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Abstract

Background: Polyadenylation is present in all three domains of life, making it the most conserved post-transcriptional
process compared with splicing and 5’-capping. Even though most mammalian poly(A) sites contain a highly
conserved hexanucleotide in the upstream region and a far less conserved U/GU-rich sequence in the downstream
region, there are many exceptions. Furthermore, poly(A) sites in other species, such as plants and invertebrates, exhibit
high deviation from this genomic structure, making the construction of a general poly(A) site recognition model
challenging. We surveyed nine poly(A) site prediction methods published between 1999 and 2011. All methods exploit
the skewed nucleotide profile across the poly(A) sites, and the highly conserved poly(A) signal as the primary features
for recognition. These methods typically use a large number of features, which increases the dimensionality of the
models to crippling degrees, and typically are not validated against many kinds of genomes.

Results: We propose a poly(A) site model that employs minimal features to capture the essence of poly(A) sites,
and yet, produces better prediction accuracy across diverse species. Our model consists of three dior-trinucleotide
profiles identified through principle component analysis, and the predicted nucleosome occupancy flanking the
poly(A) sites. We validated our model using two machine learning methods: logistic regression and linear
discriminant analysis. Results show that models achieve 85-92% sensitivity and 85-96% specificity in seven animals
and plants. When we applied one model from one species to predict poly(A) sites from other species, the
sensitivity scores correlate with phylogenetic distances.

Conclusions: A four-feature model geared towards small motifs was sufficient to accurately learn and predict poly
(A) sites across eukaryotes.

Background
Nearly all eukaryotic messenger RNA (mRNA) carries a
long series of adenine at the 3’ end called the polyade-
nylation (poly(A)) tail. The molecular process synthesiz-
ing the poly(A) tail is called polyadenylation. Eukaryotic
polyadenylation was first reported more than half a cen-
tury ago [1]. Since then, tremendous progress has been
made in elucidating the mechanism, regulation, protein
factors, and related biological functions. Although polya-
denylated transcripts in prokaryotes were first identified
since 1975 [2,3], the majority of studies focus on eukar-
yotes and their DNA viruses, probably due to the obsta-
cles of isolating unstable prokaryotic transcripts. More

recently, polyadenylation has been studied in Archaea
[4-6] and in organelles: the chloroplast [7-10], and mito-
chondria [11,12]. The prevalence of polyadenylation
across all three domains of life signifies a long evolu-
tionary history in which varied complexity and addi-
tional functions have been selected by diverse species.
Polyadenylation consists of two tandem enzymatic reac-

tions: the cleavage of a nascent mRNA from the elongating
RNA polymerase, followed by the non-template synthesis
of a poly(A) tail that varies in length between speices. A
typical eukaryotic poly(A) site is characterized by three
cis-elements. The first element lies where the pre-mRNA
is cut off from the RNA polymerase at the pre-mRNA’s 3’-
most exon: the cleavage site. The second element is a
highly conserved hexanucleotide, namely the poly(A) sig-
nal. The majority of poly(A) signals are located ~20 nts
upstream from the cleavage sites. 66% and 16% of
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mammalian transcripts contain AAUAAA and AUUAAA,
respectively [13,14], making the canonical poly(A) signal
AWUAAA (W stands for ‘A’ or ‘U’). The third element is
named the downstream element (DSE) which is located at
~10-15 nts downstream from the cleavage site. In contrast
to the poly(A) signal, no consensus sequence has been
found in the DSE among animals except that it is enriched
mainly with ‘U’ and sprinkled with ‘G’. Therefore the DSE
is known as U/GU-rich region. Although cis-elements are
short and variable, polyadenylation takes place precisely
(± 5 nts) at the same location (or locations in the case of
alternative polyadenylation) of a gene. Moreover, even
though all genes within a species are processed by the
same set of core polyadenylation factors, two poly(A) sites
rarely resemble each other [15]. The functionally con-
served but sequence-variable poly(A) sites not only chal-
lenge the identification of definitive features for
recognition, but also present an intriguing case study for
the understanding of the evolution of non-coding regions
in different species.
We present an improved poly(A) site model that dis-

tinguishes itself from existing models in four ways. 1)
Instead of choosing features haphazardly, we use princi-
pal component analysis (PCA) to identify the localiza-
tion of cis-elements without presuming what they are.
2) Our four feature model uses fewer features than
existing methods (Table S1 of Additional file 1), which
use between six and over 5,000 features [16], and
achieves superior prediction accuracy. The rationale of
taking a parsimonious approach in feature selection is
to circumvent the dimensionality curse [17,18], but our
simple model also requires a smaller training dataset as
a result. 3) Despite the highly variable poly(A) site cis-
elements, the poly(A) complex is still able to cleave the
transcript at the same position. We believe the poly(A)
site is marked by more information than just sequence
elements, such as peculiar chromatin structure [19].
Therefore, we have incorporated nucleosome occupancy
as a novel feature in our model. 4) We have used seven
diverse species to validate the generality of our four-fea-
ture model, a far wider range of species than has been
attempted when validating existing methods. The seven
species are Homo sapiens (human), Mus musculus
(mouse), Gallus gallus (chicken), Caenorhabditis elegans
(C.elegans), Oryza sativa (rice), Arabidopsis thaliana
(Arabidopsis), and Solanum lycopersicum (tomato).
Intriguingly, the performance of our model on cross
species predictions reflected the phylogenetic distances
among these seven eukaryotes.

Materials and methods
Notation of region
We use the notation < ± N, ± M > to denote a region
with respect to the cleavage site, where N and M are

the number of nucleotides (nts) upstream (’-’) or down-
stream (’+’), from the cleavage site.

Poly(A) site discovery
Poly(A) sites were discovered by mapping polyadenylated
ESTs and/or cDNAs to the reference genomes as
described in [15]. Briefly, our method involves: a) ESTs
that either terminate with at least eight polymeric ‘A’ at
the 3’ end, or start with at least eight polymeric ‘T’ at the
5’ end are selected. For cDNA datasets, only sequences
that terminate with at least eight ‘A’ are selected. b) Polya-
denylated ESTs and cDNAs are mapped to the appropriate
reference genome using NCBI BLAST 2.2.23. C) Custo-
mized Python scripts are used to determine the direction
of transcription, and to eliminate artifacts due to false
oligo-dT priming.
ESTs and cDNAs sequences were downloaded from

NCBI’s dbEST, and Refseq databases. Through this
method, 22,479, 8,779, 1,292, 845, and 6,380 poly(A)
sequences were discovered in human, mouse, chicken,
C.elegans, and tomato, respectively. Genomes of human
Build 7, mouse Build 9, chicken May 2006 release, C.ele-
gans Feb 2000 release, and tomato Nov 2010 release
2.31 were used for mapping.

Other poly(A) sequences
We used reliable published datasets of Arabidopsis poly
(A) sequences from http://www.users.muohio.edu/liq/
Loke_et_al_2005_8k[20] and rice from http://www.users.
muohio.edu/liq/Rice_55K_PolyA_site_dataset.zip[21].
We eliminated poly(A) sequences that could not be
mapped to the reference genomes. Arabidopsis genome
Build 9 2009 and rice genome Build 4.0 Jun 2010 were
used. As a result, we compiled 8,160 and 41,046 poly(A)
sequences from Arabidopsis and rice, respectively.

Transcribed non-poly(A) sequences
For specificity testing, 1,000 spliced and unspliced tran-
scribed sequences were chosen randomly from Arabidop-
sis and human datasets. Gene sequences of Arabidopsis
were downloaded from ftp://ftp.arabidopsis.org/home/tair/
Sequences/blast_datasets/TAIR10_blastsets/, whereas
human sequences were prepared by customized Python
programs. For sequences longer than 600 nts, 600-nt long
fragments were extracted at random locations.

Position-by-kmer matrix
In order to examine the localization of kmers (oligonu-
cleotides of length k) in a set of sequences, we captured
and converted sequence information into a matrix so
that it could be processed by PCA (see below, and
Results and discussion). Starting from the leftmost posi-
tion of a sequence, we use a sliding window of size k to
count the occurrence of a kmer and its position. The
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occurrence of each kmer at various positions is stored in
the column of the matrix, so that each row stores the
counts of all possible kmers (4k) at a position. A row is
a 4k -dimensional vector, where each dimension is the
occurrence of a kmer at a position. Each column is the
occurrences of a kmer at different positions.

Position score matrix (PSM)
Position score matrix (PSM) is a M-by-N matrix,
where M is equal to 4k, k is the size of oligonucleotide.
And, N is (l-k+1), where l is the length of considered
region. For our model construction, we consider region
< -100, +100 >, i.e. l is equal to 200. The value of each
entry in PSM, v(kmer, n), is defined as below:

v[kmer,n] = log2

(
observedrealkmer at position n
observedfalsekmer at position n

)

The value v(kmer, n) represents the fold difference of
observing a particular kmer at position n in real versus
false poly(A) sequences, where n is in the range of 1 to
(l-k+1). Given a sequence, a k-sized window is used to
slide through it one position at a time from left to
right. The result is a list of overlapping kmers with
their corresponding starting positions in the sequence
(a list of (kmer, n) pairs). This list will be used to
retrieve the associated values from PSM i.e. v(kmer, n),
and the sum of these values is the PSM score of the
sequence.

Nucleosome occupancy matrix (NOM)
NOM is constructed by a similar method used in building
the PSM. The nucleosome prediction method developed
by Segal lab [22] was used to determine the probability of
nucleosome occupancy in each position in < -500, +500 >
for real and false poly(A) sequences. Due to boundary
effects, predictions from 200 nts at both ends are dis-
carded, leaving only the middle < -300, +300 > region for
consideration. Like PSM, the value of each entry in the
NOM, v(pn), is a defined as below

v[pn] = log2

(
occupancy prob at position nreal
occupancy prob at position nfalse

)

pn is the predicted occupancy probability at position n.

Feature vector
The feature vector consists of four features: trimer PSM
scores for < -100, -1 > and < +1, +50 >, dimer PSM score
across the cleavage site < -10, +10 >, and the nucleosome
occupancy score based on NOM in the region < -300,
+300 >. Feature vectors are standardized by the mean and
standard deviation obtained from all real and false poly(A)
sequences within each species’ dataset.

Performance measurement
Prediction is measured by sensitivity (Sn), specificity
(Sp), and Matthews correlation coefficient (MCC)[23].
Sn = Tp/(Tp+Fn), Sp = Tn/(Tn+Fp), MCC = (Tp•Tn-
Fp•Fn)/√(Tp+Fp)•(Tp+Fn)•(Tn+Fp)•(Tn+Fn), where Tp,
Tn, Fp, and Fn denote true positive, true negative, false
positive, and false negative, respectively.

Training and testing procedures
False poly(A) sequences (negative dataset) were gener-
ated according to the 2nd order Markov model obtained
from real poly(A) sequences in region < -300, +300 >.
Accuracy was reported as the average of twenty ten-fold
cross validations. Linear discriminant analysis (LDA)
and logistic regression (LR) were performed by Python
machine learning package mlpy [24].

Method comparisons
Polya_svm [25] version 2.1 was downloaded from http://
exon.umdnj.edu/polya_svm/, and PolyA-EP [16] was
downloaded from http://mlkd.csd.auth.gr/PolyA/tools.
html. Polya_svm was tested on 22,479 human poly(A)
sequences, each consisted of 100 nts upstream and
downstream from the poly(A) site. For PolyA-EP, 8,160
Arabidopsis poly(A) sequences were used where each
consisted of the 300 nts upstream and 100 nts down-
stream regions, relative to cleavage sites.

18S, GAPDH, and CPSF3 sequences, and phylogenetic
distance calculations
The evolutionary relationship among these seven eukar-
yotes was determined through phylogenetic analysis of
three independent gene products: the ribosomal 18S,
gylceraldehyde 3 phosphate dehydrogenase (GAPDH)
and cleavage and polyadenylation specificity factor sub-
unit 3 (CPSF3). 18S genes of human (NR_003286),
mouse (NR_003278), C. elegans (EU196001), O. sativa
(AF069218), S. lycopersicum (X51576), and A. thaliana
(AT2G01010) were obtained from NCBI. Chicken’s 18S
was determined by a BLAT search [26] using human’s
18S as query sequence in UCSC genome browser,
http://genome.ucsc.edu[27]. Homologous GAPDH pro-
tein sequences for all organisms except S. lycopersicum
were obtained from the Homologene database in NCBI
(the Homologene ID of GAPDH gene is 107053). The
GAPDH sequence of S. lycopersicum was obtained by
translating its cDNA sequence AK322678. Similarly,
homologous CPSF3 protein sequences (ID 6499) were
collected from the Homologene database, except for S.
lycopersicum, where the CPSF3 was obtained by the
translation of AK327795. Sequences were aligned by
T_COFFEE [28]. Phylogenetic distances between the
seven species were calculated by dnadist (18S) and prot-
dist (GAPDH, CPSF3) in PHYLIP [29].
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Results and discussion
Feature identification by Principal Component Analysis
(PCA)
Simulated sequences were used to prove the viability of
our PCA method (see Additional file 1), which we then
applied to Arabidopsis and human data using different
sizes of kmers. Figure 1A shows PCA of Arabidopsis poly
(A) sequences using dimers. In the PCA-position profile
(top right panel of Figure 1A), four localized groups
(peaks) are identified: -20 (distal upstream region, DUR),
-8 (proximal upstream region, PUR), -1 (cleavage site, CS),
and +10 (downstream region, DR). Examining the PCA-
oligo profile (bottom right of Figure 1A), ‘AA’ and ‘AT’
are most often found in the DUR. ‘TT’ is the most signifi-
cant dimer in the PUR and DR. Note that the extent of
localization in DR is moderate versus far upstream and
downstream regions. This result concurs with current
view that poly(A) sites of plants are mainly character-
ized by upstream elements [30]. ‘CA’, ‘GA’, and ‘TA’

(-90 degrees) are found in CS, and of these, ‘CA’ is predo-
minant. Similar to Arabidopsis, human (Figure 1B) PUR is
also found to localize in four regions, but with different
relative concentration of dimers. DUR at -20 shows the
strongest localization of ‘AA’, and then followed by ‘AT’
and ‘TA’. PUR at -10 shows a weak localization (compared
to DUR) of ‘TT’. The human CS at +1 shows weaker loca-
lization compared with Arabidopsis’ CS. However, seven
dimers (’AC’, ‘AG’, ‘CA’, ‘CC’, ‘GA’, ‘GC’, and ‘GG’) are
likely to localize at the human CS (-90 degrees). The
Human DR covers an extensive region from +1 to +23,
which is absent in Arabidopsis. ‘CT’, ‘GT’, ‘TC’, ‘TG’, and
‘TT’ are the main dimers in human DR.
Even with trimer motifs, there are no prominent cis-

elements in the downstream region of Arabidopsis poly
(A) sites. The downstream elements (DSE) are not
essential for polyadenylation in the invertebrate C.ele-
gans [31]. These results might indicate that DSE, which
are essential in vertebrates, evolved more recently than

Figure 1 Dimer PCA of real poly(A) sequences. Blue dots represent positions, and red arrows represent kmers. Only arrows longer than a
specified threshold are labeled. DUR, PUR, CS, and DR denote distal upstream region, proximal upstream region, cleavage site, and downstream
region, respectively. A) Arabidopsis, B) human.
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other poly(A) site elements. Moreover, we do not find
core poly(A) cis-elements stretching beyond 40 nts
upstream from the cleavage site in Arabidopsis, which is
at odds with an early bioinformatics study [32,33]. Cer-
tain genes do possess specific cis-elements in a much
further upstream region [15,34,35], but there weren’t
sufficient signals across all genes for this to be a key fea-
ture of poly(A) sites. In order to construct a model that
can embrace such a diversity in the poly(A) sites in dif-
ferent species, the features obtained from the region
flanking the poly(A) site are split into three subregions
approximately according to the peaks as shown in
Figure 1, i.e. < -100, -1 >, < -10, +10 >, and < +1, +50 >.
The purpose of doing that is to prevent the contributing
effect of features from one subregion to be cancelled by
non-contributing features from other subregions.
Nevertheless, poly(A) sites may be constituted of longer

sequence structures, and we continued PCA for longer
kmers. Differences between dimer and trimer profiles
(Figure S2A in Additional file 1) are insignificant in both
Arabidopsis and humans. However, when the size of
kmers is increased to six, the localization signal at the CS
drops or even vanishes in both species (PCA-position
profiles in Figure S2A-B), meaning that the size of ele-
ments favored at the CS is shorter than 6 nts, and may be
identified well by dimers or trimers. With hexamers, the
significant signal in the human PUR vanishes (right of
Figure S2B) but not for Arabidopsis. The DR of human
becomes flat relative to the DUR and its signal disappears
entirely in the octamer PCA-position profile. Hence, the
size of sequence elements in the human DR should be
3-5 nts. In both species, the canonical poly(A) signal
AAUAAA has the longest PCA-distance according to the
PCA-oligo profiles in Figure S2B. Interestingly, unlike
humans, the DUR and PUR of Arabidopsis still remain
even in octamer PCA-position profile (Figure S2C). As
the poly(A) signal is highly conserved, the hexamer pro-
files presented above may lead one to believe that the
poly(A) signal and/or hexamers are effective features for
poly(A) site recognition.
On the contrary, our study suggests the opposite (see

Additional file 1 for a test of hexamer vs trimer features).
The Matthews correlation coefficient (MCC) attained by
the trimer model was 0.76 versus 0.73 for the hexamer
model, indicating the trimer model had more accurate
predictive power. Furthermore, we compared the false
positive rates of predicting false poly(A) sequences
between the trimer model and an existing method, poly-
a_svm [25], which uses a hexamer as an upstream fea-
ture. Surprisingly, the false positive rate for the hexamer
feature-containing polya_svm was 82%, while that of the
trimer model was just 17%. Clearly, hexamer models do
not offer substantial advantages relative to a trimer
model.

Additionally, the model with hexamer features demands
a larger training sample (> 4,000 sequences) than the
trimer model because smaller samples are unlikely to
capture the full distribution of all genomic contexts for
poly(A) hexamers within a species. Complicating hexamer
model training is the fact that poly(A) signallike hexamers
are ubiquitous in large genomes in places that are not poly
(A) sites, such as introns. Eukaryotic cells likely enhance
the recognition and regulation of the actual poly(A) sites
with other auxiliary cis-elements that may be shorter than
hexamers [36], which could be better distinguished with a
model looking for smaller features. This viewpoint is
further supported by the fact that intra-species poly(A)
sites are highly variable and yet they are recognized by the
same polyadenylation apparatus. Thus, we choose trimers
instead of hexamers to form part of the feature vector.

Nucleosome structure at poly(A) sites
Previous studies suggested that nucleosomes are
depleted in the proximity of poly(A) sites [19,37,38], but
no poly(A) site prediction models have yet incorporated
this feature. Hence we utilize a nucleosome occupancy
prediction method developed by the Segal lab [22] to
explore nucleosome occupancy in the region flanking
the poly(A) sites (Figure 2). Even though the false poly
(A) sequences mimic the 2nd order Markov property of
real poly(A) sequences, their predicted nucleosome
occupancy remains at a steady level throughout the
entire region. In contrast, both human and Arabidopsis
actual poly(A) sequences show a reduced likelihood of
nucleosomes around the cleavage site. Our results indi-
cate a putative relationship between nucleosome deple-
tion and polyadenylation site, in agreement with
published works [19,37,38]. We have thus included pre-
dicted occupancy in the feature vector. The role of
nucleosome formation on polyadenylation is currently
unknown, and should be further investigated. We specu-
late nucleosome formation may influence the selection
of alternative poly(A) sites in genes, as 54%, 32% and
70% of human, mouse, and Arabidopsis genes, respec-
tively, contain multiple poly(A) sites [14,39].

Feature vector and poly(A) site predictions
After a thorough analysis of poly(A) sequences, we have
selected four features in the feature vector to signify a
poly(A) site (upstream trimers, downstream trimers,
dimers near to the cleavage site and the nucleosome
occupancy, see Materials and methods). We validated
the efficacy of these features by two independent super-
vised machine learning (ML) methods: logistic regres-
sion (LR) and linear discriminant analysis (LDA). LDA
requires a Gaussian distribution of feature values but LR
does not. Quadratic discriminant analysis (QDA) was
also considered since the positive and negative datasets
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might exhibit different covariance, but we did not find
any significant differences between LDA and QDA in
terms of prediction accuracy (data not shown). For sim-
plicity, we report our results using LDA. The optimal
performance peaks when thresholds are between 0.5 and
0.6 according to the receiver operating characteristic
(ROC) method (Figure S3 in Additional file 1), therefore
the threshold for LR is set to 0.5 for the rest of the ana-
lysis. The two ML methods were tested using poly(A)
sequences from seven species including two mammals, a
bird, an invertebrate, two dicots, and a monocot. Our
two ML methods achieved 85-92% specificity and
85-96% sensitivity for each of the seven species (Table
1). Results from the logistic and LDA show no

significant differences (data not shown). Since no exist-
ing method has been used for multispecies predictions,
we must compare our methods to other methods on
individual species.

Methods comparison and model validation
We compared our LR and LDA models to two poly(A)
site prediction methods, polya_svm [25], and PolyA-EP
[16]. The former was originally developed for animals
and the latter was for plants. Both of our simpler, four-
feature LDA and LR models produced better results
than polya_svm in predicting human poly(A) sites in
terms of sensitivity and specificity (Table 2). The Polya-
EP model is skewed towards sensitivity when analyzing

Figure 2 Predicted nucleosome occupancy in region 300 nts upstream and downstream of poly(A) sites. The vertical axis is predicted
probability. Red and blue lines represent average probability of occupancy for real poly(A) sites, and 2nd order Markov sequences i.e. false
sequences, respectively. The shaded region denotes the 95% confidence interval. A) Arabidopsis, B) human.
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Arabidopsis data, while our models performed well and
without bias. As our models were trained on the Arabi-
dopsis dataset built by the PAC method [20], we can
also compare our two ML methods with this third pub-
lished method without repeating the tests. The best
MCC achieved by PAC is between 0.65 to 0.70 with var-
ious types of negative samples and positions of deviation
(Figure 3 of [20]). But our two ML methods are able to
improve MCC significantly to 0.82-0.84 (Table 2). Addi-
tionally, we conducted three more tests to validate our
model: i) prediction for other transcribed, non-poly(A)
genomic sequences, ii) testing the relative contribution
of each feature to accuracy, and iii) prediction of larger
poly(A) regions. These results can be found in the Addi-
tional file 1.

Cross species poly(A) site predictions
As polyadenylation is a universal function across the
tree of life, we are interested in the evolution of poly(A)
sites across diverse species. However, because poly(A)
sites lie in relatively unconstrained untranslated regions
(3’UTR), aligning these sequences is usually infeasible.
As a result, prevalent phylogenetic methods are unsuita-
ble to look at the evolution of poly(A) sites. Our
method, applied across species, is able to recapitulate
the phylogenetic relationship across species based on
non-coding sequences. The phylogenetic distances
among these seven organisms (Table 3) was established

Table 1 Multispecies poly(A) signal predictions are
assessed by sensitivity (Sn), specificity (Sp), and Matthews
correlation coefficient (MCC) in seven diverse species.

LDA LR

Sn Sp MCC Sn Sp MCC

Human 85 93 0.78 86 90 0.77

Mouse 91 96 0.87 92 94 0.86

Chicken 87 91 0.78 87 90 0.77

C.elegans 85 89 0.74 90 85 0.75

Oryza sativa 88 89 0.77 88 89 0.77

Arabidopsis 92 92 0.84 91 91 0.82

s.lycopersicum 91 92 0.83 90 91 0.81

Sn and Sp are expressed in percentage.

Table 2 Comparing LDA and LR methods with polya_svm
and PolyA-EP.

Sn Sp MCC

Human LR 86 90 0.77

LDA 85 93 0.78

Polya_svm 84 89 0.73

Arabidopsis LR 91 91 0.82

LDA 92 92 0.84

PolyA-EP 95 41 0.43

PAC - - 0.65-0.70

Sn and Sp are expressed in percentages. The MCC of PAC is from Figure 3 of
[20].

Table 3 Phylogenetic distances between species based on, A) 18S, B) GAPDH protein, C) CPSF3.

Species1 Species2 18S GAPDH CPSF3 rSn

mouse human 0.008099 0.083105 0.01452 88.5

chicken human 0.034382 0.080086 0.052188 85.0

c.elegans human 0.336445 0.309192 0.642712 68.5

O.sativa human 0.245416 0.3565 0.674258 61.0

Arabidopsis human 0.240724 0.3788 0.678983 65.5

S.lycopersicum human 0.232462 0.390498 0.838763 58.0

chicken mouse 0.035031 0.098663 0.061379 86.0

c.elegans mouse 0.336259 0.318807 0.649077 67.0

O.sativa mouse 0.242306 0.376424 0.677389 60.5

Arabidopsis mouse 0.24307 0.40044 0.683073 55.5

S.lycopersicum mouse 0.233802 0.390069 0.843015 58.0

c.elegans chicken 0.331649 0.26794 0.63646 67.5

O.sativa chicken 0.242221 0.338926 0.688556 61.5

Arabidopsis chicken 0.241121 0.353368 0.685943 62.0

S.lycopersicum chicken 0.231997 0.36337 0.843798 54.0

O.sativa c.elegans 0.392745 0.388677 0.848847 65.0

Arabidopsis c.elegans 0.3879 0.40471 0.885896 70.5

S.lycopersicum c.elegans 0.377503 0.387265 0.997973 64.0

Arabidopsis O.sativa 0.054837 0.260299 0.245492 63.5

S.lycopersicum O.sativa 0.045931 0.273969 0.346818 68.5

S.lycopersicum Arabidopsis 0.031789 0.218126 0.31507 65.5

Unit is substitution per site. The last column rSn is defined according to Materials and methods section.
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through phylogenetic trees, built independently using
three unlinked genes (Figure S5A-C left panel in Addi-
tional file 1). All three phylogenetic trees not only pro-
duced congruent topology, but also similar evolutionary
distances (correlations between gene products > 0.75, p-
value < 10-10).
We utilize the reciprocal sensitivity (rSn) (see Materials

and methods) to assess the overall homology of poly(A)
sites between species. Sensitivity was obtained by apply-
ing the logistic model of one species to predict real poly
(A) site sequences of another species (Table 4). The
validity of the poly(A)-based phylogenetic relationship is
measured by the correlation between gene-based phylo-
genetic distances and rSn predicted by the logistic model.
The correlation coefficients are -0.50, -0.87, and -0.77
based on the 18S, GAPDH, and CPSF3 trees, respectively
(p-value < 10-5) (Figure S5A-C in Additional file 1).
Given the high intraspecies variability, nearly no two poly
(A) sites are alike in the same genome [15], there should
therefore not necessarily be conservation in poly(A) sites
between more closely related species. However, our
results show that prediction accuracy decreases when the
model from one species is applied to data from other spe-
cies and the decrease is proportional to phylogenetic
distance.
This leads us to question about the boundary of poten-

tial poly(A) sites, which we can conceptualize as PA-space,
the allowable variations of functional poly(A) sites. Core
polyadenylation proteins that directly bind to the pre-
mRNA, such as CPSF1 and CstF-64, are likely to co-evolve
with the PA-space. While some studies have identified
conserved residues in CstF-64 that correlated with poly(A)
downstream elements [33], no one has looked at how var-
iation in the nucleotide sequence and proteins are corre-
lated and coevolving. Currently, the sequence-level
dynamics between RNA binding proteins and their sub-
strates is unclear, but the decreasing costs of sequencing
transcriptomes should provide data from a wider range of
species soon.

Conclusions
We have shown the feasibility of conducing comprehen-
sive genomic analysis of poly(A) sites using PCA, a
method which could be broadly applied for any cis-
element identification. We believe a model focused on
very short oligonucleotides outperformed those with hex-
amers as features because it embraces the conspicuous
poly(A) signal elements without sacrificing the diverse
family of auxiliary biological signals surrounding the poly
(A) sites. We also included for the first time nucleosome
occupancy as an informative predictor of poly(A) sites.

Additional material

Additional file 1: Table S1: Existing poly(A) sites methods. Figure S1:
Feature identification by Principal Component Analysis (PCA). Figure S2:
PCA of real poly(A) sequences. The canonical poly(A) signal is a
misguiding feature. Figure S3: ROC of logistic method. Table S2: False
positive rate (in percentage) committed by different methods in
handling CDS gene sequences. Table S3: Relative contribution of
individual features. Figure S4: Predictions of five hundred 2,000-nt poly(A)
sites by sliding a 600-nt sliding window from left to right. Figure S5.
Correlation between phylogenetic distance and reciprocal sensitivity (rSn)
between seven species: human, mouse, chicken, c.elegans, rice,
Arabidopsis, and tomato.
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Table 4 Cross species predictions measured by sensitivity.

Poly(A) sites

Models Human Mouse Chicken C.elegans Oryza sativa Arabidopsis S.lycopersicum

Human 87 90 90 73 58 86 90

Mouse 87 93 90 72 60 75 90

Chicken 80 82 96 71 53 78 81

C.elegans 64 62 64 95 60 85 83

Oryza sativa 64 61 70 70 89 93 98

Arabidopsis 45 36 46 56 34 94 79

s.lycopersicum 26 26 27 45 39 52 93

Sensitivity is calculated by using model from one species (indicated in the leftmost column) to predict real and false poly(A) sequences from other species (top
row). The table needs not be symmetrical because poly(A) sites from different species tend to possess different characteristics according to the PCA profiles
discussed above.
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