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Abstract

Background: Pathway alterations reflected as changes in gene expression regulation and gene interaction can
result from cellular exposure to toxicants. Such information is often used to elucidate toxicological modes of
action. From a risk assessment perspective, alterations in biological pathways are a rich resource for setting toxicant
thresholds, which may be more sensitive and mechanism-informed than traditional toxicity endpoints. Here we
developed a novel differential networks (DNs) approach to connect pathway perturbation with toxicity threshold
setting.

Methods: Our DNs approach consists of 6 steps: time-series gene expression data collection, identification of
altered genes, gene interaction network reconstruction, differential edge inference, mapping of genes with
differential edges to pathways, and establishment of causal relationships between chemical concentration and
perturbed pathways. A one-sample Gaussian process model and a linear regression model were used to identify
genes that exhibited significant profile changes across an entire time course and between treatments, respectively.
Interaction networks of differentially expressed (DE) genes were reconstructed for different treatments using a state
space model and then compared to infer differential edges/interactions. DE genes possessing differential edges
were mapped to biological pathways in databases such as KEGG pathways.

Results: Using the DNs approach, we analyzed a time-series Escherichia coli live cell gene expression dataset
consisting of 4 treatments (control, 10, 100, 1000 mg/L naphthenic acids, NAs) and 18 time points. Through
comparison of reconstructed networks and construction of differential networks, 80 genes were identified as DE
genes with a significant number of differential edges, and 22 KEGG pathways were altered in a concentration-
dependent manner. Some of these pathways were perturbed to a degree as high as 70% even at the lowest
exposure concentration, implying a high sensitivity of our DNs approach.

Conclusions: Findings from this proof-of-concept study suggest that our approach has a great potential in
providing a novel and sensitive tool for threshold setting in chemical risk assessment. In future work, we plan to
analyze more time-series datasets with a full spectrum of concentrations and sufficient replications per treatment.
The pathway alteration-derived thresholds will also be compared with those derived from apical endpoints such as
cell growth rate.
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Background
Recent advancements in molecular biology technologies,
systems biology, and computational toxicology are poised
to transform a primarily in vivo animal toxicity testing
paradigm into a new one dominated by in vitro assays
[1-3]. This new paradigm makes predictions and cross-
species extrapolation based on modes or mechanisms of
action (MOAs). However, many challenges remain before
this transformation turns into a reality, including: (1) how
to incorporate toxicity mechanism information into the
next generation risk assessment framework, (2) how to
obtain quantitative dose-response and time-course data on
the perturbed biological processes or pathways, and (3)
how to differentiate transient adaptive perturbations from
permanent alterations [1,4-6]. Current MOA approaches
mostly focus on identification of differentially expressed
genes in canonical pathways. Although some efforts have
been made to infer non-observable transcriptomic effect
levels (e.g., [7]) or transcriptional benchmark dose values
[8], little has been done to investigate gene interaction
alterations in toxicity pathways (i.e. pathway perturba-
tions) that are often inferred from time series gene expres-
sion profiling data using reverse engineering techniques
such as a state-space model with hidden variables [9-12].
To address some of the aforesaid challenges, we

conducted a proof-of-concept study using a simple and
convenient prokaryotic model organism, Escherichia coli,
in order to make a direct connection between MOAs and
quantitative risk assessment (e.g., toxicity threshold set-
ting) [13,14]. In this study, E. coli was exposed to a chemi-
cal stressor of three concentrations, and we hypothesized
that in stress response: (1) the bacterium had to reassem-
ble biological pathways that differed from their canonical
counterparts, and (2) the degree of pathway perturbation
was dependent on the exposed concentration. We chose E.
coli as the test organism also because a microbial live cell
reporter array system was constructed recently from its
K12 strain MG1655 [15]. This system contained a
genome-wide library of modified green fluorescent protein
(GFP) expressing promoter reporter vectors. Live Cell
Array (LCA) is a novel technology that enables the acquisi-
tion of high-resolution time-series profiles of bacterial
gene expression by measuring the fluorescence level in
living cells carrying fused fluorescent protein [16,17]. This
genome-wide E. coli LCA has been used to study MOAs
of a wide variety of chemicals [18,19] and was used in our
study to collect time-course gene expression data [20].
Here, we report a novel differential networks (DNs)

approach we developed to derive a toxicity threshold
based on the degree of perturbations in reconstructed
gene interaction networks. Our approach consists of the
following six steps: (1) collect time-series gene expression
data of test organisms that received different treatments,
(2) identify significantly changed genes involved in normal

cellular growth and stress response from the gene expres-
sion dataset, (3) reconstruct interaction networks of the
altered genes under the control and perturbed/treated
conditions using reverse engineering techniques, (4) infer
differential edges, i.e., interactions gained or lost from the
control to the treated, to construct DNs, (5) annotate and
map the genes in the DNs to biological pathways and
functions, and (6) establish concentration-pathway
perturbation causal relationships. Using this approach we
made direct connections between treatment dosage and
perturbed pathways.

Methods
Live cell array (LCA) system
LCA is a new technology that quantitatively measures the
real-time gene expression. It is based on the molecular
fusion of a reporting gene system to gene promoters from
select stress response regulons. Compared with oligonu-
cleotide hybridization-based microarray technology [21],
LCAs avoid complex protocols of pre-treatment and high-
cost experimental materials, have less interference, and
require less testing time [16]. It involves the generation of
a large number of strains that contain transcriptional
fusions with fast-folding GFPs and monitoring their
accumulation under some certain treatments [22]. An
advantage of using bacteria as the organism for LCAs is
the ease by which they can be genetically engineered to
respond by a dose-dependent signal to environmental
stimuli [17]. The promoter activity profiles of individual
GFP fusions can be obtained at a very high resolution in a
microtiter plate format by determining the difference in
fluorescence levels at successive time points after the
chemical is administered. Promoter activation or suppres-
sion can be easily detected by an increase or a decrease in
the fluorescence accumulation rate.

Collection of E. coli LCA time-series dataset
A time-series dataset of dynamic gene expression profiling
used in this study was collected in a previous study [20]
using the genome-wide E. coli LCA made up of twenty-
one 96-well plates. Among these 2016 wells, 1870 wells
were occupied by 1820 GFP strains with promoter genes
(some genes having replicates), another 40 wells were filled
with strains with two promoterless genes, and the remain-
ing 106 wells were empty. The standard deviations of the
expression values of two promoterless genes were later
used to correct for background noise in data normaliza-
tion steps [20]. There was one empty well on each of the
first 20 plates and 86 empty wells on the last plate. These
empty wells were used to set the cut-offs in the active
gene selection step (see below section “Identification of
differentially expressed genes”). Optical density (OD)
values were measured before treatment. Then the E. coli
cells received four treatments of a technical mixture of
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naphthenic acids (NAs, Sigma Aldrich, St. Louis, MO,
USA), i.e., 0 (control), 10, 100, or 1000 mg/L of NAs. The
fluorescence levels of all 2016 wells were measured every
10 min for three hours, resulting in a dataset of 18 time
points. The entire experiment was performed once without
any repeat.

Data pre-processing
The direct estimation of promoter activities from the
time-series profile of the fluorescence level change
contains high levels of noise [22]. Therefore, a series of
pre-processing procedure needs to be done to correct for
noise. First, raw GFP readings were divided by the OD
values measured before treatment. OD values reflected the
population density of E. coli cells in a well before initiation
of a treatment. Because the number of cells in each well
might be different due to cell growth, by dividing GFP
with OD, we got a preliminary value that reflected the
activity of our target genes. Then, the result matrix was
smoothed by calculating the moving average of every
neighbouring three time points. A possible low level of
auto-fluorescence of E. coli might bring some background
noise. To eliminate this type of background noise, the
GFP expression produced by the eight promoterless plas-
mid values were averaged (two promoterless plasmids at
four treatments) and subtracted from the values of each
gene at the corresponding time point in both experimental
and control tests.
Because the promoter activity of each gene might be

different at the onset of the experiment, the values of the
same gene at time point one in four treatments were
averaged, and the differences between the averages and
each of the 4 values were calculated. Then, the differences
were subtracted from the values of each gene at all of the
subsequent time points to eliminate the internal measure-
ment noise. In order to filter the system noise, any value
was set to zero if it was less than twice the amount of the
standard deviation of the aforementioned processed
promoterless values.

Identification of differentially expressed (DE) genes
DE genes are often sought in genomic studies as they
are potential candidates of biomarkers. Different from
studies where gene expression is measured at a single
time point, time-series experiments have two types of
DE genes: Type I: active genes that display differential
expression within the same treatment across different
time points over the entire course of experiment, and
Type II: DE genes whose expression vary significantly
between different treatments at any given time point. In
this study, we identified the first type of DE genes
(active genes) using a one-sample Gaussian Process
(GP) regression method developed by [23]. In the GP
regression model, the continuous trajectory estimation of

a gene expression was treated as an interpolation problem
on functions of one dimension, given the observations
(gene expression time-series). Subsequently, the differen-
tial expression of the gene’s profile was assigned a
marginal log-likelihood ratio by which it was ranked. In
the ranking list, the wells with no E. coli cells (empty
wells) served as cutoff points. Those genes that ranked
higher than the highest ranked empty wells in any of the
four treatments were included in the active gene list.
The second type of DE genes was identified in the pre-

vious study [20] by applying a linear regression model and
a cutoff of 1.5-fold change in gene expression at one or
more time points between the control and at least one of
the three concentrations. These two types of DE genes
were pooled together to form the final list of DE genes.

Reconstruction of gene interaction networks
An in-house developed Bayesian Learning and Optimiza-
tion Model (BLOM) was used to reconstruct a network of
interaction between the identified DE genes for each of
the four treatments. BLOM was based on the state space
model with hidden variables and an expectation-maximi-
zation algorithm to estimate model parameters (see [9,12]
for details). Pre-processed expression data of the identified
DE genes were used as the input for BLOM. Like other
reverse engineering models such as Dynamic Bayesian
Network (DBN) and Probabilistic Boolean Network
(PBN), the outcome of BLOM-reconstructed networks is
an N × N matrix of connectivity (edge) between two genes
with N being the number of nodes/genes. The connectivity
is expressed as confidence level in the form of direction
(inward, outward and self-to-self), action type (stimulatory
if a positive confidence level value, or inhibitive if a
negative confidence level value) and strength (absolute
confidence level value). The reconstructed networks were
visualized using Cytoscape v.2.8.3 [24].

Inference of differential edges to build differential
networks
The reconstructed networks of all three chemical treat-
ments (low, mid and high concentrations of NAs) were
compared pair-wise with that of the control to derive
differential edges, i.e., edges lost or gained from the con-
trol to the chemically treated. From the comparison, the
following statistics were obtained for each DE gene: total
number of edges in each of the four networks, number of
gained or lost edges in the treatment networks, and the
percentage of edges changed in the treatment networks.
Lost edges are those present in the control network but
absent in the low, mid, or high concentration network,
whereas gained edges are those absent in the control
network but present in the chemical treatment network.
The following formula was used to calculate the percen-
tage of edges changed as a result of chemical exposure:

Yang et al. BMC Bioinformatics 2013, 14(Suppl 14):S3
http://www.biomedcentral.com/1471-2105/14/S14/S3

Page 3 of 9



(number of gained edges + number of lost edges)/(total
number of edges in both the control and the exposure net-
works). The changed edges (lost or gained) of all involved
DE genes were used to construct differential networks for
the three chemical treatments.

Functional annotation and pathway mapping of altered
genes
Gene Ontology (GO) terms provide information on
molecular function, biological processes and cellular
component of a gene product. One gene may have mul-
tiple GO terms associated with it. The GO tool at
http://www.ecogene.org was used to assign GO terms to
the genes of interest (e.g., altered genes). For pathway
mapping, we searched the EcoCyc [25], KEGG pathway
[26] and RegulonDB [27] databases. The Pathway Tools
software v.15.5 [28] was used to extract pathway map-
ping information from the Ecocyc database.

Results
Identified DE genes
DE genes were statistically identified from the time-series
gene expression dataset collected using the genome-wide
E. coli LCA. A total of 47, 11, 45, and 101 genes were iden-
tified as active genes (type I DE genes) for the control, low,
mid, and high concentrations of NAs exposure respec-
tively, using the GP regression method (Additional file 1).
After excluding duplicated genes, there were 111 unique
active genes. These genes were pooled together with a
group of 85 type II DE genes previously identified using a
linear regression model and a 1.5-fold gene expression
change filter [20]. This resulted in a final list of 176 unique
DE genes, with 20 genes appearing in both type I and type
II DE gene lists (Additional file 1).

Reconstructed interaction networks of DE genes
Four interaction networks of 176 nodes (DE genes) were
reconstructed using BLOM, one for each treatment. Each
network had 30976 (176 × 176) edges, which were ranked
by their strength (i.e., absolute value of confidence level)
(Additional file 2). Obviously, the ~31K edges are not
equally important and should not be treated equally. The
higher an edge ranks, the more likely it actually exists. In
selecting edges for further analysis, a cut-off level can be
set for either the total number of top edges per network or
the lowest edge strength allowable in a network. The latest
release of EcoCyc database (v. 17.1 as of June 2013)
curated 2232 reactions catalyzed by 1500 enzymes that are
encoded by 4509 E. coli transcription units (genes), sug-
gesting that the average number of interactions per gene
might be very low. We have also observed that the total
number of edges in a real-world gene interaction network
(e.g., KEGG pathways) generally does not exceed four
times the total number of its nodes (genes). Furthermore,

we plotted four histograms to show edge strength against
edge rank (Figure 1). In the four reconstructed networks,
the top ranked 704 edges (4 × 176, or 2% of all possible
edges) accounted for ~30% of the total strength of all
~31K edges, and the edge strength declined by 94% from
the 1st ranked edge to the 704th edge (Additional file 2).
Therefore, we selected the top 704 edges per network for
further differential edges inference and differential net-
work construction.

Differential edges and differential networks
Figure 2 presents both the four 704-edge reconstructed
networks and the three differential networks. The four
reconstructed networks have 96 (control), 87 (low), 82
(mid), and 99 (high) interconnected nodes/genes, with a
total of 117 non-redundant DE genes appearing in these
networks (Additional file 3). The differential networks
were made up of differential edges, i.e., lost and gained
edges from the control to a chemical treatment. The
number of lost or gained edges were 246 (35% of 704
edges), 299 (42%), and 365 (52%) for the low, mid and
high concentration networks, respectively, suggesting a
dose-dependence for differential edges. By applying an
arbitrary cut-off of 4 differential edges per gene in any
one of the differential networks, we removed 37 addi-
tional genes and kept the 80 remaining genes for further
downstream analysis (see Additional file 3 for statistics
on differential edges per DE gene).

Linking pathway alteration to toxicity threshold
The 80 genes possessing a significant number of differen-
tial edges were mapped to biological pathways curated in
KEGG and EcoCyc databases as well as to GO terms (see
Additional file 4). All but 38 genes were mapped to 35
KEGG pathways. To link pathway alterations to toxicity
thresholds, we determined the pathway perturbation
degree as the average percentage of edge change per gene
for all DE genes involved in any particular KEGG pathway
at each exposure concentration (see Additional file 5). A
toxicity threshold was defined herein as the concentration
at which no pathways were perturbed relative to controls.
The limited number of concentrations that E. coli cells

were exposed to and the lack of independent treatment
replications in the current study prevented a statistical
approach to deriving toxicity thresholds from pathway
perturbation degrees. Therefore, for purposes of proof of
concept, we established a simplified causal relationship
between concentration and pathway perturbation, which
was defined as the perturbation degree at the high concen-
tration being higher than that at both the mid and the low
concentrations. Twenty-two perturbed pathways met this
definition (Table 1). These pathways varied substantially in
the size of identified DE genes, from one gene in pyruvate
metabolism to 16 genes in ribosome. The perturbation
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degree varied from 0 (i.e., no edge change of the DE genes
at all, such as oxidative phosphorylation at both low and
mid concentrations) to 1 (i.e., all edges of the DE genes
have changed, such as propanoate metabolism at the high
concentration).
Even at the low chemical concentration, some pathways

were altered to a degree of 50% to 70%, including
biosynthesis of amino acids, secondary metabolites, and
aminoacyl-tRNA, as well as nitrogen, amino sugar and
nucleotide sugar metabolism (Table 1 and Additional file
5). Therefore, the toxicity threshold for NAs would be
considered lower than the lowest exposure concentration,
10 mg/L. While compensatory responses in metabolism or
biosynthesis may occur at low chemical concentrations,
this suggests that pathway perturbations can be a sensitive
endpoint for toxicity if additional evidence links the per-
turbed pathways to adverse outcomes at the physiological,
organismal or population level. A more refined toxicity
threshold could be derived using regression approaches
such as a benchmark dose method [29,30] if more concen-
trations were tested in addition to more replications per
treatment.

Discussion
Cellular exposure to toxicants often results in pathway
alterations reflected as changes in gene expression

regulation and gene interactions. Such information is often
used to elucidate toxicological modes of action. From a
risk assessment perspective, alterations in biological path-
ways are a rich resource for setting toxicant thresholds,
which may be more sensitive and mechanism-informed
than traditional toxicity endpoints. Here we reported a
proof-of concept study to connect pathway perturbation
with toxicity threshold setting using the DNs approach to
analyzing time-series gene expression datasets.
Studies involving gene expression profiling at a single

time point have limited power in both deciphering
MOAs and quantitative risk assessment because the
snapshot of gene expression profiling misses the
dynamic and interactive nature of cellular gene expres-
sion. As the costs of acquiring genome-wide gene
expression technologies steadily decrease, it has become
more feasible and affordable to perform time-series gene
expression studies (see databases such as GEO (Gene
Expression Omnibus) at http://www.ncbi.nlm.nih.gov/geo
and ArrayExpress at http://www.ebi.ac.uk/arrayexpress/
for large-scale time-series datasets). In order to take
advantages of technological advancements in high
throughput microarray, DNA sequencing and LCA, novel
experimental and computational approaches are needed to
transform conventional toxicology to predictive toxicity in
order to meet the requirements of more rapidly assessing

Figure 1 Histograms of edge strength (absolute values of BLOM-inferred confidence level) distribution for 30976 edges (gene
connectivity) in four 176-node networks. All edges in each network are sorted by their strength and shown on the X-axis in a descending
order. Also shown is the strength of the 704th and the lowest ranked edges.
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toxicity of chemicals and other materials to humans and
animals in the 21st century risk assessment [1-4,6,14].

A distinction has to be made between edges in the
graphical representation of a literature curation-based

Figure 2 Differential networks (DNs) obtained by comparing pair-wise the networks reconstructed for three chemical treatments to
that of the control treatment. Each of the four reconstructed networks contains 704 edges. In the DNs, red lines represent gained edges
(edges absent in the control network but present in the chemical treatment network), whereas blue lines represent lost edges (edges present in
the control network but absent in the chemical treatment network).
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biological pathway (e.g., KEGG pathway) and those
derived in silico from time-course data. The former are
experimentally validated interactions, whereas the latter
represent potential gene-gene interactions. It was not
our intention to estimate the accuracy of our BLOM-
inferred edges by comparing them with those gene-gene
interactions curated in KEGG pathways or EcoCyc data-
bases, but rather to use the inferred edges to provide an
estimate of the overall degree of alteration in a gene’s
interaction/connectivity with other genes.
Our DNs approach differs significantly from existing DE

gene-based approaches such as the Gene Set Enrichment
Analysis (GSEA) method [31] and the genomic benchmark
dose method [29,30] in at least three aspects: (1) our
approach is based on reverse engineering techniques
including BLOM, PBN and DBN; (2) significantly altered
pathways are identified through analysis of DNs instead of
enrichment of DE genes mapped to canonical pathways;
and (3) our approach is particularly suitable for analyzing

time-series gene expression datasets whereas existing
approaches like GSEA are suitable for static datasets often
collected at a single time point.
While the current proof-of-concept study demonstrates

that our DNs approach is capable of identifying perturbed
pathways in relation to chemical exposure, several caveats
remain to be resolved. First, no analytical chemistry work
was carried out in the study to confirm the concentration
and/or biotransformation of NAs throughout the 3-hr
exposure. Many xenobiotic toxicants such as polycyclic
aromatic hydrocarbons, aryl and heterocyclic amines
require metabolic activation by cytochrome P450
metabolism [32]. Chemical analysis, in parallel to bioas-
says, can provide useful information about the chemical(s)
of concern for toxicity threshold derivation. Second, as the
time-course dataset used in this study lacks treatment
replication, the derived degrees of pathway perturbation
(Table 2) are statistically inadequate to determine a point
of departure or toxicity threshold for each perturbed

Table 1 The degree of pathway perturbation as related to the exposure concentration of naphthenic acids (NAs).

KEGG pathway name (entry) low mid high Involved genes (total number)

Ribosome (eco03010) 0.32 0.40 0.45 rplN, rplY, rpmB, rpsB, rpsJ, rpsL, rpsM, rpsO, rpsP, rpsT, rpsU, rrnA, rrnB, rrnC,
rrnD, rrnH (16)

Metabolic pathways (eco01100) 0.45 0.42 0.69 aceB, acnB, aspA, gatY, ilvC, lpxC, manX, ribB, rpiA, serC (10)

Microbial metabolism in diverse environments
(eco01120)

0.59 0.45 0.78 aceB, acnB, manX, rpiA, serC (5)

Biosynthesis of amino acids (eco01230) 0.55 0.38 0.95 acnB, ilvC, rpiA, serC (4)

Biosynthesis of secondary metabolites (eco01110) 0.55 0.63 0.95 acnB, ilvC, rpiA, yfbE (4)

Amino sugar and nucleotide sugar metabolism
(eco00520)

0.61 0.52 0.79 manX, ptsG, yfbE (3)

2-Oxocarboxylic acid metabolism (eco01210) 0.10 0.25 1.00 acnB, ilvC (2)

Aminoacyl-tRNA biosynthesis (eco00970) 0.71 0.67 1.00 ileX, tyrS (2)

Glycerophospholipid metabolism (eco00564) 0.39 0.37 0.76 glpA, glpD (2)

Glyoxylate and dicarboxylate metabolism
(eco00630)

0.30 0.49 0.79 aceB, acnB (2)

Nitrogen metabolism (eco00910) 0.68 0.73 0.80 aspA, yadF (2)

Phosphotransferase system (PTS) (eco02060) 0.41 0.37 0.62 ptsG, treB (2)

ABC transporters (eco02010) 0.48 0.50 0.67 oppA (1)

Citrate cycle (TCA cycle) (eco00020) 0.20 0.50 1.00 acnB (1)

Fructose and mannose metabolism (eco00051) 0.33 0.24 0.52 manX (1)

Glycolysis/Gluconeogenesis (eco00010) 0.50 0.33 0.83 ptsG (1)

Lipopolysaccharide biosynthesis (eco00540) 0.17 0.38 0.73 lpxC (1)

Oxidative phosphorylation (eco00190) 0.00 0.00 1.00 ppa (1)

Pantothenate and CoA biosynthesis (eco00770) 0.00 0.00 1.00 ilvC (1)

Propanoate metabolism (eco00640) 0.20 0.50 1.00 acnB (1)

Pyruvate metabolism (eco00620) 0.41 0.49 0.59 aceB (1)

Valine, leucine and isoleucine biosynthesis
(eco00290)

0.00 0.00 1.00 ilvC (1)

Twenty-two KEGG pathways were identified as being altered in a concentration-dependent manner by exposure to NAs (low = 10 mg/l, mid = 100 mg/l,
high = 1000 mg/l). The perturbation degree was determined as the average percentage edge change per gene for all genes involved in a particular pathway,
and concentration-dependence was defined as high > mid and high > low in perturbation degree. Note that perturbation degrees are expressed in decimals
instead of percentages.
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pathway. This limitation can be ameliorated by incorporat-
ing more treatments and treatment replications into the
experimental design. Third, no apical endpoints such as
physiology or biochemistry assays were measured, which
would have permitted linkage of the derived lowest obser-
vable pathway perturbation concentrations to toxicity
thresholds derived from apical endpoints and hence
applicable to chemical risk assessment [8,33]. Finally,
while the E. coli LCA system is a very rapid approach to
assessing impacts on biological pathways, it is not free
from limitations. For instance, less than 50% of known
transcriptional genes have a promoter that can be fused
with a GFP [15], leading to an incomplete genome cover-
age. Alternative high-throughput technologies such as
DNA microarray and next-generation sequencing can be
used to generate genome-wide time-series gene expression
dataset.

Conclusions
Findings from this proof-of-concept study suggest that
our approach has a great potential in providing a novel
and sensitive tool for threshold setting in chemical risk
assessment. In future work, we plan to analyze more
time-series datasets with a full spectrum of concentra-
tions and sufficient replications per treatment, and even-
tually extrapolate our approach from prokaryotic
systems to eukaryotes. The pathway alteration-derived
thresholds will also be compared with those derived
from apical toxicology, biochemistry and physiology
endpoints such as cell growth rate.

Additional material

Additional file 1: Differentially expressed genes. Breakdown of the
two types of differentially expressed genes

Additional file 2: Gene connectivity. Connectivity between 176 genes
in four networks reconstructed from the control E. coli cells and those
treated with 10, 100 and 1000 mg/L naphthenic acids

Additional file 3: Differential edges. Statistics on differential edges
derived by pair-wise comparison between the top 704 edges of the four
reconstructed networks (control vs. low/mid/high)

Additional file 4: Pathway mapping. Annotation, GO terms and
pathway mapping to EcoCyc and KEGG pathway databases for 80 select
genes with at least 4 differential edges in any of the three differential
networks

Additional file 5: Pathway perturbation. Pathway perturbation was
determined as the average percentage in edge change per gene of all
genes involved in a particular pathway.
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