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Abstract

Comparative methods for RNA secondary structure prediction use evolutionary information from RNA alignments to
increase prediction accuracy. The model is often described in terms of stochastic context-free grammars (SCFGs),
which generate a probability distribution over secondary structures. It is, however, unclear how this probability
distribution changes as a function of the input alignment. As prediction programs typically only return a single
secondary structure, better characterisation of the underlying probability space of RNA secondary structures is of
great interest. In this work, we show how to efficiently compute the information entropy of the probability
distribution over RNA secondary structures produced for RNA alignments by a phylo-SCFG, and implement it for the
PPfold model. We also discuss interpretations and applications of this quantity, including how it can clarify reasons
for low prediction reliability scores. PPfold and its source code are available from http://birc.au.dk/software/ppfold/.

Background
The function of RNA molecules is known to depend on
their three-dimensional structure, which is stabilized by
a secondary structure scaffold of basepairing. The sec-
ondary structure is defined by hydrogen bonds between
nucleotides, which form across the structure for thermo-
dynamic stability and molecular function. Despite its
importance, the accurate prediction of RNA secondary
structure remains an unsolved challenge in computa-
tional biology.
With the advent of next-generation sequencing technol-

ogies and new methods in transcriptomics, an explosively
growing amount of biological RNA data is available in
public databases such as Rfam [1] and RNA STRAND [2].
This makes it possible to acquire a large number of RNA
alignments to be used in comparative RNA secondary
structure predictions. This is especially significant in the
case of long RNAs such as RNA viral genomes and long
genomic introns, many of which are known to have func-
tional, conserved secondary structures.

Several methods have been established to predict RNA
secondary structures from nucleotide sequences. In this
paper, we focus entirely on non-pseudoknotted secondary
structure prediction. Thermodynamic optimisation based
on minimising free-energy functions has been used to
great effect in algorithms such as mfold [3], UNAFold [4]
and RNAfold [5]. In a different approach, stochastic con-
text-free grammars (SCFGs) have also been successfully
used to model RNA secondary structure. The Pfold pro-
gram [6,7], for example, combines molecular evolution
with a lightweight SCFG model (known as a phylo-gram-
mar) to predict the consensus secondary structure of RNA
alignments, and has in the past shown to be highly accu-
rate for structural alignments [8]. PPfold is a recent multi-
threaded reimplementation of Pfold [9].
Common to these methods is that they produce a prob-

ability distribution over all possible nested secondary
structures for the input sequences, but usually only a sin-
gle, optimal secondary structure is reported to the user.
A particularly interesting question is how the underlying
distribution changes as a function of input data. Due to
the large space of possible secondary structures, however,
it is difficult to report useful quantities to describe this.
Information entropy is one such measure.
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Entropy computations in the context of RNA secondary
structure prediction have been considered previously from
a thermodynamic perspective, calculating the thermody-
namic entropy over both secondary structure space
[10,11] and tertiary structure space [12]. Positional ther-
modynamic entropy [5] as well as thermodynamic entropy
changes in response to basepair mutations [13] have also
been computed. Additionally, SCFG-based methods have
recently been utilised for calculating both the information
entropy of individual basepairs in a single-sequence con-
text [14], and the thermodynamic entropy changes in
response to basepair mutations. However, no form of
entropy has been computed previously in the case of com-
parative RNA secondary structure prediction.
The information entropy H of a probability distribu-

tion P with a set of events X is defined as:

H(P) = −
∑
x∈X

P(x)log2(P(x)). (1)

The information entropy is a measure for the “spread” of
the probability distribution, and has well-defined lower and
upper bounds. The minimum entropy of 0 occurs when
there is only one outcome with probability 1. For n possible
outcomes, the maximum entropy is equal to log2 (n) and
occurs for the uniform distribution. For a probability distri-
bution, an entropy of k bits indicates that the expected
value of the information content of observing a single out-
come is k bits. In the context of secondary structure pre-
diction, a low entropy therefore indicates that few
secondary structures dominate the probability space,
whereas a high entropy indicates a more even probability
distribution over possible secondary structures. Thus,
information entropy is a useful single quantity to character-
ize the underlying probability distribution of secondary
structures.
In the case of RNA secondary structure prediction

based on a semantically unambiguous SCFG, the infor-
mation entropy of the probability distribution over RNA
secondary structures can be computed as the derivational
entropy of the SCFG that generates the distribution. We
restrict ourselves to semantically unambiguous SCFGs, in
order to maintain a one-to-one correspondence between
SCFG derivations and secondary structures. Thus,
throughout this paper we use “information entropy” and
“derivational entropy” interchangeably.

Notation
Consider RNA alignments of k sequences (k ≥ 1), with the
i’th column denoted ci Î Σk = {"A”, “C”, “G”, “U”, “-"}k

\ {"-"}k. A stochastic context-free phylo-grammar (phylo-
SCFG) on such alignments is a tuple G = ((Σk, N, S, R), P),
where:

• Σk forms the (finite) set of terminal symbols

• N is a finite set of nonterminal symbols, such that∑k ∩ N =� 0
• S is the start symbol, S Î N
• R is a finite set of production rules, each rule of
the form A ® a, A Î N and a Î (∑k ∪ N)*
• P is a function from R to real numbers in the
interval [0,1]

In the case of a phylo-grammar, P can be interpreted as
Bayesian probabilities equal to the product of prior prob-
abilities that only depend on the type of rule being used,
and a likelihood factor that is typically derived from a
phylogenetic model and is a function of the alignment
columns. We will return to this more formally later.
Furthermore, we assume the grammar is proper, that is
∀A Î N: ∑π = (A ® a) P(π) = 1.
Let d be a complete (left-most) derivation of the gram-

mar. Informally, a complete derivation is a sequence of
production rules, such that starting from the start sym-
bol, and sequentially replacing all nonterminals with a
production rule emitting from that nonterminal, a string
of terminal symbols is obtained. The probability of d is
the product of the probability of all rules occurring in d:

p(d) =
∏
A→α

P(A → α)fd(A→α)
(2)

where fd (A ® a) is the number of times rule A ® a
occurs in derivation d.
The grammar is consistent if ∑d p(d) = 1, where the

sum is over all possible derivations of the grammar. In
the case of phylo-grammars, consistency implies that the
total probability of the grammar emitting all alignments
of k sequences (of all lengths) is 1.
The expected frequency (count) of a rule A ® a in all

derivations of the grammar is

Ef (A → α) =
∑
d

p(d)fd(A → α). (3)

The expected frequency of each rule can be computed
in practice using a dynamic programming algorithm
known as the inside-outside algorithm, as described in
[15]. Following the approach of [16], we factorise a
complete derivation d at each occurrence of rule A ®
a into an “innermost” sub-derivation d2 : α

d2⇒ s , where

s Î (∑k)*, and two “outermost” sub-derivations

d1, d3 : S
d⇒ βAγ ,β

d1⇒ t, γ
d3⇒ u , where b, g Î (∑k ∪ N)*

and t, u Î (∑k)*. Then

Ef (A → α) = O(A)I(α)P(A → α), (4)

with

I(α) =
∑
d

∑
d2

p(d2) (5)
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O(A) =
∑
d

∑
d1,d3

p(d1)p(d3). (6)

The I(a) and O(A) variables can also be computed for
a particular string Cl of length l, using the inside-outside
algorithm in O(l3) time.
The derivational entropy of an SCFG is the informa-

tion entropy of the probability distribution of all deriva-
tions under the SCFG (c.f. equation 1):

H(G) = −
∑
d

p(d)log2(p(d)) (7)

where the sum is over all possible derivations of the
grammar. This quantity can be computed efficiently
using expected rule frequencies [16]:

H(G) = −
∑
A→α

log2(P(A → α))Ef (A → α). (8)

We assume that the phylo-SCFG describes RNA sec-
ondary structure, and while it may be syntactically
ambiguous, it is semantically unambiguous. In practice,
this means that there may be a number of possible deri-
vations for a particular alignment, but there is a one-to-
one correspondence between derivations and consensus
secondary structures for the RNA alignment. Further-
more, we express RNA structure SCFGs in double emis-
sion normal form [17], allowing only rules of the
following types:

Type 1 : A → c

Type 2 : A → cBc′

Type 3 : A → BC

for A, B, C Î N, c, c’ Î Σk. Apart from generating empty
strings, all SCFGs modelling nested RNA secondary
structures can be written in double emission normal
form, so the methods presented here can be adapted to
RNA secondary structure grammars of all types. Addi-
tionally, they can also be adapted for specific mildly con-
text-sensitive RNA grammars that generate specific types
of pseudoknots.
Type 1 rules correspond to the production of a single

column of the alignment, and their probability can be
expressed as

P(A → c) = PG(A → c)PT(c|ċ) (9)

where PG(A ® c) only depends on A, and PT(c|ċ) is the
likelihood of observing column c under the phylogenetic
model, assuming that it is unpaired in the consensus
structure (denoted by ċ ).
Type 2 rules correspond to the production of two

basepaired columns of the alignment, and their prob-
ability can be expressed as

P(A → cBc′) = PG(A → cBc′)PT(c, c′|ĉ, c′) (10)

where PG(A ® cBc’) only depends on A and B, and

PT(c, c′|ĉ, c′) is the likelihood of observing column pair
c, c’ under the phylogenetic model, assuming that they
are paired with each other in the consensus structure
(denoted by ĉ, c′ ).
Type 3 rules express bifurcation and correspond to

dividing the alignment into two parts. As these rules do
not depend on alignment columns, we have:

P(A → BC) = PG(A → BC) · 1 (11)

where PG(A ® BC) only depends on A, B and C.
It is now clear that the probability of any particular

derivation under a phylo-SCFG this structure can be
expressed as a product of two probabilities: a probability
pG that only depends on the types of rules used, and a
probability pT that only depends on the emitted align-
ment columns: p(d) = pG(d) pT(d), with

pG(d) =
∏
ra

PG(ra)fd(ra)
∏
rb

PG(rb)fd(rb)

×
∏
rc

PG(rc)fd(rc)
(12)

pT(d) =
∏
ra

PT(c|ċ)fd(ra)
∏
rb

PT(c, c′|ĉ, c′)fd(rb) (13)

for ra Î R of Type 1, rb Î R of Type 2, rc Î R of Type 3.
Given a single RNA alignment, there are typically a

large number of possible derivations, each correspond-
ing to a possible secondary structure for the alignment.
In the rest of this work, we restrict ourselves to this
space of derivations, which we characterize by its deriva-
tional entropy as described below.

Results and discussion
Algorithm
Let the set of all derivations for the input alignment be
F. The total probability of the grammar producing the
input string is:

T =
∑
d∈�

p(d) =
∑
d∈�

pG(d)pT(d). (14)

The computation of T is straightforward using the
inside algorithm. The normalized probability of a deriva-

tion d is p�(d) =
1
T
p(d) =

1
T
pG(d)pT(d). We now define

the information entropy of the input alignment under
the phylo-SCFG model as:

H�(G) = −
∑
d∈�

p�(d)log2(p�(d)). (15)
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Note that Equations 4 and 8 still hold when the set of
derivations is restricted to a subset, as opposed to the
entire space, so we can write the entropy as:

H�(G) =
∑
d∈�

p(d)
T

log2

(
T

pG(d)pT(d)

)
= log2(T) − 1

T

∑
d∈�

p(d)log2(pG(d))

− 1
T

∑
d∈�

p(d)log2(pT(d))

(16)

We now show how to express the entropy in terms of
expected rule frequencies. Note that:∑

d∈�

p(d)log2(pG(d)) =

=
∑
A→α

log2(PG(A → α))Ef (A → α)
(17)

which can be computed using the expected rule fre-
quencies obtained from the inside-outside algorithm (cf.
equations 7 and 8). This can be seen by noting that Equa-
tions 4 and 7 still hold when the set of derivations is
restricted to a subset, as opposed to the entire space.
Furthermore, if 1d(i, j) denotes the indicator function

for whether the column pair (i, j) is emitted from a Type
2 rule (i.e. position i and j form a pair), and 1s(i) denotes
the indicator function for whether column i is emitted
from a Type 1 rule (i.e. position i is unpaired), then:∑

d∈�

p(d)log2(pT(d)) =

=
∑
d∈�

p(d)

(∑
ra

log2
(
PT(c|ċ)fd(ra)

)

+
∑
rb

log2
(
PT(c, c′|ĉ, c′)fd(rb)

))
=

∑
i, j
i �= j

log2
(
PT(i, j|î, j)

∑
d∈�

1d(i, j)p(d)

+
∑
i

log2
(
PT(i, |i̇)

)∑
d∈�

1s(i)p(d)

(18)

We observe that
∑

d∈�1d(i, j)p(d) is just the total
probability under the model that positions i and j form a
pair (i.e. they are emitted from rule type 2), and∑

d∈�1s(i)p(d) is just the total probability under the

model that position i is unpaired (i.e. it is emitted from
rule type 1). The quantity ∑dÎF p(d) log2(pT(d)) can
therefore also be computed using the expected rule
frequencies.

Once the values of the inside-outside variables have
been calculated for an input string of length n, the
expected rule frequencies can be computed in O(n) time
for rules of Type 1, O(n2) time for rules of Type 2, and O
(n3) time for rules of Type 3. As the time complexity of
the inside-outside algorithm is also O(n3), the computation
of the entropy over the possible derivations of the input
string does not increase the time complexity of RNA sec-
ondary structure prediction.

Interpretation of the derivational entropy
The derivational entropy provides a measure for the
“spread” of the probability distribution on possible second-
ary structures. For equiprobable events, information
entropy increases logarithmically with the number of pos-
sible outcomes. It is clear, therefore, that the maximum
derivational entropy increases with sequence length. It has
been shown [18] that, assuming all nucleotide pairings are
possible, the number of secondary structures S(l) of length
l can be approximated for large l as:

Sl ≈ 1.104 × l−
3
2 × 2.618l. (19)

The maximum derivational entropy is therefore
expected to increase logarithmically with Sl.

Hmax(l) ≈ 0.142 − 3
2
log2(l) + 1.388l. (20)

Hmax(l) provides an upper bound on the value of the
information entropy for an RNA alignment of length l,
and can aid the user in the interpretation of the entropy
corresponding to a particular input alignment.
In practice, however, Hmax is rarely attained by nucleo-

tide sequences. To obtain more intuition for the value of
the derivational entropy, we generated random nucleotide
sequences of varying lengths and nucleotide compositions,
and computed the entropy of the probability distribution
generated by PPfold for the single-sequence predictions, as
a percentage of the theoretical Hmax(l) (Figure 1). Interest-
ingly, we found that the entropies computed for these ran-
dom sequences are remarkably stable at around 25-35% of
Hmax(l) over a wide range of sequence lengths (> 30
nucleotides), with only a slight dependence on nucleotide
composition. Particular entropy values can therefore be
interpreted in relation to this; an entropy value of 25-35%
of Hmax(l) suggests that the probability distribution for the
input data is as “spread” over the structure space as it
would be for a single random sequence of that length.

Using information entropy to interpret low reliability
scores
Derivational entropy is related to various reliability mea-
sures already reported by prediction programs. PPfold in
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particular computes the probability of a pair between
two columns as the sum of the (normalized) expected
frequencies of rules of Type 2 emitting that column
pair:

P(î, j) =
∑

N1→cN2c′
O(N1)I(N2)PG(N1 → cN2c

′)PT(i, j|î, j). (21)

The probability of column i remaining unpaired is

P(i̇) = 1 −
∑

i, j
i �= j

P(î, j)
. These probabilities function

as “reliability scores” for every predicted base-pair or
unpaired nucleotide in the structure. The overall relia-
bility score for the secondary structure can be computed
as the average of the reliability scores of all positions.
Importantly, while the reliability scores depend both on

the structures and their probabilities, the derivational
entropy is only a function of probabilities, and does not

depend on the similarity of the structures to each other.
Derivational entropy therefore provides complementary
information to reliability scores. For example, if the relia-
bility scores predict a low accuracy, the entropy can help
reveal the underlying reasons. A low reliability score can
be observed in different situations, for example (a) if
there is insufficient structure signal, so there are no
structures of high probabilities and the probability distri-
bution is “spread”, or (b) if there are two or more possible
(topologically different) structures of high probabilities,
so the probability distribution has several “peaks”.
Entropy will be high in the first case, but low in the sec-
ond case, and can therefore be used to distinguish the
two situations from each other.
To illustrate this with a practical example, a PP-fold

prediction of the secondary structure of the random
nucleotide sequence:
GACCAAACGCAGCCAGCGTCACTGTAGGATTTAAA

Figure 1 The entropy of the structure probability distributions computed by PPfold, for random sequences of various lengths and
nucleotide compositions. The nucleotide composition of each dataset is given in the legend. Each point represents the mean of the entropy
values for 100 random sequences, with the error bars indicating the standard deviations.
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ACCGAGGGAATGCCGTCAGTAGGGTCGGGTTTAAC
reveals that the underlying probability distribution has

an entropy of 28.55 bits, with an average reliability score
0.65 for the final predicted structure. In comparison, the
following combinatorial sequence of the same length:
GGGGAAACCCCAAAGGGGAAACCCCAAAGGGGAAA
CCCCAAAGGGGAAACCCCAAAGGGGAAACCCCAAA
shows a significantly lower entropy of 18.82 bits, at

the same time as a low average reliability score of 0.56.
Despite the low reliability scores in both cases, the
entropy value correctly reveals that the combinatorial
sequence has a relatively small number of very different
secondary structures dominating the probability space,
whereas the probabilities are more uniformly distributed
over a large number of possible structures in the case of
the random sequence.
To investigate if similar patterns could also be

observed for alignments of longer biological sequences,
we applied the same technique on a range of bacterial
and eukaryotic 16S/18S rRNA alignments. The gene-
ration of the alignments is described in the Methods
section. We plotted the entropy against the PPfold relia-
bility scores, and colour-coded the data points after the
accuracy of predictions. As Figure 2 shows, entropy can
be used in conjunction with basepairing probabilities to
evaluate RNA secondary structure prediction results
even in the case of long biological sequences. In the
cases where reliabilities are high and entropy is low, the
probability space is dominated by a clearly defined set of
similar structures, which are likely to be well predicted.
In the cases where basepairing probabilities are low, a
simultaneous high entropy implies that the underlying
probability distribution lacks a clear signal (eg. in the
case of folding just one sequence). By contrast, low reli-
abilities coupled to a low entropy suggest a distribution

that has several competing structures dominating the
probability space.

Relationship to prediction accuracy
An important question with respect to comparative RNA
secondary structure prediction is how the accuracy of
predictions varies with the quality of input alignment,
and to what extent the accuracy of a predicted structure
can be predicted. Reliability scores and entropy both
measure variation in the secondary structure space, so
both are expected to be correlated with prediction accu-
racy. We note, however, that a natural limitation of both
entropy and reliability scores is that they are computed
under the model, which effectively assumes that the
model itself is an accurate description of the biological
folding processes. If this is not the case, high confidence
values computed under the model can still correspond to
low prediction accuracies in reality.
Nevertheless, we compared how the accuracy of predic-

tions correlates with both the average structure reliability
scores and the information entropy, for all alignments in
our dataset consisting of bacterial and eukaryotic 16S/
18S rRNA alignments. The results are shown in Figure 3.
As expected, both the PPfold reliability scores and
entropy are correlated with prediction accuracy, for both
bacterial and eukaryotic alignments. The correlations are
stronger in the case of the bacterial alignments and
weaker in the case of the eukaryotic alignments. In the
case of the eukaryotic alignments, entropy appears to be
slightly better correlated with prediction accuracy than
PPfold reliability scores, although the difference is not
statistically significant.
We observe that despite the PPfold reliability scores

generally suggest somewhat higher prediction accuracies
than what was actually observed, they convey absolute

Figure 2 Use of entropy in conjunction with reliability scores to characterise probability distributions on RNA structure space. (a)
Prokaryotic alignments (Hmax ≈ 2102), (b) Eukaryotic alignments (Hmax ≈ 2471). The color scale reflects the accuracy of each prediction (F-
measure, %). The outlier with the largest entropy value in each case corresponds to the structure prediction on a single sequence.
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information about the accuracy of predictions. Instead,
entropy functions as a relative accuracy measure, when
comparing several structure predictions for the same
sequence. Entropy can, therefore, complement the cur-
rently existing measures for an increased understanding of
RNA structure variability.
Lastly, we note that there is large variation in the relia-

bility measures reported by different RNA structure pre-
diction programs. By contrast, information entropy is a
method-independent measure: for the same alignment, it
will have the same, well-defined interpretation, regardless
of the method producing the underlying probability distri-
butions. Additionally, all classic information theoretic
results can be applied to it. Information entropy can there-
fore be used to compare the behaviour of any secondary
structure prediction methods that produce a probability
distribution over RNA secondary structures, in a way that
is not possible with currently existing methods.
Future perspectives include the computation of mea-

sures similar to entropy, such as the self-information of
particular outcomes, or the Kullback-Leibner divergence
of distributions to compare constrained and uncon-
strained models for RNA folding. We also expect that
entropy may provide a number of other possible future
applications in RNA secondary structure prediction.

Conclusions
The information entropy of the probability distribu-
tion generated by phylo-grammars can be computed
efficiently from the inside-outside variables, and has
been implemented as part of PPfold. Information
entropy is a well-defined characteristic of the underly-
ing probability distribution, which complements the
reliability values already reported by algorithms for an
increased understanding of RNA structure variability.
It is also a method-independent measure of prediction

certainty, providing theoretical advantages over exist-
ing methods.

Methods
Implementation
We have implemented the algorithm for the Knudsen-
Hein (KH99) grammar [6] in PPfold [9]. PPfold has been
written in Java 6.0 and is available as a standalone appli-
cation. The rules of the KH99 grammar are as follows:

S → L | LS
L → c | cFc′
F → cFc′ | LS

We note that the KH99 grammar is not in double
emission normal form, as it includes the rule S ® L.
Even though the grammar can be expressed in the
desired form, adapting the algorithm to include this
additional rule is both straightforward and highly effi-
cient; this is therefore what we have implemented.
In the case of the KH99 grammar, there is a maximum

of one bifurcating rule originating from each nonterminal
symbol. It is also known that the expected frequency of a
nonterminal symbol can be computed in O(n2) time for
any SCFG, and the expected frequencies of rules from
the same nonterminal symbol sum to the expected fre-
quency of the nonterminal symbol. Hence, in the case of
the KH99 grammar, the time complexity of the computa-
tion of the derivational entropy (given the inside-outside
variables) could further be reduced to O(n2).
As described in the Results and Discussion section, the

value of the entropy depends on the length of the align-
ments. Hence, small adaptations were made in the algo-
rithm to be able to compare the entropies of alignments
that include a particular sequence. The default option in
PPfold is to remove columns where fewer than 75% of
the sequences have nucleotides. In the case of entropy

Figure 3 Variation in accuracy (F-measure) correlated with (a) derivational entropy (as fraction of Hmax) and (b) PPfold reliability
scores, for prokaryotic and eukaryotic 16S/18S rRNA alignments.
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computation, this is replaced with removing only the col-
umns where the selected sequence has gaps. This ensures
that all alignments that include the selected sequence
have an equal prediction length.

Test sequences and alignments
Random sequences of different nucleotide compositions
were generated using the online FaBox tool [19].
For the generation of alignments, among families with

an experimentally verified secondary structure in the Rfam
database, we chose two families (RF01960 - Eukaryotic
small subunit ribosomal RNA, and RF00177 - Bacterial
small subunit ribosomal RNA), for which our initial tests
indicated that a particularly wide range of structure pre-
diction accuracies may be achieved depending on the
choice on the sequences included in the alignment. Start-
ing with a sequence of interest in both families, we con-
structed our datasets by randomly adding sequences from
the family alignment one by one, up to a final size of maxi-
mum 15 sequences. For each alignment size (between 1
and 15 sequences in the alignment), the process was
repeated 50 times. This way we obtained 1+14 × 50, not
necessarily distinct cases per family, with 1-15 sequences
each (including the starting sequence as a standalone
case). The alignments of the selected sequences and the
reference secondary structures thereof were adapted from
those in Rfam, by deleting gap-only columns and any base
pairs involved with those columns.

Comparing accuracies
Accuracies are reported in terms of the F-measure, which
is the harmonic mean of the sensitivity and the positive
predictive value (PPV) of the basepair (bp.) predictions,
compared to the comparative (reference) structure.
These quantities are defined as:

sensitivity =
TP

number of bp. in reference
(22)

PPV =
TP

number of bp. in prediction
(23)

F − measure = 2 × sensitivity × PPV
sensitivity + PPV

(24)

where TP is the number of correctly predicted base-
pairs.
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