that
combine biological data using computational tools and
statistical methods to analyze, summarize and transform
data into useful information to improve food safety. Such
a systematic approach facilitates the extraction and corre-
lation of patterns of knowledge that is implicit in the
stored databases.

PFGE is currently the most widely and routinely used
molecular subtyping method by CDC and state health
labs in the US for Salmonella surveillance and outbreak
investigation [16]. Although PFGE provides less-
detailed genetic information than NGS and other DNA
sequence-based methods, it has been successfully used
for over twenty years to type Salmonella from human
patients, foods, and food animal sources because of its
discriminatory power, low cost and high reproducibility
[3,5]. PulseNet (http://www.cdc.gov/pulsenet), the
CDC’s molecular surveillance network used for food-
borne infections, has the largest and most rich Salmo-
nella subtyping database in the world, storing more
than 350,000 PFGE patterns of more than 500 sero-
types since 1996 [17]. Data mining of this valuable
database will provide resources to study the ecology,
epidemiology, transmission, and evolution of the emer-
ging Salmonella serotypes.
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Several commercial software applications have been
used to analyze PFGE data, such as BioNumerics
(Applied Maths, Inc., Austin, TX), GelCompar II
(Applied Maths, Kortrijk, Belgium) and Fingerprinting
II version 3 (Bio-Rad, Hercules, USA). BioNumerics is
the default software in PulseNet standard protocol
[18,19] and has been widely used in PulseNet partici-
pating laboratories and other public health laboratories
that perform PFGE subtyping for bacterial foodborne
pathogens for surveillance and outbreak investigations.
These softwares are currently used to analyze PFGE gel
images to generate dendrograms for clustering PFGE
patterns from different strains of foodborne pathogens.
No other methodologies or commercial tools are
applicable on PFGE data except for the cluster analysis,
which limits the usage of this subtyping technology in
understanding the genetic diversities of foodborne bac-
teria. In addition, BioNumerics and other software
have limitations on dealing with large number of sam-
ples (less than 20,000 patterns for Bionumerics), which
is an obstacle for meta-analysis of the PFGE data and
data mining.

In this study, in order to systematically investigate
and characterize PFGE patterns of Salmonella isolates,
BACPAK knowledgebase was created and systematic
approaches assembled to build up a functional software
package for PFGE data mining. The approaches
include PFGE band standardization, Salmonella sero-
type prediction, hierarchical cluster analysis, distance
matrix analysis and two-way hierarchical cluster analy-
sis. The development of this software package and the
application of its approaches provide a better under-
standing of Salmonella genetic diversity and epidemiol-
ogy, and contribute to PFGE-based characterization
and surveillance of Salmonella isolates in outbreak
investigations.

Implementation

Bacterial pathogen knowledgebase (BACPAK)
construction and PFGE database

An integrated genomic bacterial pathogen knowledge-
base (BACPAK) is being constructed and housed at the
NCTR. As an information system which aims to support
the research on foodborne bacterial pathogen detection,
characterization and outbreak investigation, BACPAK
integrates investigational data from NCTR and other
government agencies as well as expert-curated published
data on foodborne bacterial pathogens (Table 1). As part
of the BACPAK knowledgebase data composition, a total
of 45,923 Xbal-PFGE patterns of Salmonella enterica iso-
lates were collected in the PFGE database established in
our previous work [20] (Table 1). These patterns were
randomly selected within each of the 32 most frequent
serotypes from all the submissions from human sources
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Table 1 The data composition in BACPAK and Salmonella
PFGE fingerprints database.

BACPAK
Antimicribial susceptibility test 767
Antimicribial resistant gene PCR 462
Plasmid sequence information 34
PFGE 45,923
PFGE Database

Serotypes Number of patterns
Agona 1954
Braenderup 2008
Enteritidis 2338
Hadar 1981
Heidelberg 2114
| 4, [5],12:i:- 2281
Infantis 2078
Javiana 2102
Mississippi 1999
Montevideo 2041
Muenchen 1970
Newport 2005
Oranienburg 1951
Paratyphi B var. L(+) tartrate+ 2011
Poona 1956
Saintpaul 2252
Thompson 2045
Typhi 1941
Typhimurium 2064
Typhimurium var. 5- 2146
Anatum 478
Bareilly 426
Berta 502
Derby 393
Hartford 531
Litchfield 401
Mbandaka 432
Panama 516
Paratyphi A 135
Schwarzengrund 225
Senftenberg 189
Stanley 460

to PulseNet from 2005 to 2010. The imported gel images
were processed and analyzed by BioNumerics software
(Applied Maths, Inc., Austin, TX, Version 6.0) according
to the PulseNet protocol [19]. The band matching was
performed at a trace-to-trace optimization value of 1.56%
and a band position tolerance set at 1%.
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PFGE band standardization

Before analysis with the developed tools, the bands of all
the PFGE patterns should be normalized. For example,
when using Salmonella serotype prediction tool, the
bands of tested Salmonella isolates should be normal-
ized to band classes stored within the database, which
are used in the development of training sets for the pre-
diction tools. To accomplish this band normalization,
the NCTR fixed band method [20] was implemented to
standardize the band classes for cross-group analysis. In
this method, the means of the band sizes of two adja-
cent bands of the training data was used as the standard
to normalize the corresponding bands of each new sam-
ple. As an example, assume that the training data have a
set of descending bands sized as s1, s2, s3, s4..., and the
test sample consists of descending bands of t1, t2, t3,
t4... if t1 < (s1+s2)/2, t1 is normalized to s2, and if t1 >
(s1+s2)/2, it is adjusted to s1 [21]. A total of 39,830
PFGE patterns were band standardized and stored in
the database [21].

Salmonella serotype prediction from PFGE fingerprints
Previous studies have reported two classification algo-
rithms, Random Forest (RF) [22] and Support Vector
Machine (SVM) [23], to predict Salmonella serotypes
based on PFGE fingerprints [21,24]. The scripts of the
algorithms were based on the packages “RandomForest”
and “el071” in R (version 2.12.1), respectively. Based on
the prediction accuracies, the SVM algorithm was
chosen to computerize the scripts as a practical tool for
Salmonella prediction using PFGE fingerprints. The nor-
malized database consisting of 39,830 patterns from 32
serotypes was used as the default standard and training
set [21].

Hierarchical cluster analysis

The distances of any two of the standardized PFGE pat-
terns were measured and hierarchical cluster analysis
was pursued by the complete linkage method using
“hcluster package” in R [25]. The scripts were converted
to a computational tool provided in BACPAK.

Distance matrix development and two-way hierarchical
cluster analysis

In the approach of distance matrix analysis, scripts were
written in R to calculate the Jaccard Distance [26] of
PEGE patterns for measuring the dissimilarity of PFGE
inter- or intra-serotypes patterns. The color from blue
to red indicted the values of the Jaccard Distance ranged
from O to 1. The scripts were computerized as a tool to
identify the differences and relationships among the var-
ious Salmonella patterns within specific serotypes and
among the targeted serotypes.
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In the two-way hierarchical cluster analysis, scripts
were coded using R to calculate the average proportions
of the bands present at every designated band location
with values ranging from 0 to 1 to build the characteris-
tic parameters of each target serotype. The hierarchical
cluster analysis using the complete linkage was applied
based on the dissimilarity measures of any two serotypes
calculated by the Euclidean distance [27] of the charac-
teristic parameters. The scripts were implemented to
pursue a two-way clustering analysis of the PFGE pat-
terns, in which both serotypes and band locations were
clustered according to dissimilarity measures to simulta-
neously identify the associations between serotypes and
band locations.

Results and discussions

To begin to address the need to develop improved analyti-
cal tools for PFGE analysis, a software package consisting
of the integrated data mining techniques and the PFGE
database was established and stored within NCTR’s
BACPAK. BACPAK is capturing and storing data includ-
ing antimicrobial susceptibility data, plasmid sequence
data, PCR data on antimicrobial resistance genes and
PFGE data (Table 1). The PFGE database consisted of
45,923 semi-randomly selected PFGE patterns submitted
to PulseNet from 2005 to 2010 (Table 1) [20]. Based on
the statistics of the Salmonella Annual Report 2006 [2]
and Salmonella Annual Summary Tables 2009 from CDC
[28], isolates from the 32 serotypes represented in the
BACPAK database comprised more than 80% of all
Salmonella reported over the past 14 years in the US [21].

The approach for PFGE band standardization

Band normalization is the key point to allow the com-
parison from different dataset. Since BioNumerics was
unstable to handle more than 20,000 PFGE patterns, the
implemented NCTR fixed band method was especially
useful for large dataset analysis. It showed higher
accuracies when used to normalize PFGE bands for
Salmonella serotype prediction in comparison to the
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conventional BioNumerics fixed band method [21], and
made the meta-analysis available to clarify the inter- and
intra-serotypes relationships in a large dataset [20]. In
addition, NCTR fixed band method transferred the
gel-imaged band class into certain digital parameters in
the model, and normalized the bands of future candi-
dates with no necessity to upload and save standard
band class in BioNumerics [21].

The prediction approach for Salmonella serotype
prediction based on PFGE patterns

The prediction algorithm was developed as described pre-
viously to identify Salmonella serotypes based on their
PFGE patterns [21,24]. In these studies, the NCTR fixed
band method coupled to the SVM classification produced
the highest average predictive accuracies for serotype
determination (96.1%) [21]. Therefore, the SVM algorithm
was coupled with NCTR standardization method and
turned the R scripts which were implemented as a compu-
tational prediction tools installed in BACPAK.

Figure 1 shows the work chart of the prediction tool,
which includes data normalization, followed by serotype
prediction. A total of 39,830 PFGE patterns from the
PFGE database were applied as the training dataset bound
to the prediction tool [21]. The tool allows individual
users to either test the tool with the data in BACPAK or
upload their data in a proper format. The output result is
presented in an Excel file showing the predicted serotypes.

As a test case, five Salmonella isolates (Table 2) were
randomly selected from PulseNet but excluded from the
training set of 39,830 PFGE patterns. The gel images
were processed by BioNumerics software according to
the PulseNet protocol [29]. The resultant file containing
band presence/absence data was uploaded into the pre-
diction tool in BACPAK. The output result is shown in
Table 2. The five tested isolates had their serotypes cor-
rectly predicted.

The original prediction tools were developed by a
supervised classification approach [21,24]. This approach
focused on studying the association between PFGE

Excel

Run the tool to test using our own data

Interested in predicting your own data

\

- - = - -
Upload a file

Figure 1 The flow chart of the tool for Salmonella serotype prediction. (The image was taken from BACPAK)

Tool

output
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Table 2 Five selected test Salmonella isolates, the prediction results and the distinguished band markers by the two-
way hierarchical cluster analysis tool for five serotype identification ("X” stands for band presence).

Test Salmonella isolates Predicted serotypes Real serotypes

Distinguished band markers (Kb)

32.8 849 1272 160.1 168.3 2232 2375 3739 411.8 4599
T1: AK_0823200134 | 4, [5],12:i:- | 4, [5],12:i:- X X X
T2: AL_AL_8002189-06 Thompson Thompson X X
T3: CT_02024279 Hadar Hadar X X
T4: MD_MD0622721 Typhi Typhi X X

T5: TX_TXAML0902385 Oranienburg Oranienburg

patterns and serotypes determined using traditional sero-
logical methods, and applying the information learned
from the training set as the rules for prediction in the
test set. The prediction accuracy was measured by apply-
ing the prediction model based on the training set to
emulate the population of the future profiles to be ana-
lyzed. If the samples in the training set do not adequately
represent the likely samples to be encountered in use,
then bias may occur. The training set used in these stu-
dies represents greater than 80% of all the isolates
reported to CDC, therefore, the prediction tool should be
able to predict most Salmonella serotypes. As such, this
tool should be especially useful to predict the serotype of
outbreak isolates before the conventional methods were
carried out in a laboratory. The refinement of the predic-
tive tool is an ongoing effort as additional PFGE data

becomes available and is incorporated into the training
dataset to improve the prediction accuracies.

Hierarchical cluster analysis

Unlike the supervised classification algorithm, hierarchical
cluster analysis is unsupervised, where the samples are
grouped into subsets based only on the pairwise similari-
ties among their PFGE profiles without using serotype
information [24]. As a case study, five test Salmonella
isolates were added to the dataset of the 10,193 PFGE
patterns of the five predicted serotypes (Table 2) which
were retrieved from the PFGE database in BACPAK. The
hierarchical analysis tool was applied on this dataset
(10,198 PFGE patterns) and the dendrogram is shown in
Figure 2. At the cutting threshold of 0.98, all 10,198 pat-
terns were grouped into 9 clusters (C1 to C9), and four

Dataset(10198)

No,
| 4,[5],12:i:- (4,5) 2279
Hadar (H) 1980
Oranienburg (O) 1960
[Thompson (T) 2044
[Typhi (Ty) 1940
Testisolates i
[T1: AK__0823200134 14,[5112:i:-
IT2: AL__AL-8002189-06 Thompson
[T3: CT__02024279 Hadar
[TS: X__TXAMLOS02385 Oranienburg

0.98
ci¢1o7) c2(2) c3(4a) lc41835) | c5(326) C6{1839) |C7(1868) C8(2225) |co(1952)
T(1699) A5(2178) 2,5(101)
H(2) H(52) T(2) T(25)
Ty(21) H2) T(317) T()
ow@s) || 7@ | oz | Y1832 | fey T‘;‘.ge) H(1867) '{.'\(,‘:f)) 0(';'(332)2)
T3 T1 TS5
0.92 o2 lo.oz Jo92 0.92 b 92
| | | ] . | | ] | |
T(6) : S0 H() ()
Ty(21) H(1) | | HAT) T303)| [TH14)] [T(1893) fryiasp|Hizs)| [Hez7y| | 7). (15RO T 01y Njorsesy | H1) | frasy| b,s¢101) | HE1)
0(86) o34)| | o8) HE) [| T2 s %}ﬂ ™ Hee || s ] |0@S 0(14)
¢1(107) c2(35) ¢3(9) ¢4(303) c5(23) c6(1694) ¢7(86) ¢B(25) c9(34) ¢10(53) ¢11(2111) ¢12(61) c13(1595) c14(216)c15(18) ¢16(101) ¢17{(22)

Figure 2 Hierarchical cluster analysis of PFGE Xbal patterns of 10,198 (10,193+5) Salmonella isolates. The dendrogram shows a simplified
tree-structure of 10,198 isolates of five serotypes: S. | 4, [5],12i- (4,5), S. Hadar (H), S. Oranienburg (O), S. Thompson (T), and S. Typhi (Ty). Five of
10,198 isolates are test isolates and labeled as T1 to T5 in various colors, while the rest of the isolates are retrieved from the PFGE database
bound with the tools. The number in parentheses indicates the number of isolates in the branch squares. There are nine major clusters (C1 to
C9) and 17 sub-clusters (c1 to c17) grouped by the hierarchical cluster analysis tool.
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of five test samples were separated into four individual
groups where the predicted serotypes of the four test iso-
lates matched those of the majority samples in the same
cluster (Figure 2). The exception was the isolate
CT_02024279 whose serotype was correctly predicted as
Hadar by the prediction tool (Table 2). Some subtypes
were distinguished at this cutting threshold. For example,
the predominant cluster of serotype Oranienburg was in
C9 which harbored 1822 patterns of Oranienburg, while
two subtypes were located in C1 (86 patterns of Oranien-
burg) and C3 (42 patterns of Oranienburg) (Figure 2).
Serotype Thompson was found to have 1 predominant
type (C6) and two subtypes (C5 and C9). When the cut-
ting threshold decreased to 0.92, more subtypes were dis-
tinguished (c1 to c17). C5 at threshold of 0.98 was
further classified into two groups of c4 and c¢5 at thresh-
old of 0.92, and c4 had a pure composition of 303
Thompson strains. Test Salmonella isolates T2 and T3 in
C6 was clarified into different groups of c6 (T2) and c9
(T3). At this cutting threshold, the predominant pure
group of each of the five serotypes was identified (C4 for
Typhi, c6 for Thompson, C7 for Hadar, c11 for I 4,
[5],12:i:- and c13 for Oranienburg), and four of five test
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Salmonella isolates (T1, T2, T4 and T5) were clustered
together with the predominant groups of their corre-
sponding serotypes, respectively. T3 was mis-classified
with 27 isolates of same serotype Hadar in Thompson
predominant group C6, indicating that this subgroup of
Hadar isolates had close relationship with serotype
Thompson. The tool of hierarchical cluster analysis
allows users to distinguish the underlying phylogenetic
structures or to discover new subtypes between various
PFGE patterns. With the emergence of NGS and other
sequencing technologies, the subtypes distinguished by
hierarchical cluster analysis tool will be clarified in detail.

Distinguishing serotype relationships: distance matrix and
two-way hierarchical cluster analysis

Distance matrix and two-way hierarchical cluster analysis
provide users the appropriate methods to further distin-
guish the relationships among Salmonella serotypes. Five
serotypes were selected to demonstrate the functionality
of these tools. A total of 10,193 PFGE patterns belonging
to the five serotypes (Table 2) were retrieved from the
database and uploaded to the two tools. Figure 3 exhib-
ited the heatmap of the distance matrix of 10,193 PFGE

Oranienburg

Thompson

Typhi

e ” L;::ﬂ:
ﬁﬁm’ i Elii‘lh

bl RN B

Figure 3 Distance matrix of five selected serotypes. The heatmap shows the distances matrix presenting the dissimilarities for any two
patterns in the selected dataset of five serotypes. The dissimilarity of PFGE patterns inter- or intra-serotypes was calculated by Jaccard Distance,
and the values ranged from 0 (blue) to 1 (red) (shown in the index).
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®s2

Hadar

Oranienburg

Thompson

14,[5),12:0:-

0 1

Figure 4 Two-way hierarchical clustering analysis of the five selected serotypes. The color histogram shows the proportions of the bands
present at every designated band location with values ranging from 0 to 1. The hierarchical cluster analysis was applied based on the
dissimilarity measures of any two serotypes calculated by the Euclidean distance of the characteristic parameters. Both serotypes and band
locations were clustered according to dissimilarity measures. Red asterisks indicated the distinguished band markers.

patterns of five serotypes retrieved from the database as a
case study. The squares in the matrix showed various
colors ranging from blue to red, indicating various
degrees of similarity of patterns within every pair of sero-
types. Five blue squares in the diagonal, which were dis-
tinguishable from the other squares, represent the close
distances between the various patterns within the same
serotype (Figure 3). The rest of the squares were red or
red/white, indicating the distances between the patterns
of their corresponding horizontal and vertical serotypes.
The bright blue square of serotype Thompson indicated
that 2,045 patterns of this serotype were similar to each
other; while serotype Hadar showed close relationship
with serotype Thompson and Typhi (pale red/white
squares). The result was concordant with the prediction
accuracies [21] and hierarchical cluster analysis (Figure
2). Users can directly visualize the similarities/dissimilari-
ties of any two individual patterns and the inter- and
intra-serotype relationships of two or more serotypes by
using this distance matrix analysis tool with the bound
PFGE database.

The tool of two-way hierarchical cluster analysis pro-
vides the summary of the overall relationships between
selected serotypes as well as the distinguishable band
markers of these serotypes. Using this tool, the hierarchi-
cal cluster analysis is applied to the dissimilarity measures
of any pair of the selected serotypes calculated by the
Euclidean distance of the characteristic parameters. The
color of each of the blocks from blue to red represents
the various average proportions (between 0 and 1) of
band occurrences for each of the selected serotypes
(Figure 4). As a case study, the tool was applied to the
dataset of 10,193 PFGE patterns of five serotypes
retrieved from the database, and the result was shown in
Figure 4, where both serotypes and band locations were
grouped to simultaneously identify the associations
between serotypes and bands. The five serotypes were
divided into two groups (S1 and S2). The cluster image
indicated a group of marker bands (highlighted with red
asterisks) which distinguish the five serotypes (Table 2).
The tool shows more advantages in identification of sero-
type relationships when more serotypes are selected. Our
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previous research applied this tool to a meta-analysis of
32 serotypes and reported the close relationship of PFGE
patterns between serotypes Hadar to Infantis and
Muenchen to Newport [20].

The five functional tools were assembled and inte-
grated into a software package to study PFGE profiles
for better understanding the genetic diversity of Salmo-
nella and other foodbornbe pathogens. The analysis
tools included in the package allow the systematic analy-
sis of PFGE data from various aspects and make it avail-
able to meta-analyze PFGE profiles from large data sets.
The software package is currently available in the NCTR
internal BACPAK knowledgebase. BACPAK, as a gen-
eral-purposed bioinformatics pipeline for foodborne
pathogen analysis, will be a new addition to the FDA
bioinformatics tools at http://www.fda.gov/ScienceRe-
search/BioinformaticsTools/default.htm.

Conclusions

Although NGS and other sequencing technologies are
advancing rapidly in foodborne pathogen subtyping, PFGE
is still the most widely used method to characterize Sal-
monella strains isolated from outbreaks[30]. In the devel-
oped software package, PFGE band standardization
normalizes the data for cross-group large dataset analysis.
The Salmonella serotype prediction tool based on PFGE
patterns allows rapid and accurate prediction of Salmo-
nella serotypes from outbreaks before the conventional
serological methods are pursued. It also shows advantages
in distinguishing an isolate that is serotyped as “unknown”
by conventional methods, or for a laboratory where stan-
dard serotyping is not available. Hierarchical cluster analy-
sis could be used to clarify the subsets of a group of PFGE
patterns for source tracking and identification of outbreak
isolates. Since Salmonella serotypes can be closely related
in terms of their virulence, and antimicrobial resistance
profiles [17,30-33], our distance matrix analysis and two-
way hierarchical analysis tools make it possible to study
the relationships between phenotypes and genotypes of
Salmonella isolates and to distinguish band markers and
PFGE pattern diversity for serotype identification, espe-
cially for large dataset analysis. Theoretically, these
approaches could be applied to other gel-based analysis
and other pathogens in the future. Combined with the Sal-
monella genome sequencing data, the distinct serotype
specific patterns and bands may provide useful informa-
tion to aid in the distribution of serotypes in the popula-
tion and potentially reduce the need for laborious
analyses, such as traditional serotyping. In addition, the
PFGE analysis tools in the software package are expected
to help the in silico pattern construction to match PFGE
data with NGS data in future studies.
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