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Abstract

Background: Even a single amino acid substitution in a protein sequence may result in significant changes in
protein stability, structure, and therefore in protein function as well. In the post-genomic era, computational methods
for predicting stability changes from only the sequence of a protein are of importance. While evolutionary
relationships of protein mutations can be extracted from large protein databases holding millions of protein
sequences, relevant evolutionary features for the prediction of stability changes have not been proposed. Also, the
use of predicted structural features in situations when a protein structure is not available has not been explored.

Results: We proposed a number of evolutionary and predicted structural features for the prediction of stability
changes and analysed which of them capture the determinants of protein stability the best. We trained and
evaluated our machine learning method on a non-redundant data set of experimentally measured stability
changes. When only the direction of the stability change was predicted, we found that the best performance
improvement can be achieved by the combination of the evolutionary features mutation likelihood and SIFT score
in conjunction with the predicted structural feature secondary structure. The same two evolutionary features in the
combination with the predicted structural feature accessible surface area achieved the lowest error when the
prediction of actual values of stability changes was assessed. Compared to similar studies, our method achieved
improvements in prediction performance.

Conclusion: Although the strongest feature for the prediction of stability changes appears to be the vector of
amino acid identities in the sequential neighbourhood of the mutation, the most relevant combination of
evolutionary and predicted structural features further improves prediction performance. Even the predicted
structural features, which did not perform well on their own, turn out to be beneficial when appropriately
combined with evolutionary features. We conclude that a high prediction accuracy can be achieved knowing only
the sequence of a protein when the right combination of both structural and evolutionary features is used.

Background
Proteins form a group of one of the most vital macromo-
lecules in living organisms. The three-dimensional struc-
ture of a protein and its function are highly correlated.
Yet, it has been shown that even a single amino acid sub-
stitution, a mutation, in protein sequence may result in

significant changes in protein stability, structure, and
therefore in protein function as well. Thus, accurate pre-
diction of stability changes in protein mutants is a cru-
cially important task in protein engineering. Also, it has
been shown that disease-causing mutations are often
characterised by stability changes [1]. Computational
methods for the prediction of stability changes are a pro-
mising approach since they allow for a fast estimation of
stability changes of all possible mutations in a protein
sequence at a minimal cost.
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A number of machine learning methods have been
designed to predict either the direction of the stability
change (stabilising or destabilising) or, alternatively, the
actual value of the stability free energy change (ΔΔG).
Apart from the differences in the underlying supervised
machine learning algorithms, the main difference among
various methods is the feature vector used to define an
instance of a mutation. From this viewpoint, existing
approaches can be divided into two groups: the ones
using features calculated from the protein sequence
alone, and the ones that require the three-dimensional
protein structure as an input for calculating the features.
Since there are several million protein sequences and
only about 80,000 experimentally determined structures
deposited in large protein databases, sequence-only fea-
tures have a much broader application area.
Capriotti and colleagues [2] and Cheng and colleagues

[3] introduced the first methods based on support vector
machines that were able to predict stability changes from
a protein sequence alone. Capriotti and colleagues used a
feature vector encoding the occurrence frequencies of
nine amino acids to the left and right of the mutation
site. The authors used a data set of 2,087 mutations and
achieved a cross-validation accuracy of 77% in classifying
mutations as stabilising or destabilising [2]. Cheng and
colleagues proposed a feature vector encompassing
amino acid identities of the three sequential neighbours
to each side of the mutated residue. The authors evalu-
ated their approach on a data set of 1,496 mutations
achieving a cross-validation accuracy of 84.1% [3]. Rather
than support vector machines, Huang and coworkers [4]
employed classification and regression trees, and the
same feature vector as Cheng and colleagues. On a data
set of 1,859 mutations, they reported a cross-validation
accuracy of 82%. Ozen and colleagues [5] looked into a
number of integration techniques for combining features
and machine learning algorithms. Their sequence-only
method was based on the work of Cheng and colleagues
and enriched with a point accepted mutation (PAM)
score [6]. Nevertheless, using a reduced data set of 1,122
mutations from [3] and a newly compiled data set of
2,471 mutations, the authors were not able to report
improvement in the cross-validation accuracy (83.9%).
More recently, Teng and coworkers [7] evaluated 20
sequence-only features describing amino acids and, by
considering each possible combination, they were able to
identify the best performing subset of features on a data
set of 1,480 mutations achieving a cross-validation accu-
racy of 84.59%. With regard to the prediction of the
actual value of the stability free energy change from a
protein sequence, the best result comes from the study of
Cheng and colleagues [3] on a data set of 1,539 muta-
tions. The authors reported a correlation between the

predicted and experimentally measured stability changes
of 0.79 with a root mean square error of 1.10.
Even though a lot of work has been done in the area

of sequence-only prediction of stability changes, the use
of evolutionary features for this problem has not been
explored in appropriate depth. However, evolutionary
features have been successfully applied to the prediction
of mutations associated with the disruption of protein
function [8].
Turning to structural features, it has been shown that

information about the secondary structure type and rela-
tive accessible surface area assignment of the mutation site
can be successfully applied to the prediction of stability
changes [9]. Nevertheless, in the case of the sequence-only
prediction, the structure of a protein is not available. In
the area of the prediction of protein torsion angles, it has
been shown that prediction performance can be improved
by incorporating even predicted structural features [10].
In this study, we propose a novel machine learning

sequence-only method for the prediction of stability
changes. We address both the prediction of the direction
and the value of the stability free energy change. By intro-
ducing a set of novel evolutionary features and the concept
of predicting structural features from a protein sequence,
we achieve improvements in prediction performance for
both tasks. In order to validate our design, we compare
prediction performance of the predicted and experimen-
tally determined structural features and report insignifi-
cant difference. Finally, we study the contribution of each
of the proposed features and identify the most valuable
subset. When we compare our method to similar studies,
improvements in prediction performance are reported.

Methods
Data sets
For the training and evaluation of our method, we used a
data set originally compiled in [11] from the PROTHERM
database [12]. The data set contains 1,615 single site muta-
tions of 41 different proteins. We have chosen this data set
over more recent ones as it was used in a number of other
studies [3,5,13], and hence, it can be used for comparisons.
The experimentally determined stability free energy
changes as well as temperature and pH values at which
the stability changes were measured are recorded in this
data set. In the same way as in [3,5], we removed redun-
dant entries and compiled data sets of 1,496 and 1,539
mutations for the prediction of the direction and the value
of stability changes, respectively.

Features and feature vectors
In the case of machine learning prediction of stability
changes, each mutation needs to be encoded by a num-
ber of features, a feature vector. Based on the findings
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of previous studies [3-5], a well-proven feature vector
for the sequence-only stability changes prediction con-
sists of the following features: (1) deleted and (2) intro-
duced amino acid identities, (3) temperature, (4) pH
value, and (5) amino acid identities of three sequential
neighbours at each side of the mutation. We refer to
this feature vector as the baseline feature vector B. In
this study, we enriched the baseline feature vector with
a variety of evolutionary and predicted structural fea-
tures in order to increase the prediction performance.
Baseline feature vector B describes the sequential

neighbourhood of a mutation site rather than, presum-
ably, a more realistic three-dimensional neighbourhood.
In order to compare the performance of sequence-based
and three-dimensional neighbourhoods, we evaluated
four ‘baseline’ feature vectors: B, B−, Bspatial, and Bspherical.
Feature vector B− was the same as B but did not include
neighbourhood information. Rather than sequential
neighbours, amino acid identities of the six spatially clo-
sest residues to the mutation site were encoded in feature
vector Bspatial (we tested a number of variations and
found that six spatial neighbours performed the best).
Lastly, Bspherical described the neighbourhood by counting
the occurrences of each amino acid in a sphere with a
9 Å radius centred on the mutation site (this radius
worked best in a previous study [11]). We downloaded
experimentally determined three-dimensional structures
from the Protein Data Bank [14] to calculate these fea-
ture vectors.
Evolutionary features
Some residues in a protein sequence are more con-
served within the family of related proteins than others.
Notably, functionally important sites tend to be con-
served. This has been previously exploited in the area of
the prediction of functionally intolerant mutations [8].
Similarly, it can be assumed that mutations which cause
destabilisation of the protein chain are not present in
the protein family. Furthermore, mutations that are
common in the protein family presumably do not cause
destabilisation of the protein structure. For these rea-
sons, we introduce a range of evolutionary features
(Table 1) and evaluate their prediction performance.
The features conservation likelihood (C) and mutation

likelihood (M) express the log-likelihoods of the deleted
and the introduced amino acids to appear in the align-
ment of homologous sequences of the target protein,
respectively. Three iterations of PSI-BLAST with an
expectation value of 10 were used to search the NCBI
non-redundant database to build the alignment. The
conservation and mutation likelihoods were then
extracted from the last position specific scoring matrix
(PSSM) generated by PSI-BLAST.
The feature mutation site evolutionary profile (Pm)

describes the log-likelihoods of substitutions to 20 amino

acids at the mutation site in the PSSM. In other words,
feature Pm is the mutation site row of the PSSM. Corre-
spondingly, the feature neighbourhood evolutionary
profile (Pn) encompasses six rows from the PSSM
describing the three and three neighbours to each side of
the mutation.
The overall conservation of a residue position in a pro-

tein sequence can be expressed by the information content
per position as calculated in PSSM. We considered the fea-
tures mutation site information content (Pi) and mutation
area information contents (Pi+). Whereas Pi is a single
value describing the mutation position, Pi+ is a vector of
seven values, namely the information contents of the muta-
tion site and the three and three neighbours on each side.
All the features based on PSSM were normalised to fall

within the range of −1 and 1 (features C, M, Pm, and Pn)
or the range of 0 and 1 (Pi and Pi+).
Further, we considered the feature SIFT score (S). SIFT

[8] is a method for predicting whether a mutation affects
the function of a protein and is based on a scaled probabil-
ity matrix of possible amino acid substitutions in the align-
ment generated by PSI-BLAST. SIFT scores range from 0
to 1 where scores below 0.05 are said to disrupt the pro-
tein function. SIFT was run on the SWISS-PROT and
TREMBL databases with sequences more than 90% identi-
cal to the query removed and the median value was set to
2.75. However, in some instances, a warning was issued
that the actual median was higher during the prediction.
Ozen and colleagues [5] used an evolutionary feature

defined as the likelihood of a mutation as calculated in
PAM250 matrix [6]. We included this feature (denoted as
Mx, normalised on the maximum PAM250 score) in our
study for the comparison with the other, PSSM-based,
evolutionary features.
Predicted structural features
It has been shown that the prediction of stability
changes can be based on the information about the

Table 1 Features evaluated for the design of our method

Abbr. Feature name

Evolutionary features

C conservation likelihood

M mutation likelihood

Pm mutation site evolutionary profile

Pn neighbourhood evolutionary profile

Pi mutation site information content

Pi+ mutation area information contents

S SIFT score

Mx PAM evolutionary matrix

Structural features

Ss secondary structure

As accessible surface area

D regions of disorder
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secondary structure type and relative accessible surface
area assignment of the mutation site [9]. Since our
method does not assume that the knowledge of a pro-
tein structure is available, the features secondary struc-
ture type (Ss) and relative accessible surface area
assignment (As) were estimated using state-of-the-art
prediction methods. Feature Ss describes the mutation
site as either helix, extended, or coil, while As classifies
the mutation site as either exposed or buried.
In addition, we introduce another structural feature:

predicted regions of disorder (D). Regions of disorder
may naturally occur in a protein structure, and thus, it
can be assumed that the impact of a mutation may be
different in intrinsically disordered and ordered regions.
Feature D classifies the mutation site as either being in
an ordered or disordered region.
We used neural network-based methods PSIPRED

[15] and DISOPRED [16] in the default configuration
with the filtered NCBI non-redundant database for the
prediction of secondary structure type and regions of
disorder of each mutation site, respectively. For the pre-
diction of relative accessible surface area, we used the
recursive neural network-based ACCPRO method [17]
in the default configuration with the NCBI non-redun-
dant database and a threshold of 25% for classifying
residues as exposed to the solvent.
In order to provide a more specific insight into using

predicted structural features, features Ssstructure and
Asstructure, which correspond to the features Ss and As,
respectively, were calculated from experimentally deter-
mined PDB structures. These features were used only in
a comparison study to investigate the difference in pre-
diction performance of predicted and experimentally
determined structural features.

Support vector machines
Stability changes prediction can be viewed as a classifi-
cation problem if we are only interested in the direction
of the stability change, or as a regression problem if the
value of the stability free energy change is to be pre-
dicted. Support vector machines [18] can approximate
non-linear functions by mapping the inputs to higher
non-linear dimensions using a kernel function and then,
solving the linear problem by finding the maximum
margin separating hyperplane. Cheng and colleagues
showed that the radial basis kernel function performs
the best for stability changes predictions [3]. We used
the LIBSVM library (http://www.csie.ntu.edu.tw/~cjlin/
libsvm/) to implement our method.
For support vector machines, the regularisation para-

meter C and radial basis kernel width parameter g need to
be chosen. In the case of regression, another parameter
(ε), determining the error neglected during training, needs
to be set. We employed baseline feature vector B (defined

in the previous section), and using a 20-fold cross-valida-
tion procedure and a grid search, we tested all possible
combinations of C = 2-5, 2-3, . . ., 215 and g = 2-15, 2-13, . . .,
23 in the case of classification, and C = 2-1, 20, . . ., 26, g =
2-8, 2-7, . . ., 20, and ε = 2-8, 2-7, . . ., 2-1 in the case of
regression. For the classification task, the highest classifi-
cation accuracy was achieved using C = 27 and g = 2-3,
while for the regression task, the parameter values C = 26,
g = 2-2, and ε = 2-5 achieved the lowest root mean square
error.

Cross-validation and evaluation measures
For the evaluation of all the proposed features and their
combinations, we employed a stratified 20-fold cross-
validation procedure and kept the parameters C, g, and
ε fixed at the values reported above.
The prediction performance of our methods was

assessed in terms of accuracy (Q), the Matthews correla-
tion coefficient (MCC), precision (P), recall (R), and
false positive rate (FPR) for the case of the classification
task. In the case of regression, performance was assessed
in terms of the Pearson correlation coefficient (r) and
root mean square error (RMSE). Details on how these
measures are calculated can be found in the literature
[3,5].

Results and discussion
Sequence-only vs. structure-based predictions
Since our approach in this research was strictly sequence-
based, protein structures were not used as the input. For
this reason, we used a sequential neighbourhood as
opposed to a more realistic three-dimensional neighbour-
hood. Furthermore, we used state-of-the-art prediction
methods to estimate the secondary structure type and
relative accessible surface area assignment of a mutation
site. In this section, we verify our assumption that these
features are beneficial for predicting stability changes.
Neighbourhood encoding features
We compared the prediction performance of four baseline
feature vectors in this experiment: B− with no neighbour-
hood information, sequential neighbourhood feature
vector B, and two variations of three-dimensional neigh-
bourhood feature vectors, namely Bspatial and Bspherical.
Interestingly, sequence-based feature vector B outper-

formed the two three-dimensional feature vectors, Bspatial

and Bspherical, even though they utilised structural infor-
mation to describe the mutation site neighbourhood
(Table 2). Feature vector B achieved a higher classifica-
tion accuracy (Q) by 0.47 and 2.34 percentage points (pp)
compared to feature vectors Bspatial and Bspherical, respec-
tively. Nevertheless, there was still a significant gap of
5.82 pp between the accuracy of the worst performing of
these feature vectors (Bspherical) and feature vector B− (no
neighbourhood information).
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From these results, it seems that feature vector Bspherical

loses important information about the mutation site’s
neighbourhood. This might be because when only the
occurrence frequencies in a neighbourhood are encoded,
information regarding immediate versus distant neigh-
bours is diminished. However, the most surprising find-
ing of the experiment is that the prediction performance
of the sequential neighbours outperformed that of the
spatial neighbours. This suggests that the non-local
neighbourly interactions that affect the stability of a pro-
tein were not appropriately modelled in feature vector
Bspatial.
Predicted structural features
In our data set of 1,496 mutations, there were 563 unique
mutation sites for which we predicted secondary struc-
ture and relative accessible surface area assignments
using state-of-the-art prediction methods. PSIPRED for
the prediction of secondary structure (feature Ss) yielded
an accuracy of 80.46% on this data set, while ACCPRO
correctly predicted 82.59% of the mutation sites as either
exposed or buried (feature As). This is in coherence with
reported accuracies of these methods in the literature
[15,17]. Feature D (regions of disorder) was not included
in this comparison because not all the proteins had
experimentally determined information about their disor-
dered regions available.
Overall, we found that the prediction performance of

predicted features Ss and As, combined with baseline fea-
ture vectors B and B−, was comparable to the case when
experimentally determined features Ssstructure and Asstructure
were used, respectively. Feature Ssstructure combined with
baseline feature vector B outperformed predicted feature
Ss only by 0.40 pp (Table 3). A similar trend was observed
for baseline feature vector B− (results not shown). Surpris-
ingly, feature Asstructure did not provide any improvement
in terms of classification accuracy compared to the pre-
dicted variant of this feature (As). When combined with
B−, As even outperformed Asstructure by 1.34 pp.

The good performance of the predicted features can
be explained due to two aspects. First, the accuracy of
PSIPRED and ACCPRO was high. Second, feature vec-
tors used for the stability changes prediction included
also information from the baseline feature vectors (B or
B−). In conclusion, this experiment reassured us that we
can use predicted structural features for the prediction
of stability changes.

Predictions with a single new feature
First, we wanted to evaluate the performance of each of
the 11 proposed evolutionary and predicted structural
features (Table 1) in classifying the direction of stability
changes. For this purpose, we added one of the pro-
posed features at a time to a baseline feature vector. In
this experiment, we considered baseline feature vectors
B (three and three neighbours to each side of the muta-
tion) and B− (no neighbours). Second, we conducted the
same experiments for the regression problem of predict-
ing values of stability free energy changes. Since the
results from the classification and regression experi-
ments lead to similar conclusions, we concentrate on
reporting and analysing only the classification results
here.
Our results show that there was predominantly a

sharp difference in prediction performance depending
on whether mutation site neighbourhood information
was included in predictions. In general, when baseline
feature vector B was used, significant improvement was
achieved compared to the performance when B− was
employed (results not shown). Actually, the only case
when prediction performance of a B−-based method
achieved prediction accuracy close to the B-based meth-
ods was in conjunction with feature Pn (neighbourhood
evolutionary profile). Clearly, Pn itself encodes the
sequential neighbourhood in the form of evolutionary
profiles, which explains a high prediction accuracy (Q)
of 84.16%. Yet, baseline feature vector B alone achieved
an accuracy of 84.76%. We can conclude that the encod-
ing of the mutation sequential neighbourhood in terms
of amino acid identities (as done in B) is not only sim-
pler but also performs better.
Interestingly, when feature Pn was used with baseline

feature vector B, prediction performance was lower than
that of B alone (83.76%). The likely explanation is that fea-
ture Pn is redundant or correlated with feature vector B.
Overall, in both cases, i.e. B or B− as the baseline fea-

ture vectors, five of the proposed features remain among
the top six positions (Table 4). These are S (SIFT score),
Pm (mutation site evolutionary profile), Pi+ (mutation
area information contents), C (conservation likelihood),
and M (mutation likelihood), all being evolutionary fea-
tures. These results suggest that evolutionary features
capture well the determinants of the protein stability.

Table 2 Sequential versus three-dimensional
neighbourhoods

Feature Q (%) MCC P (%) R (%) FPR (%)

B
−

76.60 0.392 61.24 48.59 12.24

Bspherical 82.42 0.565 69.64 67.84 11.78

Bspatial 84.29 0.605 74.55 68.08 9.25

B 84.76 0.615 76.05 67.84 8.50

Table 3 Calculated versus predicted structural features

Feature Q (%) MCC P (%) R (%) FPR (%)

Ss 84.69 0.614 75.72 68.08 8.69

Ssstructure 85.09 0.625 76.36 69.01 8.50

As 84.02 0.598 74.04 67.61 9.44

Asstructure 83.96 0.600 73.13 69.01 10.09
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The explanation lies in the fact that they provide infor-
mation which directly suggests whether a given mutation
appears among similar proteins or not.
The highest accuracy was achieved by combining base-

line feature vector B and feature S (85.43%) (Table 4).
This behaviour can be explained by the excellent perfor-
mance of SIFT on a related task, the prediction of dele-
terious mutations, for which the score was originally
designed. Interestingly, the combination of baseline fea-
ture vector B− and feature S ranked only at position four
among the B−-based methods. This is because, in lack of
neighbourhood description provided in the baseline fea-
ture vector, features that implicitly describe mutation
neighbourhood (Pn and Pi+) performed the best.
Turning to the results achieved with structural features,

Ss (secondary structure), As (accessible surface area), and
D (regions of disorder), it is rather surprising that when
coupled with baseline feature vector B, prediction accuracy
was actually lower than that of B alone (Table 4). On the
other hand, when coupled with B−, Ss and As yielded
improvements of 1.47 and 1.21 percentage points, respec-
tively (results not shown). A plausible explanation is that
some amino acids tend to form one of the secondary
structure types and as well, based on amino acid hydro-
phobicity, residues tend to be either exposed or buried.
This implies that the information provided by Ss and As
might be implicitly encoded in the neighbourhood infor-
mation provided by B but not by B−.

Predictions with optimal subsets of features
The main goal of this research was to identify the optimal
subset of evolutionary and predicted structural features for
the prediction of stability changes. We considered every
possible subset of all the features that we proposed (the
features listed in Table 1) and evaluated the prediction
performance for both the classification and regression
tasks. We considered baseline feature vectors B (sequential
neighbourhood) and B− (no neighbourhood). However, the

best combination based on B− lacked 1 percentage point
(pp) and 0.01 off the accuracy and correlation coefficient
to the absolutely best combinations for the classification
and regression tasks, respectively. Therefore, the best com-
binations reported in this section were all based on base-
line feature vector B.
Classification
We found that various combinations of two to six pro-
posed features performed optimally in the case of classifi-
cation (Table 5). Combinations of seven and more features
achieved lower accuracy than the best combination of six
features (results not shown). As the results in Table 5 indi-
cate, there is only a 0.2 pp difference in the prediction
accuracies between the best method using six features and
the best method using only two of the proposed features.
The best subset of two features contained features S

(SIFT score) and M (mutation likelihood). This subset
yielded an accuracy (Q) of 85.90% (Table 5). Both S and
M are evolutionary features and their high prediction
performance was discussed in the previous section. The
new feature in the three feature subset was structural fea-
ture Ss (secondary structure). This is an interesting result
as all structural features yielded no accuracy improve-
ment compared to the baseline prediction in our single
feature prediction experiment (previous section). We
believe that even though prediction performance of Ss is
weak when used alone, if coupled with appropriate fea-
tures (for instance, evolutionary features S and M), Ss can
improve prediction accuracy. Although the actual
improvement upon adding feature Ss was only 0.06 pp,
the importance should not be neglected because feature
Ss was present among all the best feature subsets of size
three and more.
Regarding the best prediction result of this study, the

accuracy of 86.10% was achieved by the combination of
the following features: S, M, Ss, Pi, D, and C (Table 5).
When compared to the accuracy of the baseline feature
vector alone, this combination achieved an accuracy
improvement of 1.34 pp.
It should be noted that for each category (of various

subset sizes), a number of other combinations achieved
classification accuracy only marginally lower than the

Table 4 Single feature classification performance

Feature Q (%) MCC P (%) R (%) FPR (%)

S 85.43 0.635 76.40 70.66 8.69

Pm 85.29 0.630 76.68 69.48 8.41

Pi+ 85.03 0.623 76.30 68.78 8.50

C 85.03 0.622 76.44 68.54 8.41

M 84.96 0.623 75.44 69.95 9.07

Pi 84.89 0.619 76.04 68.54 8.60

Mx 84.83 0.617 75.98 68.31 8.60

B 84.76 0.615 76.05 67.84 8.50

Ss 84.69 0.614 75.72 68.08 8.69

D 84.63 0.611 75.93 67.37 8.50

As 84.02 0.598 74.04 67.61 9.44

Pn 83.76 0.584 75.92 62.91 7.94

Table 5 Optimal combinations of features for
classification

Feature Q (%) MCC P (%) R (%) FPR (%)

B 84.76 0.615 76.05 67.84 8.50

S 85.43 0.635 76.40 70.66 8.69

S, M 85.90 0.647 77.22 71.60 8.41

S, M, Ss 85.96 0.650 77.00 72.30 8.60

S, M, Ss, Pi+ 86.03 0.651 77.06 72.54 8.60

S, M, Ss, Pi+, D 86.03 0.651 77.06 72.54 8.60

S, M, Ss, Pi, D, C 86.10 0.653 77.39 72.30 8.41
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best combination in the given category (results not
shown). We investigated which features were the most
often occurring among those ‘well-performing’ combina-
tions. We considered a threshold of 0.25 pp off the
accuracy of the best combination (86.10%) to define the
‘well-performing’ combinations. There were 59 feature
combinations within this range. We found that evolu-
tionary feature S was present in all of them (Table 6).
The second most often occurring feature was predicted
structural feature Ss. This further supports our discus-
sion from the paragraph above that feature Ss, even
though not strong on its own, helps achieve high predic-
tion accuracy in a combination with evolutionary fea-
tures. The last feature significantly ahead from the rest
was evolutionary feature M.
The two ‘well-performing’ evolutionary features, S and

M, both describe the probability of the amino acid substi-
tution. However, S, unlike M, is scaled on the probability
of the most often occurring amino acid in the given posi-
tion. Reasonably, for some prediction instances, the
unscaled probability M may work better which explains
why two similar features coexist among the top 59 feature
combinations.
In conclusion, the most robust feature vector identi-

fied in this study was the combination of baseline fea-
ture vector B with evolutionary features S (SIFT score)
and M (mutation likelihood), and predicted structural
feature Ss (secondary structure).
Regression
Turning to the regression task, we found that correlation
coefficient (r) and root mean square error (RMSE) can be
improved gradually by adding up to three of the proposed
evolutionary and predicted structural features (Table 7).
Nevertheless, a very balanced performance can be seen
already among the best combinations of two and three
features.
The best regression performance in our study was

achieved by the combination of features M, As, and S

yielding a correlation coefficient of 0.834 and an RMSE
of 0.93 (Table 7). The correlation of the experimentally
measured stability changes and predictions employing
the three discussed features is shown in Figure 1. This
result further proves our conclusion drawn in the pre-
vious section that high prediction performance can be
achieved when a mixture of various types of features, in
this case evolutionary and structural, are employed.
As in the case of the classification task, it should be

noted that for each category (of various subset sizes), a
number of other combinations achieved correlation coeffi-
cients and RMSEs only marginally worse than the best
combination for each category (results not shown). For
regression, the ‘well-performing’ threshold was set to
0.005 off the correlation coefficient of the best feature
combination (0.834), which identified 108 feature combi-
nations. We found that all of them contained evolutionary
feature M (Table 8). Another two features with occurrence
in over 60% of the ‘well-performing’ feature combinations
were predicted structural feature As and evolutionary fea-
ture S. This finding further proves that the combination of

Table 6 Feature contributions to the 59 best performing
combinations for classification

Feature Contribution (%)

S 100.00

Ss 84.75

M 72.88

D 55.93

Mx 50.85

C 45.76

Pi 35.59

Pi+ 30.51

Pm 18.64

As 3.39

Pn 0.00

Table 7 Optimal combinations of features for regression

Feature r RMSE

B 0.805 1.00

M 0.826 0.95

M, As 0.832 0.94

M, As, S 0.834 0.93

Figure 1 Experimentally measured versus predicted stability
changes. Predictions using our regression method with features M,
As, and S achieved a correlation of 0.834 and an RMSE of 0.93. The
slope of the grey regression line is 1.021.
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M, As, and S provides for the most accurate and robust
performance for the regression task.

Comparison with other methods
We discussed the results of this research in the previous
sections and concluded that the most robust of the
‘well-performing’ combinations of baseline feature vector
B with the proposed evolutionary and predicted struc-
tural features were the combinations of S (SIFT score),
M (mutation likelihood), and Ss (secondary structure)
and S, M, and As (accessible surface area) for classifica-
tion and regression, respectively. When we compared
our 20-fold cross-validation results with other available
methods, we found an improvement of 1.9 percentage
points (pp) in terms of accuracy (Q) next to the method
of Cheng and coworkers [3] on the data set of 1,496
mutations (Table 9). For regression on the data set of
1,539 mutations, we achieved an improvement of 0.08 in
terms of correlation coefficient (r). On a data set of
1,859 mutations from the study of Huang and cowor-
kers [4], we found an improvement of 1.3 pp and 0.1 in
terms of accuracy and correlation coefficient, respec-
tively. Compared to Ozen and colleagues’ method [5] on
a smaller data set of 1,122 mutations, the cross-valida-
tion accuracy improvement was 0.7 pp. We could not
perform a direct comparison with Teng and colleagues’
method [7] because their data set was not available.

We concluded that the accuracy of our method varies
depending on the chosen data set. Therefore, an inde-
pendent data set would be necessary for a fair compari-
son among various methods. However, such work was
beyond the scope of this research.

Conclusion
In this study, we investigated the benefits of employing
evolutionary and predicted structural features to the
sequence-only prediction of stability changes upon muta-
tions. We based our method on a previously proposed
simple model which describes a mutation’s environment
by encoding amino acids in the mutated residue’s
sequential neighbourhood. We showed that the sequen-
tial representation of the mutation environment actually
outperformed the three-dimensional representation in
our comparison study.
Next, we confirmed our assumption that predicted

structural features can be used for the prediction of sta-
bility changes by comparing their performance to the
equivalent experimentally determined structural features.
We found that the difference in prediction performance
was insignificant.
When evaluating the proposed evolutionary and pre-

dicted structural features by adding one at a time to our
baseline method, we discovered that the encoding of the
mutation’s sequential neighbourhood simply with amino
acid identities performed better than with PSI-BLAST evo-
lutionary profiles. Overall, evolutionary features SIFT
score (S) and mutation likelihood (M) performed the best
in our single new proposed feature at a time experiment
for the case of classification and regression, respectively.
Finally, we considered all possible combinations of the

proposed features and concluded that the most robust
performance in terms of classification accuracy can be
achieved by combining two evolutionary features muta-
tion likelihood (M) and SIFT score (S) with predicted
structural feature secondary structure (Ss). This method
achieved a cross-validation accuracy of 85.96%. For the
case of the regression problem, the combination of muta-
tion likelihood (M), SIFT score (S), and predicted struc-
tural feature accessible surface area (As) achieved the
lowest root mean square error of 0.93 and a correlation
coefficient of 0.834. When compared to other available

Table 8 Feature contributions to the 108 best performing
combinations for regression

Feature Contribution (%)

M 100.00

As 83.33

S 61.11

Mx 51.85

C 50.93

D 47.22

Ss 38.89

Pi 35.19

Pi+ 30.56

Pm 0.00

Pn 0.00

Table 9 Comparison with other methods

Method Data set Q (%) MCC P (%) R (%) FPR (%) r RMSE

Cheng et al. [3] 1,496 (1,539) 84.1 0.59 69.3 71.1 10.3 (0.75) (1.10)

Our method 86.0 0.65 77.0 72.3 8.6 (0.83) (0.93)

Huang et al. [4] 1,859 82.1 - - 75.3 15.5 0.70 -

Our method 83.4 0.61 75.2 70.3 10.6 0.80 1.08

Ozen et al. [5] 1,122 83.9 - - - - - -

Our method 84.6 0.65 77.6 75.1 10.7 0.82 0.97
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methods for the prediction of stability changes, our
method performed more accurately.
The downside of our approach is that for the calculation

of the proposed features, a multiple sequence alignment of
related proteins using PSI-BLAST needs to be created.
This step introduces some computational overhead com-
pared to other methods. However, if the prediction of all
possible amino acid substitutions of a protein is required,
a single run of PSI-BLAST is sufficient to carry out the
predictions of all sites.
As future work, because we found that a number of evo-

lutionary features can complement each other in predic-
tion, we plan to design a single feature which can capture
more precisely evolutionary interactions that influence sta-
bility changes in protein mutants.
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