
PROCEEDINGS Open Access

Robust PCA based method for discovering
differentially expressed genes
Jin-Xing Liu1,2,4, Yu-Tian Wang2, Chun-Hou Zheng3, Wen Sha3, Jian-Xun Mi1,4, Yong Xu1,4*

From The 2012 International Conference on Intelligent Computing (ICIC 2012)
Huangshan, China. 25-29 July 2012

Abstract

How to identify a set of genes that are relevant to a key biological process is an important issue in current
molecular biology. In this paper, we propose a novel method to discover differentially expressed genes based on
robust principal component analysis (RPCA). In our method, we treat the differentially and non-differentially
expressed genes as perturbation signals S and low-rank matrix A, respectively. Perturbation signals S can be
recovered from the gene expression data by using RPCA. To discover the differentially expressed genes associated
with special biological progresses or functions, the scheme is given as follows. Firstly, the matrix D of expression
data is decomposed into two adding matrices A and S by using RPCA. Secondly, the differentially expressed genes
are identified based on matrix S. Finally, the differentially expressed genes are evaluated by the tools based on
Gene Ontology. A larger number of experiments on hypothetical and real gene expression data are also provided
and the experimental results show that our method is efficient and effective.

Background
One of the challenges in current molecular biology is how
to find the genes associated with key cellular processes.
Up to date, using microarray technology, these genes asso-
ciated with a special biological process have been detected
more comprehensively than ever before.
DNA microarray technology has enabled high-

throughput genome-wide measurements of gene tran-
script levels [1,2], which is promising in providing insight
into biological processes involved in gene regulation [3]. It
allows researchers to measure the expression levels of
thousands of genes simultaneously in a microarray experi-
ment. Gene expression data usually contain thousands of
genes (sometimes more than 10,000 genes), and yet only a
small number of samples (usually less than 100 samples).
Gene expression is believed to be regulated by a small
number of factors (compared to the total number of
genes), which act together to maintain the steady-state
abundance of specific mRNAs. Some of these factors
could represent the binding of one (or more) transcription

factor(s) (TFs) to the promoter region(s) of the gene [4].
So, it can be assumed that the genes associated with a bio-
logical process are influenced only by a small subset of
TFs [5]. Although the expression levels of thousands of
genes are measured simultaneously, only a small number
of genes are relevant to a special biological process. There-
fore, it is important how to find a set of genes that are
relevant to a biological process.
Various methods have been proposed for identifying dif-

ferentially expressed genes from gene expression data.
These methods can be roughly divided into two categories:
univariate feature selection (UFS) and multivariate feature
selection (MFS). The commonest scheme of UFS is uti-
lized as follows. First, a score for each gene is indepen-
dently calculated. Then the genes with high scores were
selected [6]. The main virtues of UFS are simple, interpre-
table and fast. However, UFS has some drawbacks. For
example, if each gene is independently selected from gene
expression data, a large part of the mutual information
contained in the data will be lost.
To overcome the drawbacks of UFS, the methods of

MFS use all the features simultaneously to select the
genes. So far, many mathematical methods for MFS, such
as principal component analysis (PCA), independent
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component analysis (ICA), nonnegative matrix factoriza-
tion (NMF), lasso logistic regression (LLR) and penalized
matrix decomposition (PMD), have been devised to ana-
lyze gene expression data. For example, Lee et al. applied
PCA to analyze gene expression data [7]. Liu et al. pro-
posed a method of weighting principal components by
singular values to select characteristic genes [8]. Probabil-
istic PCA was used to analyze gene expression data by
Nyamundanda et al. [9]. Huang et al. used ICA to ana-
lyze gene expression data [10]. NMF was used to select
the gene by Zheng et al. [11]. Liu et al. used LLR to select
characteristic gene using gene expression data [12]. In
[13], Witten et al. proposed penalized matrix decomposi-
tion (PMD), which was used to extract plant core genes
by Liu et al. [14]. However, the brittleness of these meth-
ods with respect to grossly corrupted observations often
puts its validity in jeopardy.
Recently, a new method for matrix recovery, namely

robust PCA, has been introduced in the field of signal
processing [15]. The problem of matrix recovery can be
described as follows, assume that all the data points are
stacked as column vectors of a matrix D, and the matrix
(approximately) have low rank:

D = A0 + S0, (1)

where A0 has low-rank and S0 is a small perturbation
matrix. The robust PCA proposed by Candes et al. can
recover a low-rank matrix A0 from highly corrupted
measurements D[15]. Here, the entries in S0 can have
arbitrary large magnitude, and their support is assumed
to be sparse but unknown.
Although the method has been successfully applied to

model background from surveillance video and to remove
shadows from face images [15], it’s validity for gene
expression data analysis is still need to be studied. The
gene expression data all lie near some low-dimensional
subspace [16], so it is natural to treat these genes data of
non-differential expression as approximately low rank. As
mentioned above, only a small number of genes are rele-
vant to a biological process, so these genes with differential
expression can be treated as sparse perturbation signals.
In this paper, based on robust PCA, a novel method is

proposed for identifying differentially expressed genes.
The differentially and non-differentially expressed genes
are treated as perturbation signals S and low-rank matrix
A. Firstly, the matrix D of expression data is decomposed
into two adding matrices A and S by using RPCA.
Secondly, the differentially expressed genes are discovered
according to the matrix S. Finally, the differentially
expressed genes are evaluated by the tools based on Gene
Ontology. The main contributions of our work are as fol-
lows: firstly, it proposes, for the first time, the idea and
method based on RPCA for discovery of differentially

expressed genes; secondly, it provides a larger number of
experiments of gene selection.

Methods
The definition of Robust PCA (RPCA)
This subsection simply introduces robust PCA (RPCA)
proposed by Candes et al. [15]. Let ‖A‖∗ :=

∑
i σi(A)

denote the nuclear norm of the matrix A, that is, the
sum of its singular values, and let ‖S‖1 :=

∑
ij

∣∣Sij∣∣ denote
the L1-norm of S. Supposing that D denotes the observa-
tion matrix given by Eq.(1), RPCA solves the following
optimization problem:

minimize ‖A‖∗ + λ‖S‖1
subject to D = A + S

, (2)

where λ is a positive regulation parameter. Due to the
ability to exactly recover underlying low-rank structure
in the data, even in the presence of large errors or out-
liers, this optimization is referred to as Robust Principal
Component Analysis (RPCA).
For the RPCA problem Eq.(2), a Lagrange multiplier Y

is introduced to remove the equality constraint. Accord-
ing to [17], the augmented Lagrange multiplier method
on the Lagrangian function can be applied:

L(A,S,Y, μ) = ‖A‖∗ + λ‖S‖1 + 〈Y,D - A - S〉 +
μ

2
‖D - A - S‖2

F , (3)

where μ is a positive scalar and ‖•‖2
F denotes the Fro-

benius norm. Lin et al. gave a method for solving the
RPCA problem, which is referred to as the inexact ALM
(IALM) method [17]. The details of this algorithm can
be seen in [17].

The RPCA model of gene expression data
Considering the matrix D of gene expression data with
size m × n, each row of D represents the transcriptional
responses of a gene in all the n samples, and each col-
umn of D represents the expression levels of all the m
genes in one sample. Without loss of generality,
m >> n, so it is a classical small-sample-size problem.
Our goal of using RPCA to model the microarray data

is to identify these significant genes. As mentioned in
Introduction, it is reasonable to view the significant
genes as sparse signals, so the differential ones are viewed
as the sparse perturbation signals S and the non-differen-
tial ones as the low-rank matrix A. Consequently, the
genes of differential expression can be identified accord-
ing to the perturbation signals S. The RPCA model of
microarray data is shown in Figure 1. The white and yel-
low blocks denote zero and near-zero in Figure 1. Red
and blue blocks denote the perturbation signals. As
shown in Figure 1, the matrix S of differentially expressed
genes (red or blue block) can be recovered from the
matrix D of gene expression data.
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Suppose the matrix decomposition D = A + S has been
done by using RPCA. By choosing the appropriate para-
meter λ, the sparse perturbation matrix S can be obtained,
i.e., most of entries in S are zero or near-zero (as white
and yellow blocks shown in Figure 1). The genes corre-
sponding to non-zero entries can be considered as ones of
differential expression.

Identification of differentially expressed genes
After observation matrix has been decomposed by using
RPCA, sparse perturbation matrix S can be obtained.
Therefore the differentially expressed genes can be iden-
tified according to sparse matrix S.
Denote the perturbation vector associated with i-th

sample as:

Si = [s1i, s2i, · · · , smi]
T , i = 1, · · · ,n. (4)

Then the sparse matrix S can be expressed as follows:

S = [S1, · · · , Sn] . (5)

So the sparse matrix S can be denoted as:

S =

⎡
⎢⎢⎢⎣
s11 s12 · · · s1n
s21 s22 · · · s2n
...

...
. . .

...
sm1 sm2 · · · smn

⎤
⎥⎥⎥⎦ . (6)

The differentially expressed genes can be classified
into two categories: up-and down-regulated ones [18],

which are reflected by the positive and negative entries
in the sparse matrix S. Here, to discover the differentially
expressed genes, only the absolute value of entries in S
need to be considered. Then the following two steps are
executed: firstly, the absolute values of entries in the
sparse matrix S are find out; secondly, to get the evaluat-
ing vector S̃, the matrix is summed by rows. Mathemati-
cally, it can be expressed as follows:

S̃ =
[ n∑
i=1

|s1i| · · ·
n∑
i=1

|smi|
]T

. (7)

Consequently, to obtain the new evaluating vector Ŝ,
which is sorted in descending order. Without loss of
generality, suppose that the first c1 entries in Ŝ are non-
zero, that is,

Ŝ =

[
ŝ1, · · · , ŝc1 , 0, · · · , 0︸ ︷︷ ︸

m−c1

]T

. (8)

Generally, the larger the element in Ŝ is, the more dif-
ferential the gene is. So, the genes associated with only
the first num (num ≤ c1) entries in Ŝ are picked out as
differentially expressed ones.

Results and discussion
This section gives the experimental results. Firstly, in
the first subsection, hypothetical data are exploited to
clarify how to set the parameterλ. Secondly, in the sec-
ond subsection, our method is compared with the

Figure 1 The RPCA model of microarray data. The white and yellow blocks denote zero and near-zero in this figure. Red and blue blocks
denote the perturbation signals.
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following methods on the real gene expression data of
plants responding to abiotic stresses: (a) PMD method
using the left singular vectors {uk} to identify the differ-
entially expressed genes (proposed by Witten et al.
[13]); (b) SPCA method using all the PCs of SPCA (pro-
posed by Journée et al. [19]) to identify the differentially
expressed genes. Finally, in the third subsection, the
three methods are compared on the real gene expression
data of colon tumor.

Experimental results on hypothetical data
Matrices randomly generated will be used for the
simulation experiments. The true solution is denoted
by the ordered pairs

(
A∗,S∗), which are generated by

using the method in [17]. The rank-r matrix A∗ ∈ Rm×n

is generated as A∗ = LRT, where L and R are indepen-
dent m × r and n × r matrices, respectively. Elements
of L and R are i.i.d. Gaussian random variables with
zero mean and unit variance. S∗ ∈ {−1, 0, 1}m×n is a
sparse matrix whose support is chosen uniformly at
random, and whose non-zero entries are i.i.d. uni-
formly in the space Rm×n. μ denotes the sparse degree
of matrix S∗, which is defined as the number of non-
zero entries divided by the number of all the entries.
The matrix D = A∗ + S∗ is the input data to the RPCA.
To evaluate the identification performance of RPCA,
AccS denotes the recognition accuracy of matrix S,
which is defined as follows.

AccS =
Number of correct identified entries inS

Number of entries inS
, (9)

where correct identified entries mean that the identi-
fied entries in S approximately equal to the ones in S∗.
In [17,20], a fixed regulation parameter

λ =
(
c ∗ max(m, n)

)−1/2 is used, where c = 1.0. In order
to clarify how to set λ, the following two different cases

are considered: first, m = n; second, m > n, the small-
size-sample problem.

Results while m=n
In this experiment, let m = n = 500, 1000 or 2000,
μ = 0.05 or 0.1, μ = 0.05 or 0.1. Table 1 lists the recog-
nition results with different c. As Table 1 listed, when
c = 0.2, the recognition accuracy AccS can be achieved
above 90%. When c ≥ 0.3, the matrix S can be comple-
tely identified, i.e. AccS = 100%.

Results while m>n
In this experiment, let m = 10000,rank = 5 or 10,
μ = 0.05 or 0.1 and n increase from 10 to 100 with an
interval 10. Table 2, 3, 4, 5 list the results. As tables 2 and
3 listed with rank = 5, when n ≥ 20, the recognition accu-
racy AccS can be achieved above 90%. As tables 4 and 5
listed with rank = 10, when n ≥ 30, the recognition accu-
racy AccS can be achieved above 90%. In words, to achieve
the recognition accuracy AccS above 90%, n must be equal
to or larger than three times of rank (n ≥ 3 ∗ rank). As
tables 2, 3, 4, 5 listed, by rows, the larger the number of
column n is, the higher the recognition accuracy AccS can
be achieved.
Now, we investigate how different c influences the

recovery accuracy AccS. For example, when n = 40,
Figure 2 shows the recognition accuracy AccS with dif-
ferent c. As shown in Figure 2, when c = 0.3, the recog-
nition of matrix S can reach highest accuracy. With c
increasing, the recovery accuracy AccS drops. For exam-
ple, when c = 1.0, s3 and s4 are degraded to 90%.
From these experiments, a conclusion can be drawn

that when the optimal empirical value of λ is given as:

λ =
(
0.3∗ max(m,n)

)−1/2, where the size of data matrix

D is m × n, the highest identification accuracy AccS can
be obtained.

Table 1 The recognition accuracy AccS with different c
n 500 1000 2000

rank/n 0.05 0.05 0.10 0.10 0.05 0.05 0.10 0.10 0.05 0.05 0.10 0.10

μ 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10

c
0.1 1.00 0.30 0.96 0.02 1.00 0.64 1.00 0.07 1.00 0.71 1.00 0.08

0.2 1.00 1.00 1.00 0.92 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00

0.3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Experimental results on gene expression data of plants
responding to abiotic stresses
Along with other two state-of-the-art methods, namely
PMD and SPCA, used as comparison, three methods,
including RPCA, are used to discover the differentially
expressed genes responding to abiotic stresses based on
real gene expression data.

Data source
The raw data were downloaded from NASCArrays
[http://affy.arabidopsis.info/] [21], which include two
classes: roots and shoots in each stress. The reference
numbers are: control, NASCArrays-137; cold stress,
NASCArrays-138; osmotic stress, NASCArrays-139; salt
stress, NASCArrays-140; drought stress, NASCArrays-
141; UV-B light stress, NASCArrays-144; heat stress,
NASCArrays-146. Table 6 lists the sample number of
each stress type. There are 22810 genes in each sample.
The data are adjusted for background of optical noise
using the GC-RMA software by Wu et al. [22] and nor-
malized using quartile normalization. The results of GC-
RMA are gathered in a matrix for further processed.

Selection of the parameters
In this paper, for PMD method, the L1-norm of u is
taken as the penalty function, i.e. ‖u‖1 ≤ α1. Because of
1 ≤ α1 ≤ √

m, let α1 = α ∗ √
m, where 1

/√
m ≤ α ≤ 1.

For simplicity, let p = 1, that is, only one factor is used.
The results with L1-norm (‖z‖1 =

∑
i |zi|) and L0-norm

(‖z‖0, i.e. the number of nonzero coefficients, or cardin-
ality) penalty in SPCA are similar, which is also shown
in [19], so L0-norm penalty and the parameter γ are
taken in SPCA. For a fair comparison, 500 genes are
roughly selected by these methods via choosing appro-
priate parameters α and γ of the two methods, PMD
and SPCA, which are listed in Table 7 for different data
set. As the first subsection of experiments mentioned,
while c = 0.3, RPCA gives the optimization results.
Then, according to methods section, the first 500 genes
are selected.

Gene ontology (GO) analysis
Recently, many tools have been developed for the func-
tional analysis of large lists of genes [23,24]. Most of
them focus on the evaluation of Gene Ontology (GO)

Table 2 The recognition accuracy AccS with rank = 5 and
μ = 0.05
c n

10 20 30 40 50 60 70 80 90 100

0.1 1.00 0.30 0.96 0.02 1.00 0.64 1.00 0.07 1.00 0.71

0.2 1.00 1.00 1.00 0.92 1.00 1.00 1.00 0.99 1.00 1.00

0.3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 3 The recognition accuracy AccS with rank = 5 and
μ = 0.1
c n

10 20 30 40 50 60 70 80 90 100

0.1 0.01 0.02 0.07 0.15 0.24 0.36 0.43 0.51 0.59 0.66

0.2 0.24 0.84 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.3 0.50 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.4 0.61 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.5 0.62 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.6 0.64 0.94 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.7 0.64 0.93 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.8 0.65 0.91 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.9 0.66 0.89 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.0 0.67 0.86 0.97 0.99 1.00 1.00 1.00 1.00 1.00 1.00

Table 4 The recognition accuracy AccS with rank = 10 and
μ = 0.05
c n

10 20 30 40 50 60 70 80 90 100

0.1 0.00 0.06 0.50 0.92 0.99 1.00 1.00 1.00 1.00 1.00

0.2 0.06 0.61 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.3 0.15 0.77 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.4 0.27 0.74 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.5 0.40 0.67 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.6 0.50 0.63 0.93 0.99 1.00 1.00 1.00 1.00 1.00 1.00

0.7 0.59 0.60 0.88 0.98 1.00 1.00 1.00 1.00 1.00 1.00

0.8 0.66 0.59 0.82 0.97 1.00 1.00 1.00 1.00 1.00 1.00

0.9 0.71 0.61 0.76 0.94 0.99 1.00 1.00 1.00 1.00 1.00

1.0 0.75 0.65 0.72 0.90 0.98 1.00 1.00 1.00 1.00 1.00

Table 5 The recognition accuracy AccS with rank = 10 and
μ = 0.1
c n

10 20 30 40 50 60 70 80 90 100

0.1 0.01 0.01 0.00 0.01 0.01 0.01 0.02 0.04 0.07 0.09

0.2 0.22 0.16 0.50 0.89 0.99 1.00 1.00 1.00 1.00 1.00

0.3 0.51 0.43 0.89 0.99 1.00 1.00 1.00 1.00 1.00 1.00

0.4 0.62 0.56 0.93 0.99 1.00 1.00 1.00 1.00 1.00 1.00

0.5 0.64 0.59 0.92 0.99 1.00 1.00 1.00 1.00 1.00 1.00

0.6 0.64 0.58 0.88 0.98 1.00 1.00 1.00 1.00 1.00 1.00

0.7 0.65 0.58 0.83 0.96 0.99 1.00 1.00 1.00 1.00 1.00

0.8 0.65 0.59 0.79 0.94 0.99 1.00 1.00 1.00 1.00 1.00

0.9 0.67 0.61 0.73 0.91 0.98 1.00 1.00 1.00 1.00 1.00

1.0 0.68 0.65 0.70 0.86 0.96 0.99 1.00 1.00 1.00 1.00
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annotations. GOTermFinder is a web-based tool that
finds the significant GO terms shared among a list of
genes, helping us discover what these genes may have in
common. The analysis of GOTermFinder provides sig-
nificant information for the biological interpretation of
high-throughput experiments.
In this subsection, the genes identified by these meth-

ods, RPCA, PMD and SPCA, are sent to GOTermFinder
[24], which is publicly available at http://go.princeton.
edu/cgi-bin/GOTermFinder. Its threshold parameters are
set as following: minimum number of gene products = 2
and maximum P-value = 0.01. Here, the key results are
shown. Table 8 lists the terms of Response to abiotic sti-
mulus (GO:0009628), whose background frequency in
TAIR set is 1539/29556 (5.2%). Response to abiotic sti-
mulus is the ancestor term of all the abiotic stresses.

In GOTermFinder, a p-value is calculated using the
hyper-geometric distribution, its details can be seen in
[24]. Sample frequency denotes the number of genes hit
in the selected genes, such as 107/500 denotes 107 genes
associated with the GO term in 500 ones selected by
these methods. As listed in Table 8, all the three experi-
mented methods, PMD, SPCA and RPCA, can extract
the significant genes with very lower P-value, as well as
very higher sample frequency. In Table 8, the superior
results are in bold type. In the twelve items, there is only
one of them (cold on root) that PMD is equal to our

Figure 2 The recognition accuracy of matrix S with different c. s1 denotes the recognition accuracy series with rank = 5 and μ = 0.05.
s2 denotes the recognition accuracy series with rank = 5 and μ = 0.1. s3 denotes the recognition accuracy series with rank = 10 and
μ = 0.05. s4 denotes the recognition accuracy series with rank = 10 and μ = 0.1.

Table 6 The sample number of each stress type in the
raw data

Stress Type cold drought salt UV-
B

heat osmotic control

Number of
Samples

6 7 6 7 8 6 8

Table 7 The values of α and γ on different data set

Stress shoot shoot root root

PMD SPCA PMD SPCA

α γ α γ

drought 0.0928 0.4224 0.0999 0.4065

salt 0.0924 0.4920 0.1057 0.5261

UV-B 0.1036 0.4505 0.0966 0.4329

cold 0.1026 0.4660 0.0983 0.4726

heat 0.0765 0.3770 0.0931 0.3710

osmotic 0.1049 0.5139 0.0946 0.5338
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method. In other items, our method is superior to SPCA
and PMD.
Figure 3 shows the sample frequency of response to

abiotic stimulus (GO:0009628) given by the three meth-
ods. From Figure 3(a), RPCA method outperforms
others in all the data sets of shoot samples with six dif-
ferent stresses. Figure 3(b) shows that only in cold-stress
data set of root samples, PMD is equal to our method
and they are superior to SPCA. In other data sets, our
method is superior to the others.
The characteristic terms are listed in Table 9, in which

the superior results are in bold type. As listed in Table 9,
PMD method outperforms SPCA and our method in three
items, such as drought in shoot, salt in root and cold in

root, among the whole items. However, it shows that, on
one of the twelve items (osmotic in shoot), our method has
the same competitive result as PMD, while both methods
are superior to SPCA. In other eight items, our method
excels PMD and SPCA methods. In addition, on all the
characteristic items, our method has superiority over SPCA.
From the results of experiments, it can be concluded

that our method is efficient and effective.

Experimental results on colon data
The three methods, SPCA, PMD and RPCA, are com-
pared on colon cancer data set [25]. Colon cancer is the
fourth most common cancer for males and females and
the second most frequent cause of death.

Table 8 Response to abiotic stimulus (GO:0009628)

Stress
type

PMD SPCA RPCA

P-value Sample frequency P-value Sample frequency P-value Sample frequency

drought s 3.91E-34 107/500 (21.4%) 7.5E-21 87/500 (17.4%) 1.09E-45 122/500 (24.4%)

drought r 1.78E-10 68/500 (13.6%) 4.14E-08 63/500 (12.6%) 1.03E-27 98/500 (19.6%)

salt s 9.93E-39 113/500 (22.6%) 9.83E-33 105/500 (21.0%) 1.35E-55 134/500 (26.8%)

salt r 1.36E-15 78/500 (15.6%) 6.18E-12 71/500 (14.2%) 1.65E-22 90/500 (18.0%)

UV-B s 1.76E-13 74/500 (14.8%) 7.84E-23 90/500 (18.0%) 5.9E-41 116/500 (23.2%)

UV-B r 5.3E-10 67/500 (13.4%) 8.00 E-4 52/500 (10.4%) 4.73E-29 100/500 (20.0%)

cold s 5.82E-35 106/500 (21.6%) 1.17E-19 85/500 (17.0%) 2.13E-46 123/500 (24.6%)

cold r 2.74E-23 91/500 (18.2%) 4.1E-19 84/500 (16.8%) 4.02E-23 91/500 (18.2%)

heat s 1.44E-24 93/500 (18.6%) 4.64E-22 89/500 (17.8%) 7.46E-55 133/500 (26.6%)

heat r 1.41E-15 78/500 (15.6%) 1.35E-08 64/500 (12.8%) 1.07E-34 108/500 (21.6%)

osmotic s 6.55E-38 112/500 (22.4%) 2.02E-18 83/500 (16.6%) 6.83E-54 132/500 (26.4%)

osmotic r 1.4E-14 76/500 (15.2%) 2.87E-17 81/500 (16.2%) 9.98E-35 108/500 (21.6%)

In this table, ‘s’ denotes the shoot samples; ‘r’ denotes the root samples.

Figure 3 The sample frequency of response to abiotic stimulus.
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Data source
The raw data were downloaded from http://genomics-
pubs.princeton.edu/oncology/affydata/I2000.html, which
include gene expression levels for 2000 gene and contain
40 tumor and 22 normal tissue samples.

Selection of the parameters
In this subsection, for PMD method, the L1-norm of u is
taken as the penalty function, i.e. ‖u‖1 ≤ α1. Let
α1 = α ∗ √

m, where 1
/√

m ≤ α ≤ 1. For SPCA method,
let p = 1, that is, only one factor is used. L0-norm pen-
alty and the parameter γ are taken in SPCA. For a fair
comparison, 100 genes are roughly selected by these
methods via choosing appropriate parameters. PMD and
SPCA use the parameters α = 0.2351 and γ = 0.4306 on
colon data set, respectively. As the first subsection of
experiments mentioned, while c = 0.3, RPCA gives the
optimization results. Then, according to Methods sec-
tion,the first 100 genes are selected using our method.

Gene ontology (GO) analysis
The genes identified by these methods, RPCA, PMD and
SPCA, are evaluated by using AmiGO [26]. Its threshold
parameters are set as following: minimum number of gene

products = 2 and maximum P-value = 0.1. A number of
lines of evidence suggest that immune, stimulus and
tumor have affinity, so Table 10 lists the key results: the
terms of Response to stimulus (GO:0050896) and Immune
system process (GO:0002376). As listed in Table 10,
RPCA outperforms its competitive methods with higher
sample frequency.

Function analysis
Table 11 lists the top 30 genes selected by using RPCA.
To further study the biology functions of the selected
genes, we also make the network analysis of the top 100
genes selected by our algorithm using the GeneMANIA
tool [27] on the Web sitehttp://genemania.org/. The
result is listed in Table 12. From the table it can be
seen that there are 215 genes of this chip participating
in the cytokine-mediated signalling pathway, in which
there are 21 genes discovered by our method. This path-
way has the lowest p-value. It is considered as the most
probable pathway with these top 100 genes. Recent find-
ings also indicate that cytokine receptors can regulate
immune cell functions by transcription-independent
mechanisms [28]. Some other pathways with the most
significance are also listed in Table 12.

Table 9 Characteristic terms selected from GO by algorithms

Stress type GO Terms Background frequency Sample frequency

PMD SPCA RPCA

drought s GO:0009414 response to water deprivation 207/29887 (0.7%) 47/500 (9.4%) 23/500 (4.6%) 34/500 (6.8%)

drought r GO:0009415 response to water deprivation 207/29887 (0.7%) 26/500 (5.2%) 24/500 (4.8%) 30/500 (6.0%)

salt s GO:0009651 response to salt stress 395/29887 (1.3%) 41/500 (8.2%) 28/500 (5.6%) 48/500 (9.8%)

salt r GO:0009651 response to salt stress 395/29887 (1.3%) 33/500 (6.6%) 22/500 (4.4%) 31/500 (6.2%)

UV-B s GO:0009416Response to light stimulus 557/29887 (1.9%) 23/500 (4.6%) 30/500 (6.0%) 42/500 (8.4%)

UV-B r GO:0009416Response to light stimulus 557/29887 (1.9%) 24/500 (4.8%) none 36/500 (7.2%)

cold s GO:0009409 response to cold 276/29887 (0.9%) 44/500 (8.8%) 34/500 (6.8%) 58/500 (11.6%)

cold r GO:0009410 response to cold 276/29887 (0.9%) 43/500 (8.6%) 33/500 (6.6%) 38/500 (7.6%)

heat s GO:0009408 response to heat 140/29887 (0.5%) 45/500 (9.0%) 30/500 (6.0%) 47/500 (9.4%)

heat r GO:0009409 response to heat 140/29887 (0.5%) 43/500 (8.6%) 28/500 (5.6%) 48/500 (9.6%)

osmotic s GO:0006970 response to osmotic stress 474/29887 (1.6%) 55/500 (11.0%) 29/500 (5.8%) 55/500 (11.0%)

osmotic r GO:0006970 response to osmotic stress 474/29887 (1.6%) 39/500 (7.8%) 27/500 (5.4%) 41/500 (8.2%)

In this table, ‘s’ denotes the shoot samples; ‘r’ denotes the root samples; ‘none’ denotes that the algorithm cannot give the GO terms.

Table 10 Characteristic terms selected from GO on colon data

GO Term Response to stimulus Immune system process

Accession No. GO:0050896 GO:0002376

Background frequency 32294/155706 (20.7%) 7011/155706 (4.5%)

P-value(RPCA) 1.76E-10 5.74E-09

Sample frequency (RPCA) 38/57 (66.7%) 19/57 (33.3%)

P-value(SPCA) 8.71E-06 2.95E-04

Sample frequency (SPCA) 32/57 (56.1%) 14/57 (24.6%)

P-value(PMD) 7.93E-04 8.27E-01

Sample frequency (PMD) 27/51 (52.9%) 9/51 (17.6%)

Liu et al. BMC Bioinformatics 2013, 14(Suppl 8):S3
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Conclusion
In this paper, a novel RPCA-based method of discover-
ing differentially expressed genes was proposed. It com-
bined RPCA and sparsity of gene differential expression
to provide an efficient and effective approach for gene

identification. Our method mainly included the follow-
ing two steps: firstly, the matrix S of differential expres-
sion was discovered from gene expression data matrix
by using robust PCA; secondly, the differentially
expressed genes were discovered according to matrix S.

Table 11 The top 30 genes of colon data selected by RPCA

Gene
No.

Sequence Gene Name

M27190 gene Homo sapiens secretary pancreatic stone protein (PSP-S) mRNA, complete cds.

R89823 3’ UTR INORGANIC PYROPHOSPHATASE (Bos taurus)

M87789 gene IG GAMMA-1 CHAIN C REGION (HUMAN).

T48904 3’ UTR HEAT SHOCK 27 KD PROTEIN (HUMAN).

M26383 gene Human monocyte-derived neutrophil-activating protein (MONAP) mRNA, complete cds.

J00231 gene Human Ig gamma3 heavy chain disease OMM protein mRNA.

X02761 gene Human mRNA for fibronectin (FN precursor).

R80612 3’ UTR PHOSPHOLIPASE A2, MEMBRANE ASSOCIATED PRECURSOR (HUMAN).

M31994 gene Human cytosolic aldehyde dehydrogenase (ALDH1) gene, exon 13.

T47377 3’ UTR S-100P PROTEIN (HUMAN).

X02492 gene INTERFERON-INDUCED PROTEIN 6-16 PRECURSOR (HUMAN); contains L1 repetitive element.

M94132 gene Human mucin 2 (MUC2) mRNA sequence.

X67325 gene H.sapiens p27 mRNA.

D28137 gene Human mRNA for BST-2, complete cds.

L05144 gene PHOSPHOENOLPYRUVATE CARBOXYKINASE, CYTOSOLIC (HUMAN); contains Alu repetitive element; contains element PTR5
repetitive element.

X02874 gene Human mRNA for (2’-5’) oligo A synthetase E (1,6 kb RNA).

T55117 3’ UTR ALPHA-1-ANTITRYPSIN PRECURSOR (HUMAN).

M19045 gene Human lysozyme mRNA, complete cds.

Y00711 gene L-LACTATE DEHYDROGENASE H CHAIN (HUMAN);.

X60489 gene Human mRNA for elongation factor-1-beta.

T57780 3’ UTR IG LAMBDA CHAIN C REGIONS (HUMAN).

T60778 3’ UTR MATRIX GLA-PROTEIN PRECURSOR (Rattus norvegicus).

H58397 3’ UTR TRANS-1, 2-DIHYDROBENZENE-1, 2-DIOL DEHYDROGENASE (HUMAN).

L08044 gene Human intestinal trefoil factor mRNA, complete cds.

M18216 gene Human nonspecific cross reacting antigen mRNA, complete cds.

K03474 gene Human Mullerian inhibiting substance gene, complete cds.

L33930 gene Homo sapiens CD24 signal transducer mRNA, complete cds and 3’ region.

T48014 3’ UTR HEMOGLOBIN ALPHA CHAIN (HUMAN).

H73908 3’ UTR METALLOTHIONEIN-IA (Bos taurus)

R70030 3’ UTR IG MU CHAIN C REGION (HUMAN).

Table 12 Pathway analysis of the top 100 genes selected by RPCA on colon data

rank Go annotation Q-value Genes in network Genes in genome

1 cytokine-mediated signalling pathway 2.27E-20 21 215

2 cellular response to cytokine stimulus 1.70E-19 21 244

3 response to cytokine stimulus 2.62E-18 21 283

4 type I interferon-mediated signalling pathway 1.61E-17 14 71

5 cellular response to type I interferon 1.61E-17 14 71

6 response to type I interferon 1.67E-17 14 72

7 interferon-gamma-mediated signalling pathway 2.60E-08 9 77

8 cellular response to interferon-gamma 3.64E-08 9 81

9 response to interferon-gamma 1.04E-07 9 92

10 response to other organism 3.69E-05 10 243

Liu et al. BMC Bioinformatics 2013, 14(Suppl 8):S3
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The experimental results on real gene data showed that
our method outperformed the other state-of-the-art
methods. In future, we will focus on the biological
meaning of the differentially expressed genes.
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