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Abstract

Background: Even though only 1.5% of the human genome is translated into proteins, recent reports indicate that
most of it is transcribed into non-coding RNAs (ncRNAs), which are becoming the subject of increased scientific
interest. We hypothesized that examining how different classes of ncRNAs co-localized with annotated epigenomic
elements could help understand the functions, regulatory mechanisms, and relationships among ncRNA families.

Results: We examined 15 different ncRNA classes for statistically significant genomic co-localizations with cell type-
specific chromatin segmentation states, transcription factor binding sites (TFBSs), and histone modification marks using
GenomeRunner (http://www.genomerunner.org). P-values were obtained using a Chi-square test and corrected for
multiple testing using the Benjamini-Hochberg procedure. We clustered and visualized the ncRNA classes by the
strength of their statistical enrichments and depletions.
We found piwi-interacting RNAs (piRNAs) to be depleted in regions containing activating histone modification
marks, such as H3K4 mono-, di- and trimethylation, H3K27 acetylation, as well as certain TFBSs. piRNAs were further
depleted in active promoters, weak transcription, and transcription elongation regions, and enriched in repressed
and heterochromatic regions. Conversely, transfer RNAs (tRNAs) were depleted in heterochromatin regions and
strongly enriched in regions containing activating H3K4 di- and trimethylation marks, H2az histone variant, and a
variety of TFBSs. Interestingly, regions containing CTCF insulator protein binding sites were associated with tRNAs.
tRNAs were also enriched in the active, weak and poised promoters and, surprisingly, in regions with repetitive/
copy number variations.

Conclusions: Searching for statistically significant associations between ncRNA classes and epigenomic elements
permits detection of potential functional and/or regulatory relationships among ncRNA classes, and suggests cell
type-specific biological roles of ncRNAs.

Background
The advent of novel high-throughput technologies such as
next-generation sequencing (NGS) has empowered the
gathering of transcriptional data of unprecedented quan-
tity and quality. It has lead to the discovery that ~75% of
the human genome is transcribed to RNA at some point
in certain cell types [1,2], with other estimates being as
high as 90% [3]. Only ~1-2% of these transcripts are

translated into protein form [4,5], while the remainder are
classified as non-coding RNAs (ncRNAs) [6,7]. The fact
that ncRNAs are relatively abundant, expressed in a devel-
opmentally regulated fashion [8,9], and often exhibit
precise sub-cellular localization [2] supports the notion
that they play important biological roles. In particular,
their ability to base-pair with other transcripts and regions
suggests they may be responsible for a variety of regulatory
functions [10].
Attempts to untangle the complex landscape of

ncRNAs have led to crude classification of ncRNAs based
on their length (small, 18-31nt; medium, 31-200nt;
and long, >200nt) [11], function (housekeeping ncRNAs
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such as ribosomal (rRNAs), transfer RNAs (tRNAs)),
regulatory potential (microRNAs (miRNAs), long non-
coding RNAs (lncRNAs)) [12], and subcellular localiza-
tion (small nuclear RNAs (snRNAs), small nucleolar
RNAs (snoRNAs), cytoplasm-located piwi-interacting
RNAs (piRNAs), and short interfering RNAs (siRNAs)).
Other unusual ncRNA species such as trans-spliced
transcripts, macroRNAs that encompass enormous
genomic distances, and multi-gene transcripts that
encompass several genes or even the whole chromo-
some further confound efforts for systematic classifica-
tion [13-15]. In reality, however, clear categorization of
ncRNA classes has been quite difficult, as many
ncRNA transcripts often share the properties of multi-
ple categories.
ncRNAs can also be broadly categorized by genomic

properties such as 1) sense or antisense transcripts,
when the ncRNA transcript co-localizes with exons of
another transcript on the same or the opposite strand,
respectively, 2) bidirectional, when the expression of
the ncRNA and of a neighboring coding transcript in
the opposite strand are initiated in close proximity, 3)
intronic, when the ncRNA arises from an intron of
another transcript, and 4) intergenic, when the ncRNA
is localized between two coding transcripts [10,12,16].
Other ncRNA classes, such as promoter-associated
RNAs (PARs) and enhancer RNAs (eRNAs) are also
being characterized [17,18]. These considerations alone
suggest the role of genomic organization in the biogen-
esis of ncRNAs is more complex than previously
thought [2].
Recent years have seen a rapid growth of publicly

available data on genome organization and functional
annotation. The Encyclopedia of DNA Elements
(ENCODE) project has been actively cataloging func-
tional elements in the human genome, such as cell type-
specific histone modification profiles, chromatin states,
and transcription factor binding sites [3]. In this study
we will refer to these functional and regulatory regions
as epigenomic elements, i.e., genomic data other than
nucleotide sequence that describes functions, properties,
or experimental values associated with genome regions
[19-23]. Although the precise definition of the word
“epigenomics” is hotly debated [24] and is often nar-
rower in scope, we feel our broader definition of epige-
nomic elements is suitable to convey the concepts of
our research to the readers. The aim of the current
study was to use the ENCODE data, such as cell type-
specific histone modification profiles, chromatin states,
and experimentally validated transcription factor binding
sites to examine how epigenomic elements statistically
significantly associated with different classes of ncRNAs
may reveal functional roles and relationships among
ncRNA classes.

We investigated whether the genomic coordinates of 15
ncRNA classes significantly overlapped with or were
depleted in a total of 420 annotated epigenomic elements.
We found that piRNA and tRNA ncRNAs were strongly
under- and over-represented with the majority of
epigenomic elements examined, respectively. Other
ncRNA classes showed less extreme enrichments, but we
were able to confirm known and identify new statistically
significant ncRNA class-specific epigenomic associations.
Clustering ncRNA classes by the significance of their
epigenomic associations captures their known hierarchy,
providing a means to utilize epigenomic background for
classification purposes. In summary, our study demon-
strates a means to use genome annotation data to identify
regulatory commonalities and differences among genomic
and epigenomic elements.

Methods
ncRNA data
GRCh37/hg19 genome assembly coordinates for different
classes of non-coding RNAs were extracted from miRbase
(miRNAs and pri-miRNAs), UCSC genome database (piR-
NAs), and RFAM (all other classes) using custom scripts
available at git://wrenlab.org/ncRNA-loci. piRNAs were
extracted from the UCSC knownGenes table by string
matching on “*piRNA*”, and RFAM categories were used
for RFAM-derived elements. We ignored ncRNA classes
with less than 50 members, as their analysis did not show
any statistically significant associations (data not shown).
The relationship among ncRNA classes is shown on
Figure 1. A total of 16,701 ncRNAs were analyzed (Table 1).

Functional/Regulatory elements data
As part of our interest in automating the search for bio-
logically meaningful correlations among high-through-
put and high-information data [25-27], we developed
GenomeRunner (http://sourceforge.net/projects/geno-
merunner), a software program that searches for statisti-
cally significant co-localization between a set of genomic
regions of interest (ncRNA classes in this paper) and
sets of annotated genomic features (epigenomic ele-
ments, e.g., genomic regions in the GM12878 cell line
where H3K4me1 histone modification sites were found)
[28]. We tested each different class of ncRNAs to see if
they were statistically significantly associated with or
depleted in three groups of epigenomic elements: Chro-
matin State Segmentation by HMM from ENCODE/
Broad, Histone Modifications by ChIP-seq from
ENCODE/Broad Institute, and Experimentally validated
Transcription Factor ChIP-seq from ENCODE (Addi-
tional files 1, 2). A total of 420 epigenomic elements
were obtained from the UCSC genome database [29],
and stored in a local MySQL database accessible for the
GenomeRunner community.
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Enrichment analysis
Briefly, sets of ncRNAs were tested for genomic overlap
of at least 1 nucleotide with 420 epigenomic elements.
We first calculated the total number of members from
an ncRNA class that overlapped with an epigenomic
element. If a given ncRNA overlaps with >1 epigenomic
element of the same type, it is only counted once, to
reflect the fact of overlap. In other words, overlap
counting is ncRNA-centric, e.g., if a tRNA overlaps with
3 NFKB binding sites, only one is added to the tRNA-
NFKB overlap counter.
We then performed random sampling from the total

pool of all 15 classes of ncRNAs, selecting the same
number of random ncRNAs as in the class being ana-
lyzed. The use of all ncRNAs as a background enables
us to search, specifically, for associations that might dis-
tinguish one ncRNA class from the rest. This back-
ground selection also restricts random sampling to
avoid low complexity genomic regions, such as transpo-
sable elements, duplications and inversions, repeats,
comprising up to 47% of the human genome [30]. We
selected a random number of ncRNA elements accord-
ing to the size of each ncRNA class and performed 1000
such random samplings, estimating the average number
and variance of random overlapping. A Chi-square test

was used to determine whether there was a significant
difference between the total number of co-localization
for the ncRNA class as compared with what could be
expected by random chance.

Transformation of p-values
To emphasize epigenomic elements most significantly
associated with an ncRNA class, p-values were adjusted
for multiple testing using the Benjamini-Hochberg proce-
dure [31]. For easier visualization and comparison, we
converted p-values into decimal scale by -log10-transfor-
mation. A “-"sign was added if a p-value represents an
underrepresented association. This allows representation
of significant associations in an intuitive format - larger
numbers equal more statistically significant overrepre-
sented associations of a ncRNA class with an epigenomic
element, while smaller negative numbers represent more
statistically significant under-represented associations.

Clustering and visualization
The transformed p-values can be directly visualized with
a blue-yellow gradient representing under- and over-
represented associations, respectively. A n × m matrix
of transformed p-values, where n is the number of
ncRNA classes and m is the number of epigenomic
elements, was assembled (Additional file 3). Epigenomic
elements showing no statistically significant associations
(p-value cutoff 0.01, unless otherwise specified) with at
least one ncRNA class were removed. Further, epigenomic
elements showing consistent associations across the
ncRNA classes (standard deviation of the transformed
p-value distribution is less than 2) were also filtered. These
filtering steps simplify visualization and allow a reader to
focus on the most significant epigenomic associations
differentially enriched among ncRNA classes.
Hierarchical clustering was performed using “maximum”

distance to measure dissimilarity between rows and
columns, and the “ward” agglomeration method [32].
Clustering and visualization were performed within R
computing environment [33].

Pair-wise correlation analysis
We compared epigenomic similarities and differences
among ncRNA classes. That is, pair-wise correlations
between all ncRNA class-specific transformed p-values
were measured using Pearson’s correlation coefficient.
We expect ncRNA classes showing similar enrichment
patterns with epigenomic elements to correlate with
positive Pearson’s correlation coefficient close to 1,
while ncRNA classes differentially associated with epige-
nomic elements would show negative Pearson’s correla-
tion coefficient. Combining these Pearson’s correlation
coefficients into n × n matrix, where n is the number of
ncRNA classes, allows clustering and visualization of

Figure 1 The hierarchy of ncRNA classes. Adapted from [45].
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epigenomic similarities among ncRNA classes as
describe above, using blue/yellow gradient to highlight
negative/positive correlations, respectively.

Results
The number of members per ncRNA class varies con-
siderably, ranging from 52 scaRNAs to 3,024 small
nuclear RNAs (Figure 1, Table 1). This variability in
class size was accompanied by variability in their statisti-
cally significant enrichments versus all 420 epigenomic
features. The tRNA and piRNA classes showed the lar-
gest variability of the enrichment/depletion p-values,
after correction for multiple testing (Figure 2A).
There was a positive correlation between the size of

ncRNA classes and the standard deviation of the p-value
(Pearson’s correlation coefficient = 0.25), although it was
not significant (p = 0.487), likely due to the extreme p-
value variability in tRNA and piRNA classes. Removing
those classes increased Pearson’s correlation coefficient to
0.58 (p = 0.134). Notable, that both classes did not show
extreme size or length abnormalities, being comparable in

size with snoRNA and miRNA classes (Table 1, Figure 2B),
suggesting strong epigenomic associations driving p-value
variability.

Pair-wise correlation analysis of epigenomic associations
reveal known and novel relationships among ncRNA
classes
We investigated how similar ncRNA classes were across
all their associations with epigenomic elements. That is,
p-values for each ncRNA-epigenomic element were
calculated and their similarities across all 420 elements
analyzed were quantified by Pearson’s correlation coeffi-
cient (Figure 3). Out of 420 elements analyzed, 64 did
not show statistically significant associations with any of
the ncRNA classes. Therefore, 356 were used for the
global correlation analysis (Additional file 4).
Expectedly, snoRNA, C/D-box and H/ACA-box

ncRNA classes shared similar epigenomic associations,
being subgroups of a larger snRNA class (Figure 1). Yet
scaRNAs, a subgroup of snoRNAs, did not share similar
significant associations. This may be, in part, due to size

Table 1 The ncRNA classes used in the current study

ncRNA
abbreviation

Parent
family

Source Description Function Counts Min
length

Mean
length

Max
length

7SK Gene RFAM 7SK RNA Part of snRNP complex; involved in control of transcription
elongation.

316 61 293 374

C/D box snoRNA RFAM CD-box RNA Localized to nucleolus, involved in methylation of rRNA. 509 30 99 238

H/ACA box snoRNA RFAM HACA-box Localized to nucleolus, involved in pseudouridylation of rRNA. 440 52 130 329

lncRNA Gene RFAM Long non-
coding RNA

A non protein-coding transcript with > 200 nt. 217 36 144 463

miRNA Gene miRbase micro RNA A short, hairpin-shaped RNA that usually suppresses
translation of target mRNA by binding to 3’ UTR.

2233 15 22 27

piRNA Gene UCSC piwi-
interacting

RNA

A large class of 26-31 nt RNA suggested being involved in
transposon silencing.

2152 20 47 8302

pri-miRNA Gene miRbase primary
microRNA

A transcript containing one or more microRNAs before
processing by Drosha complex.

1595 41 83 180

rRNA Gene RFAM ribosomal
RNA

RNA which is directly incorporated into the ribosome (distinct
from mRNA encoding ribosomal proteins).

611 34 119 1860

scaRNA snoRNA RFAM small Cajal
body-specific

RNA

Located in the nucleolus, and involved in methylation and
pseudouridylation of spliceosomal RNAs.

52 82 153 419

snoRNA snRNA RFAM small
nucleolar RNA

RNA located in the nucleolus, mostly involved in modification
of other RNAs, such as rRNA or spliceosomal RNA.

1001 30 115 419

snRNA Gene RFAM small nuclear
RNA

Small RNA located in the nucleus, involved in the
spliceosome, RNA modification, or other functions.

3024 30 109 419

spliceosomal snRNA RFAM spliceosomal
RNA

RNA forming part of the spliceosome complex. 1812 49 111 229

SRP-RNA Gene RFAM signal
recognition
particle RNA

RNA forming part of the SRP complex. The SRP complex
targets proteins to their proper subcellular localization by
recognizing the signal recognition peptide tag on proteins.

941 201 286 361

tRNA Gene RFAM transfer RNA Transfer amino acids to the ribosome for protein construction. 905 59 72 107

Y-RNA Gene RFAM Y RNA Components of the Ro RNP complex; may repress Ro activity.
As an independent function, is also required for DNA

replication.

893 57 102 148

Total 16701
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differences in the groups (see Table 1). Along with
tRNA class, scaRNAs had epigenomic associations dis-
tinct from other ncRNA classes. Spliceosomal, rRNA,
7SK, piRNA, SRP-RNA and Y-RNA classes formed the
largest group with similar epigenomic associations.
While ncRNA classes that cluster together by their

epigenomic associations provide a good means to assess
potential functional/regulatory similarities, each class can

also have anti-correlated epigenomic associations. Pairs of
ncRNA classes best (anti) correlating with each other are
listed in Table 2.

piRNAs are depleted, while tRNAs are enriched in histone
modification marks
Combinations of histone modifications mark the bound-
aries of transcriptionally active regions, and are associated
with distinct regulatory sites [34]. We expected to observe
both enriched and depleted associations of ncRNA classes
with histone marks. Surprisingly, ncRNA classes showed
either preferentially enriched or depleted statistically
significant associations with histone modification marks.
piRNAs, spliceosomal, SRP-RNAs, rRNAs, Y-RNAs were
predominantly depleted in histone modification marks
from the 14 cell lines examined. tRNAs, H/ACA-box,
pri-miRNAs, miRNAs, lncRNAs, C/D-box and snoRNAs
were enriched in histone modification marks. Notably,
piRNAs and tRNAs showed the largest variability in
enrichment (Figure 4A).
Transfer RNAs and piwi-interacting RNAs showed the

strongest anti-correlated associations with epigenomic ele-
ments (Figure 5A, Additional files 4, 5). The tRNAs were
strongly enriched in the actively transcribed genomic
regions, permissive and activation-related H3K4 di- and
trimethylation, H3K9 and H3K27 acetylation marks, and
H2az histone variant. Contrary to the overall picture of
active transcription regions associated with tRNAs, they
were also associated with the transcription insulator CTCF
binding sites (Additional file 3) that blocks communication
between promoters and downstream genes [35]. Although
we identified that tRNAs tend to be enriched in regions
with CTCF insulators, whether or not CTCF binds in
these regions remains to be determined.

Figure 2 Variability of enriched associations per ncRNA class. A) The standard deviation of ncRNA classes enrichment p-values, adjusted for
multiple testing, tested for associations with all epigenomic elements. B) Positive correlation between the size of an ncRNA class and the
variability of their associations with all epigenomic elements.

Figure 3 Correlations among the ncRNA classes based on their
enriched or depleted associations with all epigenomic
elements. If two classes exhibit similar enrichment/depletion
patterns, they would be positively correlated (yellow gradient).
Patterns of the opposite associations will be negatively correlated
(blue gradient).
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Conversely, piRNAs were associated with heterochro-
matin regions in the genome and underrepresented in
active promoter regions (Figure 5A, Additional files 4,
5). piRNAs were depleted in the same types of histone
marks the tRNAs were enriched in. That is, piRNAs
were depleted in activation-related H3K4 mono-, di-
and trimethylation marks, H3K9ac, H3k27ac and
H3k36me3 marks, and the H2az histone variant. Yet,
the association of piRNAs with transcriptionally silent
regions of the genome is blurred by their depletion in
H4K20me1, a marker of silent chromatin, and in
H3k27me3 marker of gene repression.
Heatmap visualization helps summarize over- and

underrepresentation trends for other ncRNA classes
(Figure 5B, Additional files 4, 6). The H3K4 di- and tri-
methylation marks were the most frequently differentially
enriched, followed by H3K9ac. We did not observe bias in
the cell type-specific origin of these histone marks,
although K562, NHEK, H1hESC, Hela-S3 and HepG2
specific marks dominated the heatmap. The driving force
behind the clustering appeared to be the histone marks
themselves. This can be seen from groups of H3K79me2,
H3K4me2 and H3K4me3 showing similar enrichment
patterns, thus clustered together, on the heatmap.
Interestingly, even though C/D box and H/ACA box

RNAs are subclasses of snoRNAs, the H/ACA box sub-
class was not enriched for most of the associations that
either snoRNAs or C/D box RNAs were, in general. This
is in contrast to the general similarity of associated
features shown in Figure 5B and indicates that one of the
factors that may separate the two snoRNA subclasses is
their regulatory locations. The only mark H/ACA box and
C/D boxes seemed to both be enriched in was H3K79me2
which has been associated with the cell cycle. This suggests

that H/ACA and C/D box RNAs may be orchestrated
similarly by histone modification marks during the cell
cycle, but not beyond.

piRNAs are enriched in the repressed chromatin states,
tRNAs are associated with transcriptionally active regions
The Chromatin State Segmentation by HMM from
ENCODE/Broad covers a spectrum of chromatin states,
ranging from active promoters and strong enhancers to
heterochromatin and repetitive/copy number variation
regions. Expectedly, we found nearly symmetrical distri-
bution of enrichment/depletion of ncRNA associations
in opposing chromatin states, reflecting their presence
in either active or repressed regions and, conversely,
absence in the region with opposite regulatory role.
Again, piRNA and tRNA classes showed greater range
of p-values (Figure 4B).
piRNAs were strongly enriched in the repressed chro-

matin (evidence from 9 cell lines), heterochromatin (5 cell
lines) and insulator (3 cell lines) regions, as well as in the
repetitive/CNV regions in the H1hESC cell line. Conver-
sely, they were depleted in the active, weak and poised
promoters (9, 8 and 4 cell lines, respectively), transcription
elongation and transition regions (9 and 7 cell lines,
respectively), strong and weak enhancers (11 cell lines)
(Figure 5C, Additional files 4, 5). Although these findings
suggest piRNAs are generally located at the inactive
regions of the genome, cell type-specific chromatin states
also showed an exception from these observations. For
example, piRNAs were depleted in the heterochromatin
regions in only the K562 cell line.
tRNAs showed greater diversity in cell type-specific

enriched and depleted associations with chromatin states.
They were enriched in the active, weak, and poised

Table 2 Pearson’s correlation coefficient for pairs of ncRNA classes best correlated and anticorrelated by their
epigenomic associations

ncRNA class best correlates with at Pearson’s correlation coefficient and best anticorrelates with at Pearson’s correlation coefficient

7SK rRNA 0.71 miRNA -0.66

C/D box snoRNA 0.94 Spliceosomal -0.65

H/ACA box snoRNA 0.65 piRNA -0.24

SRP-RNA spliceosomal 0.69 lncRNA -0.55

Y-RNA SRP.RNA 0.60 CD-box -0.32

lncRNA miRNA 0.54 Spliceosomal -0.58

miRNA pri.miRNA 0.91 7SK -0.66

piRNA rRNA 0.61 CD-box -0.62

pri-miRNA miRNA 0.91 7SK -0.54

rRNA spliceosomal 0.75 CD-box -0.61

scaRNA miRNA 0.04 7SK -0.23

snRNA snoRNA 0.26 tRNA -0.54

snoRNA CD.box 0.94 piRNA -0.58

spliceosomal rRNA 0.75 CD-box -0.65

tRNA lncRNA 0.08 snRNA -0.54
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promoters (9, 9, and 6 cell lines, respectively), and depleted
in heterochromatin regions in 6 cell lines. Although this
suggests active transcription processes associated with

tRNAs, they were depleted in transcription elongation, tran-
sition, weak transcription (9, 8, and 6 cell lines, respectively),
and in weak enhancers in the HMEC and HUVEC cell lines.

Figure 4 Boxplots of -log10(p-value) distributions for different classes of ncRNAs. Red/blue horizontal lines represent p-value = 0.01
threshold for over- and underrepresentation, respectively. P-values were multiple testing corrected using Benjamini-Hochberg procedure. A)
Histone modification marks associations; B) Chromatin states associations; C) Transcription factor binding sites associations.
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tRNAs were also strongly overrepresented in the repetitive/
CNV regions in 9 cell lines (Figure 5C, Additional files 4, 5).

Other ncRNA classes showed similar enrichment/deple-
tion patterns in the antagonistic chromatin state regions.

Figure 5 Heatmaps of -log10(p-value) enriched associations. Blue-yellow gradient highlights the significance of under-/overrepresented
associations of ncRNA classes (X axis) with corresponding epigenomic elements (Y axis). Panels A), C), and E) represent associations of piRNA
and tRNA classes with the Histone modification marks, chromatin state segmentation, and transcription factor binding sites, respectively. Only
associations with p.adj<10-20 are shown for clarity. Panels B), D), and F) show the same associations for other ncRNA classes

Dozmorov et al. BMC Bioinformatics 2013, 14(Suppl 14):S2
http://www.biomedcentral.com/1471-2105/14/S14/S2

Page 8 of 12



Similar to the histone marks, chromatin states were the
major driving force behind clustering. For example, pri-
miRNA, miRNA, and lncRNA classes were depleted in
heterochromatin regions in the majority of the cell lines,
while rRNA, 7SK and spliceosomal classes were enriched
in these regions (Figure 5D, Additional files 4, 6).
The snoRNA class, and its members C/D box, H/ACA

box and scaRNAs were enriched in the “transcription
elongation” and “transcription transition” regions in
H1hESC cells, and depleted in the “repressed” regions in
NHEK and HepG2 cells. These classes were also enriched
in the “strong enhancers” and depleted in “weak transcrip-
tion” chromatin regions in the K562 cell line. The Y-RNA
and SRP-RNA classes, on the contrary, were enriched in
weak transcription regions in K562 cells (Figure 5D,
Additional files 4, 6).

piRNAs are depleted in, while tRNAs are strongly
enriched in, transcription factor binding sites
tRNAs showed strong enrichment in their tendencies to
co-localize with 70 TFBSs (p < 0.01, adjusted for multiple
testing) (Figure 4C, 5E, Additional files 4, 5). Not unex-
pectedly, the strongest association was RPC155 (p.adj =
4.43E-89), a catalytic core and the largest (155kDa) com-
ponent of RNA polymerase III (Pol III), which synthesizes
tRNAs as well as small RNAs, such as 5S rRNA. Other Pol
III components were also enriched, such as BDP1 (B
double prime 1, subunit of Pol III transcription initiation
factor IIIB, p.adj = 2.85E-72), TFIIIC-110 (a 110kDa subu-
nit of the Pol III that initiates assembly of the transcription
complex on tRNA, p.adj = 9.27E-70), BRF1 (B-related
factor 1, a subunit of the Pol III playing in transcription
initiation on genes encoding tRNAs, 5S rRNAs, and other
small structural RNAs, p.adj = 2.12E-48), Pol3 (aka
RPC32, involved either in the recruitment and stabilization
of the subcomplex within Pol III, or in stimulating
catalytic function of other subunits during initiation, p.adj
= 5.28E-34). TBP, TATA-binding protein, a subunit of the
transcription factor TFIID (p.adj = 8.19E-80) has also been
shown to participate in the initiation complex assembly on
tRNA [36]. A general co-activator protein p300 (aka
EP300 of E1A binding protein p300, p.adj = 2.01E-65) was
also strongly associated with tRNAs.
Pol III can sense non-self dsDNA that serves as tem-

plate for transcription into dsRNA. Such non-self Pol III
transcripts induce type I interferon and NF-kB through
RIG-I pathway [37,38]. We observed strong enrichment
of immune-related transcription factor binding sites
associated with tRNAs. Notably, ETS1, a transcription
factor involved in hematopoietic cell differentiation and
the development of lymphoid tissues, was the most
strongly enriched (p.adj = 8.72E-38), accompanied by
ELF1 (aka E74-like factor 1, ets domain transcription fac-
tor, p.adj = 5.71E-30). Other well known immune-related

transcription factors include NFkB, IRF1, IRF4, and
STAT1 (Additional file 5).
piRNAs showed completely the opposite picture

(Figure 4C, 5E), being statistically significantly depleted in
59 TFBSs at p-value adjusted for multiple testing <0.01
(Additional files 4, 5). piRNAs were strongly depleted in
Pol2 binding sites assessed by four different antibodies
(Pol2, p.adj = 1.50E-22; Pol2-4H8, p.adj = 2.55E-18; Pol2
(b), p.adj = 5.67E-09; Pol2(phosphoS2), p.adj = 1.03E-06).
We also observed the opposite behavior of the Pol
III-related proteins, with TBP (p.adj = 5.94E-16), RCP155
(p.adj = 1.41E-12), BDP1 (p.adj = 7.74E-10), TFIIIC-110
(p.adj = 1.38E-08), Pol3 (p.adj = 1.67E-04), and p300 (p.
adj = 5.30E-13) binding sites.
The aforementioned RNA polymerase II- and III-related

TFBSs were also statistically significantly associated with
other ncRNA classes (Figure 5F, Additional files 4, 6). A
general trend was that an ncRNA class shows opposite
associations with RNA polymerases II and III, being gener-
ally associated with Pol II sites and depleted in Pol
III-related sites. miRNAs were found enriched in Pol II
sites, which corroborates earlier reports [39].

Discussion
We comprehensively investigated statistically significant
genomic associations between a total of 15 ncRNA classes
versus 420 cell type-specific epigenomic elements.
Although the ENCODE project provides cell type-specific
information about epigenomic elements, we generally did
not observe preferential cell type specificity of the enrich-
ments. Epigenomic elements associated with different
ncRNA classes were generally similarly enriched across
multiple cell lines and were the driving force behind clus-
tering patterns confirming that epigenomic relationships
hold across multiple cell lines [40]. This can be illustrated
by similar patterns of enrichment among spliceosomal,
rRNA and 7SK ncRNAs in the heterochromatin regions in
multiple cell lines (Figure 5D), association of C/D box and
snoRNAs with H3K79me2 mark across several cell lines
(Figure 5B), and by similar observations in other ncRNA
classes (Additional files 4, 5, 6). There were exceptions
from this general trend; for example, piRNAs were
strongly enriched in the heterochromatin regions in all
but the K562 cell line, which instead showed statistically
significant underrepresentation. Y-RNA and SRP-RNA
classes were strongly associated with weak transcription
regions exclusively in the K562 cell line. Therefore, we
kept the cell type-specific results of our analysis
(Additional files 1, 2) while describing our results from the
epigenomic point of view, mentioning cell line specificity
only where appropriate.
Our study revealed both expected (positive controls) and

novel relationships among ncRNA classes and epigenomic
elements. For example, C/D box, H/ACAbox, and
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snoRNA were grouped by their common epigenomic
background, being subsets of a larger snRNA class. Yet,
the relationship between long non-coding RNAs and miR-
NAs is interesting, as they are located in different genomic
regions but shared similar epigenomic background. Both
lncRNA and miRNA classes were depleted in the hetero-
chromatin regions in multiple cell lines, were located in
the poised promoter regions in the H1hESC cell line, and
showed similar enrichment in several histone modification
marks (Additional files 4, 6). Yet they were differentially
associated with active promoters, with only lncRNAs
being associated with these regions in the HSMM and
HUVEC cell lines. The lncRNA class was also enriched in
the repressed regions of the genome in GM12878 and
NHEK cell lines, which is consistent with an observation
that >20% of lncRNAs are bound by the Polycomb Repres-
sive Complex 2 (PRC2) [41], with miRNAs showing no
measurable enrichment. miRNAs, on the contrary, were
enriched in the transcription elongation regions in HMEC,
HUVEC, and NHLF cell lines. miRNAs were depleted in
the Pol III transcription factor binding regions, and
enriched only in the Pol2 binding sites, while lncRNAs did
not show any associations with any of these regions.
Instead, lncRNAs were enriched in SUZ12 binding sites,
consistent with an observation that PRC2-transcribed
smaller ~50-200 nt RNAs that interact with SUZ12 to
mediate gene repression [42].
We observed strong statistically significant associations

of the tRNA and piRNA classes of non-coding RNAs with
epigenomic elements. This can’t be attributed solely to the
size of these classes, since ncRNA classes having more
members did not show such enrichment diversity. The
mean length of tRNAs and piRNAs were among the smal-
lest among all ncRNA classes (Table 1), thus diminishing
the probability of overlapping with epigenomic elements
on a per-transcript basis. Yet, the significance of the iden-
tified associations suggests strong epigenomic regulation
of tRNA and piRNA. We expect our analyses to produce
more focused results as the ncRNA classes will become
better defined with more members showing clearer
enrichment patterns. This is especially important for small
ncRNA classes, like scaRNAs, which did not have suffi-
cient numbers to demonstrate statistically significant
enrichments. Advancements of the ENCODE project with
more epigenomic data being available will further aid ana-
lysis of cell type-specific associations.
Our enrichment analysis has limitations. We define

ncRNA classes by the genomic coordinates of ncRNA
elements, and test these locations for the enriched
co-localizations with epigenomic elements. Thus, our
enrichment analysis of transcription factor binding sites
does not consider the promoter regions of the ncRNAs
or, if they don’t have promoters, then their local cis-
regulatory genomic environment. Yet, the transcription

of ncRNAs can be different from that of genes, with
ncRNAs often originating from exons and introns
[16,43], promoters of the genes [18], or intergenic
regions by mechanisms apparently different from cano-
nical transcription factor binding [12]. Transcription fac-
tors, on the other hand, show a great variety of binding
patterns, being located within gene bodies, overlapping
first exons, and occurring in the intergenic regions [44].
Our analysis revealed TF binding preference (or the
absence of it) within or partially overlapping ncRNA
bodies without making assumptions about the mechan-
ism of ncRNA biogenesis. While the full potential of
transcription factor co-localization with ncRNA classes
remains to be tested experimentally, we are confident
our findings of differential transcription factor co-locali-
zation with ncRNAs will reveal novel relationships
among non-coding and coding parts of the genome.
In the current study we did not consider the amount

of overlap of ncRNAs with epigenomic elements. While
this is not critical for the analysis of, for example, single
nucleotide polymorphisms with length equal to 1 nt,
ncRNAs may show a variety of co-localization patterns,
ranging from being located within an epigenomic
element to overlapping it completely or partially. We
restricted our analysis by considering any overlap as co-
localization for computational efficiency and ease of
interpretation. However, our future work will include
comparison of the percent of overlap observed for an
ncRNA class vs. that of for a random selection. This
“overlap enrichment” analysis may provide better resolu-
tion of spatial relationships of ncRNA classes with epi-
genomic elements.

Conclusions
We present the use of our method for finding statisti-
cally significant relationships between experimental
regions of interest (ncRNA classes in the current study)
with cell type-specific epigenomic data from the
ENCODE project (such as transcription factor binding
sites, histone modification marks, chromatin segmenta-
tion states). We demonstrate the utility of statistically
significant epigenomic associations to classify and
contrast ncRNA classes, and to outline their potential
functional roles and mechanisms of biogenesis from
epigenomic perspective. Our method, implemented as the
open source software GenomeRunner (http://sourceforge.
net/projects/genomerunner/) [28] can provide interpreta-
tion of any experimental genome-wide data within the
growing amount of epigenomic data from the ENCODE
project [29].

Availability
GenomeRunner, the main method used in this work, is
available at http://sourceforge.net/projects/genomerunner
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Additional material

Additional file 1: The ENCODE data summary used in the current
study

Additional file 2: Cell types used to obtain cell type-specific
epigenomic elements. The vocabulary is extracted from the ENCODE
Consortium Data Coordination Center at UCSC (http://genome.ucsc.edu/
ENCODE/cellTypes.html). M/F/U indicate cell/tissue donor was of male,
female, or unknown gender, respectively.

Additional file 3: Brief description of the known roles of histone
modification marks

Additional file 4: Enrichment matrix for the different ncRNA classes.
Rows show cell type specific epigenomic marks, except for the
transcription factor binding sites (data combined from multiple cell lines).
-log10(p.adjusted for multiple testing) values are shown. Red font
highlights epigenomic marks enriched at p.adj < 0.01. Green font and a
“-” sign highlight depleted epigenomic marks at p.adj < 0.01. Rows
containing no statistically significant values in at least one ncRNA class
are removed for clarity.

Additional file 5: Epigenomic elements statistically significantly
associated with tRNA and piRNA classes. Regular & red font indicates
enriched associations, italics & gree indicates depleted associations.
Common transcription factors for both tRNA and piRNA classes are not
colored, as they show enriched associations with tRNA and depleted
associations with piRNA classes.

Additional file 6: Epigenomic elements statistically significantly
associated with ncRNA classes other that tRNA and piRNA classes.
Regular & red font indicates enriched associations, italics & green
indicates depleted associations.
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