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Abstract

Background: The over consumption of fossil fuels has led to growing concerns over climate change and global
warming. Increasing research activities have been carried out towards alternative viable biofuel sources. Of several
different biofuel platforms, cyanobacteria possess great potential, for their ability to accumulate biomass tens of times
faster than traditional oilseed crops. The cyanobacterium Cyanothece sp. ATCC 51142 has recently attracted lots of
research interest as a model organism for such research. Cyanothece can perform efficiently both photosynthesis and
nitrogen fixation within the same cell, and has been recently shown to produce biohydrogen–a byproduct of nitrogen
fixation–at very high rates of several folds higher than previously described hydrogen-producing photosynthetic
microbes. Since the key enzyme for nitrogen fixation is very sensitive to oxygen produced by photosynthesis,
Cyanothece employs a sophisticated temporal separation scheme, where nitrogen fixation occurs at night and
photosynthesis at day. At the core of this temporal separation scheme is a robust clocking mechanism, which so far has
not been thoroughly studied. Understanding how this circadian clock interacts with and harmonizes global
transcription of key cellular processes is one of the keys to realize the inherent potential of this organism.

Results: In this paper, we employ several state of the art bioinformatics techniques for studying the core circadian
clock in Cyanothece sp. ATCC 51142, and its interactions with other key cellular processes. We employ comparative
genomics techniques to map the circadian clock genes and genetic interactions from another cyanobacterial
species, namely Synechococcus elongatus PCC 7942, of which the circadian clock has been much more thoroughly
investigated. Using time series gene expression data for Cyanothece, we employ gene regulatory network
reconstruction techniques to learn this network de novo, and compare the reconstructed network against the
interactions currently reported in the literature. Next, we build a computational model of the interactions between
the core clock and other cellular processes, and show how this model can predict the behaviour of the system
under changing environmental conditions. The constructed models significantly advance our understanding of the
Cyanothece circadian clock functional mechanisms.

Background
Cyanobacteria are one of the most primitive forms of
plant, with their mechanism of photosynthesis similar to
that of higher plants. However they are in fact much
more efficient converter of solar energy thanks to their
simple cellular structure. It has been reported that some
cyanobacteria can accumulate biomass as much as 30
times more efficient than traditional oilseed crops such

as corn and soybeans (as per dried biomass/area/year),
and as such has attracted lots of research interest for
being a viable biofuel platform. Cyanothece sp. ATCC
51142, hereafter Cyanothece, has recently gained increas-
ing attention. This unicellular cyanobacterial strain is
involved not only in photosynthesis but also in nitrogen
fixation within the same cell. As a byproduct of nitrogen
fixation, Cyanothece has been recently shown to produce
biohydrogen at very high rates that are several folds
higher than previously described hydrogen-producing
photosynthetic microbes [1]. Since the key enzyme for
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nitrogen fixation is very sensitive to oxygen produced by
photosynthesis, Cyanothece employs a sophisticated tem-
poral separation scheme, where nitrogen fixation occurs
at night and photosynthesis at day. At the core of this
temporal separation scheme is a robust clocking mechan-
ism–the circadian clock.
Until recently, cyanobacteria were the only prokaryotes

reported to possess circadian rhythmicity [2]. Organisms
rely on the circadian clock to plan ahead their actions for
maximal efficiency. For example, just before the light per-
iod, some of the cellular processes for photosynthesis are
already activated and ready for functioning. It is the same
for the dark period in nitrogen-fixing species like Cya-
nothece, where it has been observed that just before enter-
ing the dark period, a large amount of energy has been
mobilized in a ready-to-use form, ready for Nitrogen fixa-
tion which is an energy-intensive process [3]. For its ease
of genetic manipulation, the cyanobacterium Synechococcus
elongatus PCC 7942, hereafter S. elongatus, is widely cho-
sen as a model organism for cyanobacterial circadian clock
studies [4-6]. Compared to other cyanobateria that also
possess a circadian clock but do not perform nitrogen fixa-
tion such as S. elongatus, the circadian clock of Cyanothece
is likely more complex and may involve more input/output
pathways to coordinate the tight regulation of photosynth-
esis and nitrogen fixation pathways. Also, compared to the
S. elongatus circadian clock which has been quite thor-
oughly investigated and reported in the literature, Cya-
nothece circadian clock has only very recently received a
few preliminary investigations. In [7], using time series
gene expression data, Wang et al. characterized Cyanothece
genes and cellular processes that oscillate in a circadian
rhythm. They found that nearly 30% of genes (i.e., ~1500
genes) have a significant rhythm with 24 h period. To find
out to what extent the core clock explains the oscillation of
other genes, they built an oscillatory network including one
master clock and three Kuramoto-type peripheral oscilla-
tors. The phase variables of the peripheral clocks were then
used to reproduce expression patterns of circadian-clock
controlled genes. Although this interesting study showed
that their model can relatively faithfully reproduce the gene
expression patterns, it lacks connections to the current lit-
erature on circadian clock study in our opinion. In particu-
lar, the knowledge on input/output genes and pathways
previously reported for S. elongatus was not refereed to
and compared against. In another recent related study [8],
McDermott et al. built a predictive model of Cyanothece
gene regulatory network, in which transcription factors
and network bottlenecks were found to be strong predic-
tors of system behaviour. The focus of that research how-
ever was not to elicit the interactions between the
circadian clock and other genes and pathways.
In the current paper, we set out to study the circadian

clock in Cyanothece. In particular, we first use comparative

genomics to find the homology between the core circadian
clock genes in S. elongatus and Cyanothece. The genetic
interactions within the circadian clock of S. elongatus are
then extrapolated to Cyanothece. Next, to partly verify
these interactions, we use Cyanothece time series expres-
sion data and network reconstruction techniques to recon-
struct the clock de novo. The reconstructed network is
then compared against the extrapolated interactions.
Finally, we build a predictive model between the clock
genes and other key cellular process regulators.
Our model shows that the putative clock genes found

a good predictor set of the system behaviour, even in
changing environmental conditions. The result of this
study suggests that the extrapolated information is
highly informative, and significantly advances our under-
standing of the Cyanothece circadian clock.

Review on Synechococcus elongatus PCC 7942 circadian
clock
In this section, we briefly review the recent literature on
S. elongatus–a model organism for circadian clock
study. A schematic diagram of the S. elongatus circadian
clock is presented in Figure 1. The core of this clocking
mechanism is built upon three proteins, KaiA, KaiB and
KaiC. Using only these three purified proteins, together
with energy, in the form of ATP/ADP, it is possible to
reconstitute in vitro an oscillator with period of roughly
24 h [4]. The oscillation of the clock is created via the
ordered phosphorylation and de-phosphorylation of the
KaiC protein, facilitated by the KaiA and KaiB proteins.
KaiC is both an autokinase and autophosphatase that
can be phosphorylated at two positions, serin 431 and
threonine 432 [5]. It can have four possible phosphory-
lated states: full at both S431 and T432 (ST-KaiC), S431
only (S-KaiC), T432 only (T-KaiC), and unphosphory-
lated (U-KaiC). It is known that the phosphorylation
cycle of KaiC occurs in the following order: U-KaiC ®
T-KaiC ® ST-KaiC ® S-KaiC ® U-KaiC. Naturally,
KaiC’s autophosphatase activity dominates its autokinase
activity. KaiA shifts the equilibrium towards autokinase,
while KaiB negates KaiA’s action, by inactivating KaiA
and thus shifting the equilibrium towards autophospha-
tase activity [5]. Although a simple clock based on only
three purified Kai-A, B, C proteins can be reconstituted
in vitro in the absence of transcription and translation,
this oscillator stops working at 20°C. In contrast, the in
vivo oscillators still operate robustly under the same
condition. This suggests that input transcription and
translation play a role in making the clock robust to
environmental conditions.
Input pathways: Input pathways provide the core

oscillator with input signals to synchronize itself with its
surrounding environment, i.e., the change of time
of sunrise and sunset throughout the seasons. The
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following three proteins form the input pathways for S.
elongatus, and affect its ability to respond to external sti-
muli: (i) CikA–circadian input kinase: cells that lack cikA
have a marked input pathway defect, in that they are
unable to to recognize pulses of darkness, and thus cannot
reset the phase of their rhythms accordingly. Strains that
lack cikA have a shortened circadian period by 2-3 h.
CikA is thought to be part of a two-component regulatory
system, however the partner response regulator has not
been detected. (ii) LdpA–light-dependant period: strains
that lack ldpA no longer recognize differences in light
intensity as a signal to alter circadian period. The LpdA
protein has iron-sulfur clusters, enabling it to sense the
redox state of the cell. (iii) Pex–Period extender: binds to
the promoter region of KaiA, and is thought to repress
KaiA expression. The Pex protein can delay the clock to
alter its phase.
Output pathways: The circadian clock controls the

rhythmic transcription of S. elongatus genome. There
are two known regulatory mechanisms [6]: clock-con-
trolled nucleoid compaction and molecular activation/
repression pathways. Through direct interaction with
KaiC, temporal information flows from the oscillator to
SasA. SasA is predicted to activate the response regula-
tor RpaA, of which the target has not been identified.
Both SasA and LabA feed information to RpaA, but the
connection between LabA and RpaA is probably indirect
[6]. Also, another gene named cpmA has been pre-
viously described as involving in the output pathway of
the cyanobacterial circadian clock, regulating the expres-
sion rhythm of kaiA and photosynthesis genes psbAI
and psbAII [9].
Although being the subject of intensive studies in the

past, there still remain several unanswered questions for S.
elongatus circadian clock, for example to identify the

potential target of the Kai, CikA and RpaA proteins, which
can be DNA-binding proteins involved in manipulating
compaction of the cyanobacterial chromosome to regulate
global gene expression. Another question is whether there
are multiple circadian oscillators.

Results and discussion
Mapping the circadian clock from S. elongatus to
Cyanothece
We start by mapping the clock genes from S. elongatus
to Cyanothece. For this purpose, we used the Cyanobase
[10] and BioCyc [11] databases (access June 2012). We
used BLAST (with default parameters) to search for the
clock genes’ homologs in Cyanothece. The following
Table 1 lists the homologs of the circadian clock genes
in the two organisms.
It can be observed that apart from KaiA which has only

a single potential homolog, both KaiB and KaiC have mul-
tiple possible homologs, namely KaiB1-4 and KaiC1,2 in
Cyanothece. The existence of multiple Kai protein suggests
the hypothesis that there might be multiple oscillators in
Cyanothece, of which one might be dedicated to its specia-
lized function of nitrogen fixation. It is noted that for the
purpose of this research, we do not differentiate between
orthologs and paralogs. Distinguishing orthologs from
paralogs is by itself a challenging topic that will be the sub-
ject of our future study. LdpA and CpmA also have single
homolog in Cyanothece. For members of two-component
regulatory systems including CikA, SasA and RpaA, multi-
ple possible homologs were found. This result is not sur-
prising, as many cyanobacterial two-component proteins
share conserved receptor domains. Herein we list the
highest matches according to BLAST. Since the E-value of
the best matches generally far exceed those of the other
matches, we use only the best matches (bold-face rows in

Figure 1 A schematic diagram of the Synechococcus elongatus PCC 7942 circadian clock, comprising of input pathways, the core clock
genes, output pathways and other transcription factors/metablic genes.
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Table 1) as possible homologs. It is worth mentioning that
in various databases including Cyanobase [10] and BioCyc
[11], the gene cce_4002 was explicitly named as rpaB,
suggesting that it has similar function to the rpaA gene.
However currently it appears to us that this is likely a
computer-based annotation rather than a literature-based
annotation. Another notable fact to observe is that there is
no Pex homolog in Cyanothece. The lack of the Pex pro-
tein is also observed with some other cyanobacterial spe-
cies, suggesting that these organisms must have alternative
mechanisms for altering the clock phase which have not
yet been discovered.

Reconstruction of the circadian clock interactions from
microarray gene expression data
Using Cyanothece gene expression data for the 12 core
clock genes, namely KaiA, KaiB1, KaiB3-4, KaiC1-2, LdpA,
CikA, CpmA, LabA, SasA, RpaA, we apply network infer-
ence techniques to reconstruct the interactions between
these genes (see section ‘Data and methods’ regarding data
collection and preprocessing). The purpose of this study is

to investigate to what extent the interactions in S. elonga-
tus can be extrapolated to Cyanothece as reflected by
actual microarray data. The inference tool we employ is
our recently developed, dynamic Bayesian network based
GlobalMIT+ toolkit [12, 13, see section ‘Data and meth-
ods’]. The microarray data consist of 24 time points corre-
sponding to 3 cycles of 12 h alternative light/dark
conditions and 24 h of continuous light condition. Since
the sampling rate of 4 h is relatively large compared to
common regulation time scale, we used spline interpola-
tion to intrapolate two more data points between each two
actual measurements (i.e., upsampling the data at an 1h20’
interval). The data were then quantile normalized to three
discrete states. GlobalMIT+ was run with the dynamic
Bayesian network order set to 1, and the significance para-
meter a = 0.999 as recommended in [12]. It is further
noted that apart from the Mutual Information Test (MIT)
criterion, GlobalMIT+ also supports the Minimum
Description Length (MDL) as the alternative scoring
metric. On this particular data set, both metrics returned
the same network though, as presented in Figure 2. It is

Table 1 Mapping of circadian clock genes from S. elongatus to Cyanothece via Blast search with default parameters.

S. elongatus Cyanothece E-value Cyanothece homolog description (BioCyc [11])

synpcc7942_1218: kaiA cce_0424 5e-66 KaiA, circadian clock protein

synpcc7942_1217: kaiB cce_0423 8e-44 KaiB1, circadian clock protein

cce_4715 3e-23 KaiB2, putative circadian clock protein

cce_0435 6e-18 KaiB3, circadian clock protein

cce_0145 4e-12 KaiB4, putative circadian clock protein

synpcc7942_1216: kaiC cce_0422 0.0 KaiC1, circadian clock protein

cce_4716 1e-137 KaiC2, circadian clock protein

synpcc7942_0624: LdpA (light dependent period) cce_2350 6e-76 putative alpha-helical ferredoxin

synpcc7942_0644: CikA (circadian input kinase) cce_4751 1e-129 two-component hybrid sensor and regulator

cce_4289 7e-67 two-component hybrid sensor and regulator

cce_1138 2e-59 two-component hybrid sensor and regulator

cce_0164 1e-52 two-component sensor histidine kinase

cce_0220 4e-52 two-component sensor histidine kinase

cce_2232 3e-46 two-component sensor histidine kinase

cce_1185 7e-46 two-component hybrid sensor and regulator

synpcc7942_1168: CpmA (circadian phase modifier) cce_2642 6e-67 circadian phase modifier CpmA-like protein

synpcc7942_0677: Pex (period extender) - - -

synpcc7942_1891: LabA (low-amplitude and bright protein) cce_3317 7e-78 hypothetical protein

cce_1947 1e-22 hypothetical protein

synpcc7942_2114: SasA (histidine kinase) cce_1751 9e-81 adaptive-response sensory histidine kinase

cce_2546 3e-27 two-component sensor histidine kinase

cce_0888 4e-25 two-component sensor histidine kinase

synpcc79427942_0095: RpaA (response regulator) cce_0298 1e-121 rpaA two-component response regulator

cce_4002 1e-47 rpaB two-component response regulator

cce_0970 9e-43 two-component transcription regulator

cce_1725 2e-41 two-component transcriptional regulatory protein

cce_0817 2e-41 two component transcriptional regulator

The matches with highest E-value are reported.

Vinh et al. BMC Bioinformatics 2013, 14(Suppl 2):S14
http://www.biomedcentral.com/1471-2105/14/S2/S14

Page 4 of 9



interesting to note that the reconstructed network sug-
gests a central role of the KaiC2 circadian clock gene.
Herein KaiC2 is predicted to interact with LabA and
RpaA, which belong to the output pathways of S. elongatus
(Figure 1). This is in concordant with the interactions
reported for S. elongatus. Another interesting set of con-
nections is KaiC2 ® KaiA ® {LdpA, CikA}. It can be
observed that all the interaction directions are reversed
here, as in S. elongatus, LdpA and CikA form the input
pathways of the clock and interact with KaiA. The KaiC2
® RpaA ® CpmA interactions are also notable. It was
previously reported that CpmA acts on the output path-
way of the circadian clock [9], but whether it is a down-
stream, upstream or independent gene of RpaA was not
reported. For the KaiC2 ® RpaA ® KaiB3 ® SasA®
KaiC2 loop, again it is observed that the directions of
interaction are reversed compared to the known network
in S. elongatus. In particular, it was reported that temporal
information flows from KaiC to SaSA to RrpA, but not
vice-versa. Overall, we found that the de novo recon-
structed network using microarray data does shed some

light on the Cyanothece circadian clock, with some inter-
actions matching those in S. elongatus, and poses some
novel hypotheses. It remains to verify whether KaiC1 or
KaiC2 plays the central role in Cyanothece circadian clock,
which one is the main oscillator and which one is the per-
ipheral oscillator. The reconstructed network herein sug-
gests KaiC2 to be the central oscillator.

Building a predictive model of the system behaviour
based on the core clock genes
Using Inferelator [14, see section ‘Data and methods’],
we next build a predictive model between the 12 core
clock genes (as regulators) and the other 134 Cya-
nothece putative transcription factors (as targets) which
regulate key cellular processes and global transcription.
Our aim is first to characterize the cellular processes
which are circadian-controlled, and second to see if the
constructed model can accurately predict the behaviour
of these processes under unknown/changing environ-
mental conditions. For this study, we used 18 time
points corresponding to three full 12 h light/dark (L/D)

Figure 2 GlobalMIT+-reconstructed Cyanothece circadian clock network (for the 12 core clock genes). This reconstructed network
suggests a central role of the KaiC2 gene within the circadian clock.
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cycles (LDLDLD-with samples taken every 4 h) as our
training set. We held out 6 time points corresponding
to 24 h of continuous light (LL) as our test set.
Training set
We run Inferelator, setting the maximum number of sin-
gle predictors to 5 and interacting predictors to 2, and the
time constant τ set to 15 mins following previous studies
[8,14]. The other parameters were left at default. To vali-
date the constructed model, we employ the leave-one-out
cross validation approach as follows: for each given time
point, a model is trained using the rest of 17 time points.
Then, the value of the left-out time point is predicted as
per Eq. (3) assuming steady state condition (Sec. ‘Inference
methods’). Strictly speaking, our data herein is time series.
However, since the sampling gap of 4 h is relatively large
compared to the regulation time scale (typically ranging
within several tens of minutes [15]), it is reasonable to
assume equilibrium condition. This approach was also
previously followed in [8] resulting in reasonably good
predictions. To assess the quality of the constructed
model, we calculate the Pearson correlation coefficient
between the predicted and observed time series. The Pear-
son correlation coefficient for the models trained for 134
Cyanothece transcription factors is presented in Figure 3a
(ordered in increasing correlation value). The average cor-
relation over all 134 transcription factors (TF) is r = 0.49.
From Figure 3 it is also clear that the circadian clock
genes can explain very well the behaviour of a number of
TFs, while for the rest of the TFs, the performance is poor
using the clock genes as potential regulators alone. This
result is to be expected, as not all the genes and cellular
processes are circadian-controlled. We next apply a thresh-
old of rmin = 0.5 to select the TFs that could be regarded

circadian-controlled. This filter gives us a set of 66 TFs
with the average correlation of 0.68. In Table 2, we list a
selected set of circadian-controlled TFs which are well
annotated (the rest of these TFs are with fairly vague
annotations, such as “two-component response regulator”,
which are not informative for further analysis). It is noted
that in this set, there are the three most important TFs
involving in nitrogen fixation, namely ntcA, ntcB and
patB. Additionally, the rubisco operon transcriptional reg-
ulator rbcR involving in carbon uptake is also presented.
Another notable fact to observe is that there is a large
number of circadian controlled sigma factors namely
rpoD, sigA, sigB, rpoE1, rpoE2, sigD, together with some
anti-sigma factors namely cce_0470 and cce_3321. Since it
has been previously reported that about 30% of Cya-
nothece genes, i.e., ~1500 genes, are circadian-controlled
[7], it is reasonable to expect that the control mechanism
is not direct, but indirectly via global chromosome com-
paction and sigma factors.
Test set
Having built a full model for the 66 circadian-controlled
TFs on the 18 time-point training set, we next use the
hold-out set of 6 time-point data set for validating our
model. For this purpose, again we employ Eq. (3) for pre-
dicting the values of the target TFs given the values of the
core clock genes. The correlation for all 66 TFs and for a
selected set of TFs is presented in Figure 3b and Table 2
respectively. The average correlation for all 66 TFs on the
test set is 0.57, which is lower than on the training set
(0.68). However this result is still quite remarkable, as the
test set represents a novel environmental condition (con-
tinuous light stress). As from Table 2 and Figure 3b, we
can observe that for the majority of the TFs, the learned

Figure 3 (a) Correlation for models trained for 134 Cyanothece transcription factors on training data; (b) Correlation for models
trained for 66 circadian-controlled TFs on test data.
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model can predict very well the system behaviour under
this changing environmental condition. The observed and
predicted expression levels for some selected TFs are pre-
sented in Figure 4. It is noted that while the learned mod-
els produce good predictions for the majority of target
TFs, the prediction is poor for a small number of TFs, as
evidenced in Figure 3b, including the putative Rubisco
transcriptional regulator rbcR in Table 2. This is the sub-
ject of our future investigation.

Conclusions
In this paper, we have studied the circadian clock in Cya-
nothece sp. ATCC 51142, an important marine cyanobac-
terium of high interest in current biofuel research. We have
mapped the circadian clock genes and interactions from
another species, namely Synechococcus elongatus PCC
7942, a model organism for circadian clock study. To vali-
date this extrapolated information, we employed Cya-
nothece gene expression data and network reconstruction

Table 2 List of transcription factors that are circadian controlled in Cyanothece

TF Training Testing Description

cce_0198 0.79 0.75 ntcB nitrogen assimilation transcriptional activator

cce_0461 0.83 0.82 ntcA nitrogen-responsive regulatory protein

cce_1898 0.88 0.58 patB transcriptional regulator (nitrogen fixation)

cce_0470 0.57 0.70 protein containing an Anti-sigma factor antagonist domain

cce_0601 0.65 0.82 rpoD RNA polymerase sigma factor

cce_0644 0.56 0.95 sigB RNA polymerase sigma factor

cce_0875 0.89 0.70 sigA RNA polymerase sigma factor

cce_2424 0.66 0.48 rpoE2 putative RNA polymerase sigma-E factor

cce_2782 0.58 0.74 LysR family transcriptional regulator

cce_2881 0.61 0.81 fur3 ferric uptake regulation protein

cce_3321 0.67 0.77 anti-sigma factor antagonist

cce_3519 0.60 0.60 phoU phosphate uptake regulator

cce_3594 0.75 0.83 sigD RNA polymerase sigma factor

cce_4142 0.72 0.78 rpoE1 RNA polymerase sigma-E factor

cce_3731 0.68 -0.66 rbcR putative Rubisco transcriptional regulator

cce_4701 0.65 0.74 gst3 glutathione S-transferase

Figure 4 Observed and predicted expression level for selected TFs. Yellow bar represents testing conditions. (In gray scale: shaded bar-
testing conditions, black line-observed expression, gray line-predicted expression).
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techniques. With GlobalMIT+, we were able to match some
of the genetic interactions in the two organisms and pose
some interesting hypotheses, e.g., the central role of KaiC2
in the circadian clock. Using Inferelator, we selected a set of
circadian-controlled transcription factors, and built predic-
tive models for these TFs using the core clock genes as
regulators. Experimental results showed that our models
can fairly accurately predict the behaviour of the system
under unknown/changing environmental conditions. There
remain for us to answer many more questions regarding the
circadian clock in Cyanothece as well as in S. elongatus, for
example identifying the specific targets of many circadian
clock genes, including CikA, RrpA and KaiC. In the mean
time, our wet-lab experiments are in progress to collect
more expression data to supplement the limited Cyanothece
microarray data currently available in the public domain.

Data and methods
Microarray data
Being a relatively under-studied species, currently there
are not many microarray data sets available for Cya-
nothece. In this research, we used two data sets that we are
aware of from [3] and [16]. In [3]Cyanothece cultures were
grown in alternative 12 h light/dark (L/D) cycles for 48 h,
with samples being collected every 4 h resulting in tran-
scriptomic data for 5048 genes ×12 times points. Using
the same experimental protocol, in [16]Cyanothece cul-
tures were grown in 12 h L/D cycles for 24 h followed by
24 h of continuous light, with sample being taken every 4
h, also resulting in transcriptomic data for 5048 genes ×12
times points. We downloaded the raw microarray expres-
sion data from the European Bioinformatics Institute
ArrayExpress http://www.ebi.ac.uk/aerep/, accession num-
ber E-TABM-337 and E-TABM-386. The raw microarray
intensity values were averaged for probe replicates. Lowess
normalization was performed with smoothing coefficient
of 0.2. The normalized probe expression values were aver-
aged for biological replicates, technical replicates and dye-
swap experiments. Finally, the data were validated to
ensure that the median Pearson correlation coefficient is
greater for operonic gene pairs than non-operonic gene
pairs in Cyanothece (using our in-house developed operon
prediction tool). To study the core clock and its interac-
tion with key cellular processes and global transcription
regulation, in this research, we extracted transcription data
for the 12 core clock genes, namely KaiA, KaiB1, KaiB3-4,
KaiC1-2, LdpA, CikA, CpmA, LabA, SasA, RpaA (KaiB2
was missing in the above data). In addition, we extracted
expression data for 134 other Cyanothece putative tran-
scription factors as listed in a recent study [8].

Inference methods
To reconstruct a regulatory network between the clock
genes, we used our in-house recently developed GlobalMIT

+ toolkit [12,13]. GlobalMIT+ is a dynamic Bayesian net-
work (DBN) based approach for reconstructing gene regu-
latory network from time series gene expression data. It is a
score+search based learning technique which employs an
information theoretic scoring metric, namely the mutual
information test (MIT) criterion. Briefly speaking, under
MIT the goodness-of-fit of a network is measured by the
total mutual information shared between each node and its
parents, penalized by a term which quantifies the degree of
statistical significance of this shared information. To under-
stand MIT, let {r1, ..., rn} be the number of discrete states
corresponding to our set of RVs X = {X1, ..., Xn}, D denote
our data set of N observations, G be a DBN, and
Pai = {Xi1, . . . ,Xisi } be the set of parents of Xi in G with
corresponding {ri1, . . . , risi } discrete states, and si = |Pai|.
The MIT score is defined as:

SMIT (G : D) =
n∑

i=1;Pai �=∅

⎧⎨
⎩2N · I (Xi, Pai) −

si∑
j=1

χα,liσi(j)

⎫⎬
⎭ . (1)

where I(Xi, Pai) is the mutual information between Xi

and its parents as estimated from D. χα,lij -is the value

such that p(χ2(lij) ≤ χα,lij) = α (the Chi-square distri-

bution at significance level 1 - a), and the term liσi(j) is

defined as:

liσi(j) =

{
(ri − 1)

(
riσi(j) − 1

)∏j−1
k=1 riσi(k), j = 2 . . . , si

(ri − 1)
(
riσi(j) − 1

)
, j = 1

where si = {si(1), ..., si(si)} is any permutation of the
index set {1 ... si} of Pai, with the first variable having the
greatest number of states, the second variable having the
second largest number of states, and so on. The prominent
features of GlobalMIT+ are its ability to learn the globally
optimal network in polynomial time, and its competitive
performance against other state-of-the-art scoring metrics,
such as the Bayesian-Dirichlet (BD) or Bayesian Informa-
tion Criterion (BIC).
To construct a predictive model for the interaction

between the core clock genes and other key process regu-
lators, we employ a well-known differential equation based
technique named Inferelator [14]. Differential equation
(DE) based approaches are a class of sophisticated, well
established methods which have long been used for mod-
eling biochemical phenomena, of which a particularly sali-
ent feature is their ability to accurately model the detailed
dynamics of biochemical systems in continuous time.
Also, unlike DBN based techniques which generally
require data discretization, DE-based approaches can work
directly with real valued data. Since our aim in this
research is also to accurately predict the system behaviour
under unknown or changing conditions, a DE-based
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approach is more suitable for this purpose. In Inferelator,
the relation between the expression of a target gene y and
the expression levels of its regulators X is represented as:

τ
dy
dt

= −y + g(β .Z) (2)

where Z = (z1(X), z2(X), ..., zP (X)) is a set of functions
of the regulatory factors X, which are in fact either a sin-
gle variable or the minimum of two variables. g(.) is a link
function which is chosen to be a truncated linear form,
and τ is the time constant of the level of y in the absence
of external determinants. Parameter fitting in Inferelator
is done via least angle regression followed by L1 shrink-
age, with cross validation carried out to select parameter
values that results in good generalization. To predict the
system behaviour assuming equilibrium conditions, set-
ting dy/dt = 0 we have:

y = g(β .Z) (3)
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