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Abstract

Background: Protein-protein interactions (PPIs) play crucial roles in the execution of various cellular processes and
form the basis of biological mechanisms. Although large amount of PPIs data for different species has been
generated by high-throughput experimental techniques, current PPI pairs obtained with experimental methods
cover only a fraction of the complete PPI networks, and further, the experimental methods for identifying PPIs are
both time-consuming and expensive. Hence, it is urgent and challenging to develop automated computational
methods to efficiently and accurately predict PPIs.

Results: We present here a novel hierarchical PCA-EELM (principal component analysis-ensemble extreme learning
machine) model to predict protein-protein interactions only using the information of protein sequences. In the proposed
method, 11188 protein pairs retrieved from the DIP database were encoded into feature vectors by using four kinds of
protein sequences information. Focusing on dimension reduction, an effective feature extraction method PCA was then
employed to construct the most discriminative new feature set. Finally, multiple extreme learning machines were trained
and then aggregated into a consensus classifier by majority voting. The ensembling of extreme learning machine
removes the dependence of results on initial random weights and improves the prediction performance.

Conclusions: When performed on the PPI data of Saccharomyces cerevisiae, the proposed method achieved
87.00% prediction accuracy with 86.15% sensitivity at the precision of 87.59%. Extensive experiments are performed
to compare our method with state-of-the-art techniques Support Vector Machine (SVM). Experimental results
demonstrate that proposed PCA-EELM outperforms the SVM method by 5-fold cross-validation. Besides, PCA-EELM
performs faster than PCA-SVM based method. Consequently, the proposed approach can be considered as a new
promising and powerful tools for predicting PPI with excellent performance and less time.

Background
Proteins are crucial for almost all of functions in the cell,
including metabolic cycles, DNA transcription and replica-
tion, and signalling cascades. Usually, proteins rarely per-
form their functions alone; instead they cooperate with

other proteins by forming a huge network of protein-
protein interactions (PPIs) [1]. PPIs are responsible for the
majority of cellular functions. In the past decades, many
innovative techniques for detecting PPIs have been devel-
oped [1-3]. Due to the progress in large-scale experimental
technologies such as yeast two-hybrid (Y2H) screens [2,4],
tandem affinity purification (TAP) [1], mass spectrometric
protein complex identification (MS-PCI) [3] and other
high-throughput biological techniques for PPIs detection,
a large amount of PPIs data for different species has been
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accumulated [1-5]. However, the experimental methods
are costly and time consuming, therefore current PPI pairs
obtained from experiments only covers a small fraction of
the complete PPI networks [6]. In addition, large-scale
experimental methods usually suffer from high rates of
both false positive and false negative predictions [6-8].
Hence, it is of great practical significance to develop the
reliable computational methods to facilitate the identifica-
tion of PPIs [9-11].
A number of computational methods have been pro-

posed for the prediction of PPIs based on different data
types, including phylogenetic profiles, gene neighbor-
hood, gene fusion, literature mining knowledge, and
sequence conservation between interacting proteins
[6-9,12-15]. There are also methods that combine inter-
action information from several different data sources
[16]. However, these methods cannot be implemented if
such pre-knowledge about the proteins is not available.
Recently, a couple of methods which derive information
directly from amino acid sequence are of particular
interest [7-9,11]. Many researchers have engaged in the
development of sequences-based method for discovering
new PPIs, and the experiment results showed that the
information of amino acid sequences alone is sufficient
to predict PPIs[7,9,11]. Among them, one of the excel-
lent works is a SVM-based method developed by Shen
et al [11]. In the study, the 20 amino acids were clus-
tered into seven classes according to their dipoles and
volumes of the side chains, and then the conjoint triad
method abstracts the features of protein pairs based on
the classification of amino acids. When applied to pre-
dict human PPIs, this method yields a high prediction
accuracy of 83.9%. Because the conjoint triad method
cannot takes neighboring effect into account and the
interactions usually occur in the discontinuous amino
acids segments in the sequence, on the other work Guo
et al. developed a method based on SVM and auto cov-
ariance to extract the interactions information in the
discontinuous amino acids segments in the sequence
[9]. Their method yielded a prediction accuracy of
86.55%, when applied to predicting saccharomyces cere-
visiae PPIs. In our previous works, we also obtained
good prediction performance by using autocorrelation
descriptors and correlation coefficient, respectively
[8,17].
The general trend in current study for predicting PPIs

has focused on high accuracy but has not considered
the time taken to train the classification models, which
should be an important factor of developing a sequence-
based method for predicting PPIs because the total
number of possible PPIs is very large. Therefore some
computational models with high classification accuracy
may not be satisfactory when considering the trade-off
between the classification accuracy and the time for

training the models. Recently, Huang et al. proposed a
new learning algorithm called extreme learning machine
(ELM), which randomly assigns all the hidden node
parameters of generalized single-hidden layer feed-for-
ward networks (SLFNs) and analytically determines the
output weights of SLFNs[18-21]. Previous works shown
that ELM provides efficient unified solutions to general-
ized feed-forward networks including kernel learning.
Consequently, ELM offers significant advantages such as
fast learning speed, ease of implementation, and least
human intervention. ELM has good potential as a viable
alternative technique for large-scale computing and arti-
ficial intelligence. On the other hand, single ELM model
is sometime difficult to achieve a satisfactory perfor-
mance for the complex processes with strong nonlinear-
ity, time variant and highly uncertainty. Ensemble ELM
methods have received special attentions because it can
improve the accuracy of predictor and achieve better
stability through training a set of models and then com-
bining them for final predictions [22-24]. For example,
Lan et al. proposed an ensemble of online sequential
ELM with more stable and accurate results [25]. Zhao et
al. proposed an ensemble ELM soft sensing model for
effluent quality prediction based on kernel principal
component analysis (KPCA), whose reliability and accu-
racy outperforms other models [24]. In this study, an
ensemble ELM model was built to predict the protein
interactions.
Previous works have pointed out that using feature

selection or feature extraction before conducting the clas-
sification tasks can improve the classification accuracy[26].
Here, we attempt to examine the effectiveness of the
dimensionality reduction technique before constructing
the ELM classifier for the PPI prediction. Principal compo-
nent analysis (PCA) is utilized to do the feature extraction
which projects the original feature space into a new space,
on which the ELM is used to perform the prediction task.
The effectiveness of the proposed PCA-ELM is examined
in terms of classification accuracy on the PPI dataset.
Promisingly, as can be seen that the developed PCA-ELM
PPI prediction system has achieved high accuracy and
runs very fast as well.
In this study, we report a new sequence-based method

for the prediction of protein-protein interactions from
amino acid sequences with ensemble ELM and PCA aim-
ing at improving the efficiency and effectiveness of the
classification accuracy. Firstly, four kinds of useful
sequence-based features such as Auto Covariance (AC),
Conjoint triad (CT), Local descriptor (LD) and Moran
autocorrelation (MAC) are extracted from each protein
sequence to mine the interaction information in the
sequence. Secondly, in order to reduce the computational
complexity and enhance the overall accuracy of the pre-
dictor, an effective feature reduction method PCA is
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employed to extract the most discriminative new feature
subset. Finally, ELM is chosen as the weak learning
machine and the ensemble ELM classifier is constructed
using the vectors of resulting feature subset as input. To
evaluate the performance, the proposed method was
applied to Saccharomyces cerevisiae PPI data. The experi-
ment results show that our method achieved 87% predic-
tion accuracy with 86.15% sensitivity at the precision of
87.59%. The prediction model was also assessed using the
independent dataset of the Escherichia coli PPIs and
yielded 87.5% prediction accuracy, which further demon-
strates the effectiveness of our method.

Results
In this section, we first discuss the biological datasets
and evaluation strategies used in performance compari-
sons. Next we present results for comparing the PCA-
EELM method to state-of-the-art classifier for predicting
protein interaction pairs in yeast.

Generation of the data set
We evaluated the proposed method with the dataset of
physical protein interactions from yeast used in the study
of Guo et al. [9]. The PPI dataset was collected from
Saccharomyces cerevisiae core subset of database of inter-
acting proteins (DIP), version DIP 20070219. After the
redundant protein pairs which contain a protein with
fewer than 50 residues or have ≥40% sequence identity
were remove, the remaining 5594 protein pairs comprise
the final positive dataset. The 5594 non-interacting protein
pairs were generated from pairs of proteins whose sub-cel-
lular localizations are different. The whole dataset consists
of 11188 protein pairs, where half are from the positive
dataset and half are from the negative dataset.

Evaluation measures
To measure the performance of the proposed method,
we adopted 5-fold cross validation and four parameters,
the overall prediction accuracy (Accu.), sensitivity
(Sens.), precision (Prec.) and Matthews correlation coef-
ficient (MCC). They are defined as follows:

ACC =
TP + TN

TP + FP + TN + FN
(1)

SN =
TP

TP + FN
(2)

PE =
TP

TP + FP
(3)

MCC =
TP × TN − FP × FN√

(TP + FN) × (TN + FP) × (TP + FP) × (TN + FN)
(4)

where true positive (TP) is the number of true PPIs
that are predicted correctly; false negative (FN) is the
number of true PPIs that are predicted to be non-inter-
acting pairs; false positive (FP) is the number of true
non-interacting pairs that are predicted to be PPIs, and
true negative (TN) is the number of true non-interacting
pairs that are predicted correctly. MCC denotes Math-
ews correlation coefficient.

Experimental setting
The proposed PCA-EELM protein interaction prediction
method was implemented using MATLAB platform. For
ELM, the implementation by Zhu and Huang available
from http://www.ntu.edu.sg/home/egbhuang was used.
Regarding SVM, LIBSVM implementation available
from http://www.csie.ntu.edu.tw/~cjlin/libsvm was uti-
lized, which was originally developed by Chang and Lin.
All the simulations were carried out on a computer with
3.1 GHz 2-core CPU, 6 GB memory and Windows oper-
ating system.
All ELM in the ensemble classifier had the same num-

ber of hidden layer neurons but different random hid-
den layer weights and output layer weights. Ensemble
ELM models were built via the stratified 5-fold cross-
validation procedure through increasing gradually the
number of hidden neurons from 20 to 300 in interval of
10. The best number of neurons was adapted to create
the training model. The sigmoid activation function was
used to compute the hidden layer output matrix. The
final model was an ensemble of 15 extreme learning
machines, and the outputs of ensemble ELM model
were determined by combining the outputs of the each
individual ELM by majority voting. For SVM, the Radial
Basis Function was chosen as the kernel function and
the optimized parameters (C, γ ) were obtained with a
grid search approach.

Prediction performance of PCA-EELM model
We evaluated the performance of the proposed PCA-
EELM model using the DIP PPIs data as investigated in
Guo et al. [9]. In order to evaluate the prediction ability
of our ELM classifiers, we also implemented a Support
Vector Machine (SVM) learning algorithm which is
thought of as the state-of-the-art classifier. We have
compared our ensemble ELM based recognition scheme
against methods utilizing SVM with C = 8, g = 0.5, l =
30. For the ensemble ELM and SVM classifiers, all of
the input values were normalized in the range of [-1,1].
To reduce the bias of training and testing data, a 5-fold
cross-validation technique is adopted. More specifically,
the dataset is divided into 5 subsets, and the holdout
method is reiterated 5 times. Each time four of the five
subsets are put together as the training dataset, and the
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other one subset is utilized for testing the model. Thus
five models were generated for the five sets of data.
Table 1 demonstrates the average prediction perfor-
mance of the PCA-EELM and the PCA-SVM modela-
cross five runs.
It can be observed from Table 1 that SVM shows

good prediction accuracy in the range of 81.74%-83.77%.
For ensmble ELM, high prediction accuracy in the range
of 86.73%-87.47% is obtained. To better investigate the
prediction ability of our model, we also calculated the
values of Sensitivity, Precision, and MCC. From Table 1,
we can see that our model gives good prediction perfor-
mance with an average Sens. value of 86.15%, Prec.
value of 87.59% and MCC value of 77.36%. Further, it
can also be seen in the Table 1 that the standard devia-
tion of sensitivity, precision, accuracy and MCC are as
low as 0.43, 0.32, 0.29 and 0.44 respectively. The results
illustrates that the PCA-EELM is an accurate and effi-
cient method for the prediction of PPIs. To sum up, we
can readily conclude that the PCA-EELM approach gen-
erally outperforms the excellent PCA-SVM model with
higher discrimination power for predicting PPIs based
the information of protein sequences.
In addition, it is evident from the results presented in

Table 1 that the average learning time of the PCA-
EELM classifier is 44.94 seconds while the learning time
of the SVM model is 51.86 seconds. The proposed
ensemble ELM classifier even run faster than the SVM
model. Through these analyses, it is obvious that PCA-
EELM model is an efficient classification method in
comparison with PCA-SVM method. Therefore, we can
see clearly that PCA-EELM model is a much more
appropriate method for predicting new protein interac-
tions compared with the other methods. Consequently,
it makes us be more convinced that the proposed PCA-
EELM based method can be very helpful in assisting the
biologist to assist in the design and validation of experi-
mental studies and for the prediction of interaction

partners. Thus, in the case of real-time implementation
of PPIs prediction system, E-ELM classifiers are more
appropriate than SVM model. All the analysis shows
that our model is an accurate and fast method for the
prediction of PPIs.

Comparing the prediction performance with other
methods
In order to highlight the advantage of our model, it was
also tested by Helicobacter pylori dataset. The H. pylori
dataset is composed of 2,916 protein pairs (1,458 inter-
acting pair and 1,458 non-interacting pairs) as described
by Martin et al [27]. This dataset gives a comparison of
proposed method with other previous works including
phylogenetic bootstrap[28], signature products[27],
HKNN[29], ensemble of HKNN[30] and boosting[17].
The results of 10 fold cross-validation over six different
methods are shown in Table 2. The average prediction
performance, i.e. sensitivity, precision, accuracy and
MCC achieved by PCA-EELM predictor, are 88.95%,
86.15%, 87.50% and 78.13%, respectively. It shows that
the prediction results for PCA-EELM predictor and the
ensemble of HKNN, outperforms other state-of-the-art
methods, which highlight that a multiple classifier sys-
tem is more accurate and robust than a single classifier.
We also observed that the proposed method clearly
achieves better results compared to other multiple clas-
sifier systems (i.e. ensemble of HKNN and Boosting).
All these results show that the proposed PCA-EELM
classifier not only achieves accurate performance, but
also substantially improves precision in the prediction of
PPIs.

Conclusions
In this paper, we have developed an efficient and fast
technique for predicting protein interactions from pro-
tein amino acids sequences by combining ensemble ELM
with PCA. The main aim of the proposed method is to

Table 1 The prediction performance comparison of PCA-EELM with PCA-SVM

Classification Model Test set Sens. (%) Prec. (%) Accu. (%) MCC (%) Testing Time (Seconds)

PCA-EELM 1 86.60 87.32 87.03 77.42 45.1482

2 85.97 87.34 86.77 77.04 45.4615

3 85.95 87.68 86.95 77.30 46.7825

4 86.60 88.10 87.47 78.07 43.2015

5 85.64 87.52 86.73 76.97 44.1237

Average 86.15+0.43 87.59+0.32 87.00+0.29 77.36+0.44 44.9435+1.36

PCA-SVM 1 81.76 82.86 82.16 70.69 52.6035

2 85.77 81.65 83.37 72.25 51.7143

3 87.52 80.67 83.10 71.78 51.7143

4 85.77 82.44 83.77 72.79 51.8547

5 85.48 79.09 81.74 70.09 51.4335

Average 85.26+2.12 81.34+1.51 82.82+0.85 71.52+1.1 .51.8641+0.44

You et al. BMC Bioinformatics 2013, 14(Suppl 8):S10
http://www.biomedcentral.com/1471-2105/14/S8/S10

Page 4 of 11



employ the unique features of ELM classifier including
better generalization performance, fast learning speed,
simpler and without tedious and time-consuming para-
meter tuning to predict new protein interactions. In
order to remove the noise and irrelevant features which
affect the protein prediction performance, the PCA was
utilized for feature reduction before conducting the
ensemble ELM classifier. Experimental results demon-
strated that the proposed method performed significantly
well in distinguishing interacting and non-interacting
protein pairs. It was observed that PCA-EELM achieved
the highest classification accuracy of 89% and mean clas-
sification accuracy of 88% using 5-fold cross-validation.
Meanwhile, comparative study was conducted on the
methods of PCA-SVM and PCA-EELM. The experimen-
tal results showed that our method significantly outper-
formed PCA-SVM in terms of classification accuracy
with shorter run time.

Methods
In this section, we describe the proposed PCA-EELM
approach for predicting protein interactions from protein
sequences. The architecture is shown in Figure 1. Our
method to predict the PPIs depends on three steps: (1)
Represent protein pairs as a vector by using the proposed
four kinds of protein sequence descriptors; (2) Principal
component analysis is utilized to do the feature reduction;
(3) Ensemble ELM is used to perform the protein interac-
tion prediction tasks. In the second stage, dimension
reduction is obtained using PCA to project the original
feature space into a new space. In the third stage, new fea-
ture sets are fed into the ensemble ELM classifier for train-
ing an optimal model, meanwhile the number of hidden
neurons is chosen which can obtain the most accurate
results. Finally, the predict model conducts the protein
interaction prediction tasks using the most discriminative
new feature set and the optimal parameters.

Protein sequence representation
To use machine learning methods to predict PPIs from
protein sequences, one of the most important computa-
tional challenges is to extract feature vectors from protein
sequences in which the important information content of

proteins is fully encoded. In this study, four kinds of fea-
ture representation methods including Auto Covariance
(AC), Conjoint triad (CT), Local descriptor (LD) and
Moran autocorrelation are employed to transform the pro-
tein sequences into feature vectors.

Auto covariance (AC) scores
Given a protein sequence, auto covariance (AC) accounts
for the interactions between amino acids with a certain
number of amino acids apart in the sequence, so this
method takes neighbouring effect into account and makes
it possible to discover patterns that run through entire
sequences[9]. Here, six sequence-based physicochemical
properties of amino acid were chosen to reflect the amino
acids characteristics. These physicochemical properties
include hydrophobicity (H), volumes of side chains of
amino acids (VSC), polarity (P1), polarizability (P2), sol-
vent-accessible surface area (SASA) and net charge index
of side chains (NCISC) of amino acids respectively, which
are employed as basis for PPI prediction. Table 3 showed
the values of the six physicochemical properties for each
amino acid.
By this means, the amino acid residues were first

translated into numerical values representing physico-
chemical properties. Then they were normalized to zero
mean and unit standard deviation (SD) according to
Equation (5):

P
′
ij =

Pij − Pj
Sj

(i = 1, 2, ..., 6; j = 1, 2, ..., 20.) (5)

where Pij is the jth descriptor value for ith amino acid,
Pj is the mean of jth descriptor over the 20 amino acids
and Sj is the corresponding standard deviation. Then
each protein sequence was translated into six vectors
with each amino acid represented by the normalized
values.
Then auto covariance was used to transform these

numerical sequences into uniform matrices. To repre-
sent a protein sample P with length L, the AC variables
are calculated according to Equation (6):

AC(l ag, j) =
L−lag∑
i=1

(Pi,j − 1
L

L∑
i=1

Pi,j) × (P(i+lag),j − 1
L

L∑
i=1

Pi,j)

/
L − lag (6)

where lag is the distance between residues, j is the jth
physicochemical property of nature amino acids men-
tioned above, i is the position in the sequence P.
In this way, the number of AC variables, D can be

calculated as D = lg×q, where q is the number of
descriptors and lg is the maximum lag(lag = 1, 2, ..., lg).
After each protein sequence was represented as a vector
of AC variables, a protein pair was characterized by
concatenating the vectors of two proteins in this protein
pair.

Table 2 Performance comparison of different methods on
the H.pylori dataset. Here, N/A means not available.

Methods SN (%) PE (%) ACC (%) MCC (%)

Phylogenetic bootstrap 69.8 80.2 75.8 N/A

HKNN 86 84 84 N/A

Signature products 79.9 85.7 83.4 N/A

Ensemble of HKNN 86.7 85 86.6 N/A

Boosting 80.37 81.69 79.52 70.64

Proposed method 88.95 86.15 87.50 78.13
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Conjoint triad (CT) scores
Conjoint triad (CT) considers the properties of one amino
acid and its vicinal amino acids and regards any three con-
tinuous amino acids as a unit [11]. Thus, the triad can be
differentiated according to the classes of amino acid. The

PPI information of protein sequence can be projected into
a homogeneous vector space by counting the frequency of
each triad type. It should be noted that before using such
feature representation method, the 20 amino acids has
been clustered into seven classes according to the dipoles

Figure 1 The architecture of the proposed PCA-EELM protein interaction prediction method.
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and volumes of the side chains. The classification of amino
acids is listed in Table 4. And thus the dimensions of
a protein sequence were dramatically reduced to
7×7×7 =343. Finally, the descriptors of two proteins were
concatenated and a total 686-dimensional vector has been
built to represent each protein pair.

Local descriptor (LD) scores
Local descriptor (LD) is an alignment-free approach and
its effectiveness depends largely on the underlying amino
acid groups [31]. To reduce the complexity inherent in the
representation of the 20 standard amino acids, we firstly
clustered it into seven functional groups based on the
dipoles and volumes of the side chains (see Table 4 for
details). Then three local descriptors, Composition (C),

Transition (T) and Distribution (D) which is based on the
variation of occurrence of functional groups of amino
acids within the primary sequence of the protein are calcu-
lated. C stands for the composition of each amino acid
group along a local region. T represents the percentage
frequency with which amino acid in one group is followed
by amino acid in another group. D characterizes the distri-
bution pattern along the entire region by measuring the
location of the first, 25, 50, 75 and 100% of residues of a
given group.
In total there would be 63 features (7 composition, 21

transition, 35 distribution) if they were computed from the
whole amino acid sequence. However, in order to better
capture continuous and discontinuous PPI information
from the sequence, we split each protein into 10 local
regions(A-J) of varying length and composition as follows:
Regions A, B, C and D are obtained by dividing the entire
protein sequence into four equal-length regions. Regions E
and F are obtained by dividing the protein sequence in
two equal-length regions. Region G represents the middle
with 50% of the sequence. Region H represents the first
75% of the sequence, Region I the final 75% of the
sequence and Region J the middle with 75% of the
sequence. These regions are illustrated in Figure 2. For
each region the 63 local descriptors are extracted, resulting
in a 630 feature vector. Then the PPI pair is characterized
by concatenating the two vector spaces of two individual
proteins. Thus, a 1260-dimentional vector has been con-
structed to represent each protein pair and used as a fea-
ture vector for input into ELM classifier.

Autocorrelation scores
Autocorrelation features describe the level of correlation
between two protein sequences in terms of their specific
physicochemical property, which are defined based on
the distribution of amino acid properties along the
sequence [8]. There are six amino acid properties used
for deriving autocorrelation descriptors as the AC
method. Here we use the commonly-used Moran auto-
correlation (MAC) to infer PPIs, which can be calcu-
lated as:

MAC(d) =
1

N − d

N−d∑
j=1

(Pj − P̄) × (Pj+d − P̄)

/
1
N

N∑
j=1

(Pj − P̄)
2

(7)

where N is the length of the sequence, d = 1, 2, ..., 30
is the distance between on residue and its neighbours, Pj
and Pj+d are the properties of the amino acid at posi-
tions j and j + d respectively. P̄ =

N∑
j=1

Pj
/
N is the average

value of P.
Therefore, Moran autocorrelation descriptor consists

of a total of 30*6 = 180 descriptor values, i.e., a 180-
dimensional vector has been built to represent the pro-
tein sequence. A representation of an interaction pair is

Table 3 The original values of the six physicochemical
properties for each amino acid

Amino acid H VSC P1 P2 SASA NCISC

A 0.62 27.5 8.1 0.046 1.181 0.007187

C 0.29 44.6 5.5 0.128 1.461 -0.03661

D -0.9 40 13 0.105 1.587 -0.02382

E -0.74 62 12.3 0.151 1.862 0.006802

F 1.19 115.5 5.2 0.29 2.228 0.037552

G 0.48 0 9 0 0.881 0.179052

H -0.4 79 10.4 0.23 2.025 -0.01069

I 1.38 93.5 5.2 0.186 1.81 0.021631

K -1.5 100 11.3 0.219 2.258 0.017708

L 1.06 93.5 4.9 0.186 1.931 0.051672

M 0.64 94.1 5.7 0.221 2.034 0.002683

N -0.78 58.7 11.6 0.134 1.655 0.005392

P 0.12 41.9 8 0.131 1.468 0.239531

Q -0.85 80.7 10.5 0.18 1.932 0.049211

R -2.53 105 10.5 0.291 2.56 0.043587

S -0.18 29.3 9.2 0.062 1.298 0.004627

T -0.05 51.3 8.6 0.108 1.525 0.003352

V 1.08 71.5 5.9 0.14 1.645 0.057004

W 0.81 145.5 5.4 0.409 2.663 0.037977

Y 0.26 117.3 6.2 0.298 2.368 0.023599

H, hydrophobicity; VSC, volume of side chains; P1, polarity; P2, polarizability;

SASA, solvent accessible surface area; NCISC, net charge index of side chains

Table 4 Division of amino acids based on the dipoles and
volumes of the side chains

No. Group

1 A, G, V

2 C

3 D, E

4 F, I, L, P

5 H, N, Q, W

6 K, R

7 M, S, T, Y

You et al. BMC Bioinformatics 2013, 14(Suppl 8):S10
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formed by concatenating Moran autocorrelation descrip-
tors of two protein sequences in this protein pairs.

The feature space
For each protein pair in the dataset, its feature space is
composed of the features of Auto Covariance (AC), Con-
joint triad (CT), Local descriptor (LD) and Moran auto-
correlation (MAC). Totally, there are 2666 features to be
encoded in each sample, including 360 MAC features,
1260 LD features, 686 CT features and 360 AC features.

Principal component analysis (PCA)
PCA is a technique used to reduce multidimensional data
sets to lower dimensions for analysis. It is a widely used
data analysis technique that allows reducing the dimen-
sionality of the system while preserving information on
the variable interactions [26,32]. The basic idea of PCA is
to reduce the dimensionality of a dataset in which there
are a large number of interrelated variables, while the cur-
rent variation in the dataset is maintained as much as pos-
sible. More specifically, PCA method transforms the
original variables into a set of linear combinations, the
principal components (PC), which capture the data varia-
bility, are linearly independent and weighted in decreasing
order of variance coverage. This allows a straightforward
reduction of the data dimensionality by discarding the fea-
ture elements with low variability. Thus, all original
M-dimensional data patterns can be optimally trans-
formed to data patterns in a feature space with lower
dimensionality.
The PCA approach is conceptually and computationally

quite simple. Given matrix G = (xij), where xij denotes
the feature value of sample j for feature i, such that
i = 1, 2, ...,M and j = 1, 2, ...,N. Firstly, the M-dimensional
means vector uj and M × M covariance matrix� are com-
puted for the full dataset. Next, the eigenvectors and eigen-
values are computed, and sorted according to decreasing
eigenvalue. Call these eigenvectors e1with eigenvalue λ1, e2

with eigenvalue λ2, and so on. Next, the largest k eigenvec-
tors are chosen. In practice, this is done by looking at a
spectrum of eigenvectors. The largest eigenvalues corre-
spond to the dimensions that explain larger amounts of
variance of the dataset. Form a M × k matrix A whose col-
umns consist of the k eigenvectors. Then the k-dimen-
sional feature space (k<M) can be transformed by:
Y = ATG(x). It has been proved that this representation
minimizes a squared error criterion.

Extreme learning machine (ELM)
Feed-forward neural networks (FNN) are ideal classifiers
due to their approximation capabilities for nonlinear
mappings. However, the slow learning speed of FNN
has been a major bottleneck in different applications.
The input weights and hidden layer biases of FNN had
to be adjusted using some parameter tuning approach
such as gradient descent based methods, which are gen-
erally time-consuming due to inappropriate learning
steps with significantly large latency to converge to a
local maxima. In previous works [18,33,34], Huang et al.
proved that the single hidden layer feed-forward neural
networks (SLFNN) could exactly learn N distinct obser-
vations for almost any non-linear activation function
with almost N hidden nods [18].
Extreme Learning Machine (ELM) was originally devel-

oped for the SLFNN and then extended to the generalized
SLFNN where the hidden layer need not be neuron alike
[18,33]. Its architecture is similar to that of a SLFNN.
Recently ELM has been increasingly popular in classifica-
tion tasks due to its high generalization ability and fast
learning speed. Unlike the popular thinking that network
parameters need to be tuned, the input weights and first
hidden layer biases need not be adjusted but they are ran-
domly assigned in ELM. The ELM algorithm has been
proven to perform learning at an extremely fast speed, and
obtains good generalization performance for activation
functions that are infinitely differentiable in hidden layers.

Figure 2 The 10 regions (A-J) used by the Local Descriptor technique for a theoretical protein sequence. The regions A-D and E-F are
obtained by dividing the entire sequence into four equal regions and into two equal regions respectively. Region G represents the central 50%
of the sequence. Regions H, I and J are the first, final and central 75% of the sequence.
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ELM transforms the learning problem into a simple
linear system whose output weights can be analytically
determined through a generalized inverse operation of
the hidden layer weight matrices. Such a learning
scheme can operate at extremely faster speed than
learning methods of traditional learning frameworks.
Improved generalization performance of ELM with the
smallest training error and the norm of weights demon-
strate its superior classification capability for real-time
applications at an exceptionally fast pace without any
learning bottleneck [35].
The idea behind ELM is presented as follows: suppose

learning N arbitrary different instances (xi, ti), where
ti = [ti1, ti2, ..., tim]T ⊆ Rm, ti = [ti1, ti2, ..., tim]T ⊆ Rm, a
standard ELM with L hidden neurons and activation func-
tion g(x) are mathematically modeled by:

L∑
i=1

βig
(
xj

)
=

L∑
i=1

βig
(
wi · xj + bi

)
= oj,j = 1, ...,N (8)

where wi = [wi1,wi2, ...,win]
T represents the weight vec-

tor connecting the ith hidden node and the input nodes,
βi = [βi1,βi2, ...,βim]T represents the weight vector con-
necting the ith hidden neuron and the output neurons,
and bi denotes the threshold of the ith hidden neuron.
wi · xj denotes the inner product of wi and xj. The architec-
ture of ELM is shown in Figure 3. The above modeled

ELM can reliably approximate these N samples with zero

error, which means that
N∑
j=1

∥∥oj − tj
∥∥ = 0, i.e., there exist

wi, wi and bi such that

L∑
i=1

βig
(
wi · xj + bi

)
= tj,j = 1, ...,N (9)

The above N equations can be written compactly as:

Hβ = T (10)

where

H (w1, ...,wL, b1, ..., bL, x1, ..., xN)

=

⎡
⎢⎣
g (w1 · x1 + b1) · · · g (wL · x1 + bL)

... · · · ...
g (w1 · xN + b1) · · · g (wL · xN + bL)

⎤
⎥⎦

N×L

(11)

β =

⎡
⎢⎣

βT
1
...

βT
L

⎤
⎥⎦

L×m

and T =

⎡
⎢⎣
tT1
...
tTN

⎤
⎥⎦

N×m
H

is termed as the hidden layer output matrix of the
SLFNN; the ith column of H is the ith hidden neuron’s
output vector with respect to inputs x1,x2, · · · ,xN.
Hence for fixed arbitrary input weights wi and the hid-
den layer bias bi, training a SLFNN equals to find a

Figure 3 The structure of ELM model
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least-squares solution β̂ of the linear system Hβ = T.
β̂ = H†T is the best solution, where H† is the Moore-
Penrose inverse method for obtaining good generaliza-
tion performance with extremely fast learning speed.
The procedure of ELM for single-layer feed-forward

networks can be summarized as follows: Given a train-
ing dataset ℵ =

{
(xi, ti)

∣∣xi ∈ Rn, ti ∈ Rm, i = 1, · · · ,N}
,

activation function g(x), and hidden neuron number L.
Step 1: Assign arbitrary input weight wi and bias bi,

i = 1, · · · , L.
Step 2: Calculate the hidden layer output matrix H.
Step 3: Calculate the output weight bi:

β̂ = H†T (12)

where β̂ and T are defined as formula above.
The learning speed of ELM can be thousands of times

faster than traditional feed-forward network learning
algorithms like back-propagation (BP) algorithm while
obtaining better generalization performance.
The ELM employs a completely different algorithm for

calculating weights and biases, unlike the back-propaga-
tion or conjugate gradient descent training algorithm.
The ELM algorithm is a learning algorithm for single
hidden-layer fed-forward networks. The input weights wi,
and the hidden layer bias are randomly chosen and the
output weights βi are analytically determined based on
the Moore-Penrose generalized inverse of the hidden-
layer output matrix. The algorithm is implemented easily
and tends to produce a small training error. It also pro-
duces the smallest weights norm, performs well and is
extremely fast.

Ensemble of extreme learning machines (E-ELM)
The extreme learning machine training algorithm
described above indicates that the randomly initialized
hidden layer weights for model accuracy are very impor-
tant. Therefore, to make results independent of random
weights, we train multiple ELMs on the same training
dataset, with each having the same number of hidden
layer neurons but different randomly assigned weights.
Once trained separately, the final output for each sample
is determined by combining the outputs of each individual
ELM using majority voting strategy. This procedure is
usually known as ensembling and the network is called as
Ensemble Extreme Learning Machines (EELM). Compared
with traditional methods, ensemble classifier can effec-
tively improve classification performance, reliability and
stability of individual classifier [36].
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