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Abstract

algorithm output.

common desktop computers.

Background: Discovering the molecular targets of compounds or the cause of physiological conditions, among
the multitude of known genes, is one of the major challenges of bioinformatics. One of the most common
approaches to this problem is finding sets of differentially expressed, and more recently differentially co-expressed,
genes. Other approaches require libraries of genetic mutants or require to perform a large number of assays.
Another elegant approach is the filtering of mRNA expression profiles using reverse-engineered gene network
models of the target cell. This approach has the advantage of not needing control samples, libraries or numerous
assays. Nevertheless, the impementations of this strategy proposed so far are computationally demanding.
Moreover the user has to arbitrarily choose a threshold on the number of potentially relevant genes from the

Results: Our solution, while performing comparably to state of the art algorithms in terms of discovered targets, is
more efficient in terms of memory and time consumption. The proposed algorithm computes the likelihood
associated to each gene and outputs to the user only the list of likely perturbed genes.

Conclusions: The proposed algorithm is a valid alternative to existing algorithms and is particularly suited to
contemporary gene expression microarrays, given the number of probe sets in each chip, also when executed on

Background

The identification of compound mode of action is cru-
cial in the development of a new drug. It allows increas-
ing affinity with desired targets and reduces side effects.
On the other hand the study of complex diseases etiol-
ogy may benefit from high-throughput screenings of
genomic profiles [1], for example for the identification
of proto-oncogenes [2].

The mode of action of a drug or the cause of diseases
involving the genetic machinery can be seen as the devia-
tion or perturbation of the genetic behavior of the cell,
from a reference one, towards a new state. Differential
expression or co-expression [3,4] is based on a compari-
son of gene expression levels before and after this state
transition. However, whole-genome expression profiles
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do not distinguish the genes targeted by a compound
from the indirectly regulated genes. The latters may often
present differences of expression even bigger in magni-
tude than the direct targets. For this reason a common
step following the obtainment of an expression profile is
its comparison with a panel of profiles with known mode
of action or genetic mutations. These association analysis
techniques are demonstrated to be very effective [5], but
they need a large panel of profiles to compare with, and
they are not helpful when the MoA (Mode of Action of a
compound, drug, etc.) was previously unreported. This
method has been extended in order to account for multi-
ple sources of data [6,7].

Other techniques, requiring a large amount of assays
include haploinsufficiency profiling [8] and chemical-
genetic interaction mapping [9].

Finally, other techniques use a reverse engineered model
of regulatory interactions to analyze the expression profile
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of perturbed cells, or to create new drugs that target, for
example, a pathogen organism, while minimizing the
damage to the host [10]. Regulatory models have been
proved to be a valuable source of information not only
in drug discovery, but also in cancer classification [11]
or clustering [12] and many other bioinformatics
applications.

The algorithms that identify the MoA of existing mole-
cules, using quantitative gene network models, assume
that training profiles are obtained in steady state follow-
ing a variety of treatments, including compounds, RNAj,
and gene-specific mutations. The quantitative gene net-
work reverse engineering algorithms can be divided in
two categories [13]: those requiring knowledge of the
gene targeted in each training experiment and those, like
MNI [14] and Ssem-lasso [15], which improve flexibility,
not requiring this additional information. This improved
flexibility enables their application to higher model
organisms, where gene-specific perturbations are more
difficult to implement.

To infer a network model without requiring gene-specific
perturbations, the MNI algorithm employs an iterative pro-
cedure analogous to the Expectation Maximization (EM)
algorithm: it first predicts the targets of the treatment
using an assumed network model, and then uses those pre-
dicted targets to estimate a better model. The interaction
model is reconstructed by SVD [16] factorization. The pro-
cedure repeats until convergence criteria are met. This
approach requires a non-trivial amount of expert supervi-
sion to tune it appropriately.

The second option, SSEM-LASSO, use a formal statisti-
cal modeling framework and an associated inferential
strategy for the problem of predicting directly perturbed
genes from DNA microarray expression profiles. The
SSEM algorithm is considered particularly well suited by
the authors for the given application, given the peculiarity
of gene regulation: simultaneity, because each gene may
act as both dependent and independent variable, and spar-
seness, given the low numbers of regulators per gene and
the low expected number of directly targeted genes for a
typical perturbation. Thus sparse simultaneous equation
models (SSEMs).

For both approaches, once the regulatory model is
trained, the expression profile of a test compound is fil-
tered, in essence, checking the expression level of each
gene in the cell (relative to the level of all other genes in
the cell) for consistency with regulatory influences embo-
died in the trained regulatory model. The genes are then
ranked by a measure of their level of consistency with the
expected behavior, based on the model. The inconsistency
is attributed to the external influence of the compound on
those genes.

Our mode of action identification procedure is based
on machine learning algorithms. The samples are
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divided in training and testing samples. Within the
training samples, a sub list of potentially connected
genes is selected through classical feature selection algo-
rithms. A Support Vector Machine Regression [17] is
performed with the short list of regulators as features.
In the validation step the regression model is evaluated
on the remaining samples. The validation residuals are
computed as the difference of the predicted value from
the actual one. The residuals are used to compute the
residual distribution function for each gene. The distri-
bution function is used to compute the likelihood of the
residual for each gene of the treated sample. The genes
whose residuals have a low likelihood are returned to
the user. These genes are further examined in order to
found deregulated pathways.

The method has been tested on simulated datasets and
on the combination of two publicly available, two-color
c¢DNA whole-genome yeast expression data sets: a com-
pendium of 300 profiles of gene deletions, titratable pro-
moter insertions and drug compound treatments from
Hughes et al. [5] and a second set of 215 titratable promo-
ter insertions in essential genes from Mnaimneh et al.
[18]. Finally the algorithm has been tested on an Affyme-
trix yeast S. cerevisiae compendium of 904 samples.

We compared the performance of MNI, SSEM-LASSO
and our algorithm, by testing its ability to predict the gene
targets of the 11 promoter insertions from the Hughes
compendium. We next applied the algorithms to identify
probable targets of drug compounds.

The algorithms are compared also in terms of perfor-
mances both in the time and the space domain. These
comparisons have been performed for various combina-
tions on the number of genes and experiments using
simulated datasets.

The algorithm showed sensitivity and specificity com-
parable to the other methods. On the other hand CPU
and memory consumption of our approach make it a good
choice given the reasonable trade-off between time and
space demands.

Results and discussion

Simulation results

A lognormal noise with expected value equal to 10% of the
raw expression value has been added to the simulated
datasets. In each experiment one gene has been randomly
selected and its value has been modified by adding or sub-
tracting a quantity proportional, with a given ratio to the
experimental noise. In this way we obtained datasets with
different values of Signal to Noise Ratio. The SNR has
been set to 16, 4 and 2. The three datasets have been gen-
erated for two synthetic networks, the first with 200 genes
and 321 interactions and the second having 2000 genes
and 3082 interactions. The generated networks are
reported in Figure 1a and 1b respectively. The ROC curves
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lines are respectively continuous, dashed and dotted for SSEM, SYM and MNI.
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Figure 1 Sensitivity and specificity for simulated datasets. Figures ¢, e and g show the ROC curve for the 200 genes network (a) for
respectively 16, 4 and 2 SNR. Figures d, f and h show the ROC curve for the 2000 genes network (b) for respectively 16, 4 and 2 SNR. The ROC

for the 200 gene network datasets are reported on the left
and those for the 2000 genes network on the right. The
plots are ordered by decreasing SNR. In the first row, the

datasets with SNR = 16 have given a perfect 100% AUC.
In fact the p-values for the perturbed genes were extre-
mely low. The AUC decreased to 99% and 98% for SNR
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equals to 4 and 2 of the 200 genes network (Figure 1 e,g).
The AUC:s for the large gene network were 98% and 97%
for SNR of 4 and 2 (Figure 1 f,h). The results have been
obtained generating multiple datasets, each one made up
of 99 unperturbed and 1 perturbed experiments. The per-
turbation is an inconsistency of the expression values with
the underlying gene network. In the training phase only
the unperturbed experiments were used for building the
interaction model.

The sensitivity/specificity has been calculated using
the verification package of the statistical software R. The
values of our algorithm are comparable to those of the
competing methods, as shown in Figure 1. A slight
improvement is due, in our opinion, to the residual esti-
mation strategy that can control the false positive rate
and on the non-linearity of the modeling strategy which
can better represent complex interaction dynamics. The
ROC curves for 16 SNR are very accurate, such ratio is
very high given that the noise is about 10% of the signal;
it means that the perturbation is 1.6 times the original
value. Unfortunately the improvements over the com-
peting methods for the synthetic datasets are not fol-
lowed by comparable improvements for the real
datasets, as showed in the following sections.

Microarray compendia results

In analyzing the microarray compendia predictions for
compound treatments, we considered as targets both the
pathways that are significantly overrepresented among
the perturbed genes and the genes themselves. Pathways
are identified as significantly overrepresented Gene
Ontology processes among the highly ranked genes.

The results for the promoter insertions are reported in
table 1. The SVM algorithm identified all the target
genes with an efficacy comparable to those of the com-
peting methods. Although the mean rank was 3.2 and
the mean rank of the next best performing method,
MNI, was 5.5, we can’t state that the SVM method

Table 1 Results for genetic perturbations
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performed better, given that a two ample t-test of the
ranks couldn’t reject the null hypothesis. On the other
hand the number of results for SVM is lower than for
MNI and SSEM-LASSO with p<0.05.

Our algorithm has also been tested on real compound
treated experiments. The compounds used with cDNA
arrays were lovastatin, terbinafine, itraconazole, hydro-
xyurea and tunicamycin.

Lovastatin is structurally similar to the HMG, a substi-
tuent of the endogenous substrate of HMG-CoA reduc-
tase. Lovastatin is a prodrug that is activated in vivo via
hydrolysis of the lactone ring. The hydrolyzed lactone
ring mimics the tetrahedral intermediate produced by
the reductase allowing the agent to bind with 20,000
times greater affinity than its natural substrate. The
bicyclic portion of lovastatin binds to the coenzyme A
portion of the active site.

Terbinafine is hypothesized to act by inhibiting squa-
lene monooxygenase, thus blocking the biosynthesis of
ergosterol, an essential component of fungal cell mem-
branes. This inhibition also results in an accumulation
of squalene, which is a substrate catalyzed to 2,3-oxydo
squalene by squalene monooxygenase. The resultant
high concentration of squalene and decreased amount
of ergosterol are both thought to contribute to terbina-
fine’s antifungal activity.

Itraconazole interacts with 14-o demethylase, a cyto-
chrome P-450 enzyme necessary to convert lanosterol to
ergosterol. As ergosterol is an essential component of
the fungal cell membrane, inhibition of its synthesis
results in increased cellular permeability causing leakage
of cellular contents. Itraconazole may also inhibit endo-
genous respiration, interact with membrane phospholi-
pids, inhibit the transformation of yeasts to mycelial
forms, inhibit purine uptake, and impair triglyceride
and/or phospholipid biosynthesis.

Hydroxyurea is converted to a free radical nitroxide
(NO) in vivo, and transported by diffusion into cells

Promoter mutant Target MNI ssem-lasso SVM
Rank Results Rank Results Rank Results Neattributes
tet-CMD1 CMD1 1 100 >MNI 100 2 100 29
tet-AUR1 AUR1 1 100 >MNI 100 1 100 40
tet-CDC42 CDC42 1 100 >MNI 100 1 100 26
tet-ERG11 ERG11 42 100 >MNI 100 10 100 15
tet-FKS1 FKS1 1 100 >MNI 100 2 17 21
tet-HMG2 HMG2 1 100 >MNI 100 10 100 34
tet-IDN DI 1 100 >MNI 100 1 16 28
tet-KAR2 KAR2 1 100 >MNI 100 1 100 29
tet-PMA1 PMA1 6 100 >MNI 100 5 100 23
tet-RHO1 RHO1 4 100 >MNI 100 1 10 32
tet-YEF3 YEF3 1 100 >MNI 100 1 36 44
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where it quenches the tyrosyl free radical at the active
site of the M2 protein subunit of ribonucleotide reduc-
tase, inactivating the enzyme. The entire replicase com-
plex, including ribonucleotide reductase, is inactivated
and DNA synthesis is selectively inhibited, producing
cell death in S phase and synchronization of the fraction
of cells that survive. Repair of DNA damaged by chemi-
cals or irradiation is also inhibited by hydroxyurea,
offering potential synergy between hydroxyurea and
radiation or alkylating agents. Hydroxyurea also
increases the level of fetal hemoglobin, leading to a
reduction in the incidence of vasoocclusive crises in
sickle cell anemia. Levels of fetal hemoglobin increase in
response to activation of soluble guanylyl cyclase (sGC)
by hydroxyurea-derived NO.

Tunicamycin is an inhibitor of bacterial and eukaryote
N-acetylglucosamine transferases; preventing formation
of N-acetylglucosamine lipid intermediates and glycosy-
lation of newly synthesized glycoproteins. Tunicamycin
blocks the formation of protein N-glycosidic linkages by
inhibiting the transfer of N-acetylglycosamine 1-phos-
phate to dilichol monophosphate.

Unlike promoter insertions, which directly influence
transcription, compounds predominantly affect protein
activity and only indirectly influence transcription. As a
result, the algorithm is more likely to identify genes in the
same pathway as the affected protein rather than the target
itself, such as transcriptionally regulated genes down-
stream of the target protein. On the other hand, when
transcriptional feedback regulation is present in the path-
way containing the targeted gene, it is likely that the algo-
rithm will also assign a high rank to the targeted gene
product [15].

For the drug treated samples our algorithm identified
the target genes for only 3/7 of the compound targets,
while the competing methods performed better with 5/7
of correctly identified genes. The results are showed in
table 2.

Even if the performance of mode of action identifica-
tion of our algorithm were worse than those of MNI or
SSEM-LASSO in the identification of targeted genes,
surprisingly it was more effective in the identification of

Table 2 Results for drug perturbations of cDNA arrays
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the involved pathways (table 3). In parentheses the num-
ber of genes associated to each GO Term is reported.
For the identified pathways an average ratio of GO
Term dimension less than 1/3 was obtained with respect
to the pathways identified by MNI. Our algorithm failed
the identification of the pathway targeted by lovastatin.
On the contrary MNI identifies a pathway, but it is very
generic.

The numbers of selected attributes that make impor-
tant contribution to the performance of the regression
models of the known target genes are reported in table
1 for the promoter insertions and on table 2 for the
drug treatments. The exact list is available upon request
to the authors.

The Affymetrix compendium was tested by the sam-
ples treated with Caspofungin, Thiolutin, Nocodazole
and Benomyl.

Caspofungin is an antifungal drug, the first of a new
class termed the echinocandins. It shows activity against
infections with Aspergillus and Candida, and works by
inhibiting 8 (1,3)-D-Glucan synthesis of the fungal cell
wall, acted by the FKS1 and GSC2 components. Thiolutin
is a sulfur-containing antibiotic, which is a potent inhibitor
of bacterial and yeast RNA polymerases. A known target is
the RPB10 gene. Nocodazole is an anti-neoplastic agent
which exerts its effect in cells by interfering with the poly-
merization of microtubules. Benomyl binds to microtu-
bules, interfering with cell functions, such as meiosis and
intracellular transportation. The known genetic target for
nocodazole and benomyl is the TUBI gene.

The results reported in table 4 show very poor results
for the Affymetrix compendium for the three methods.
The ranks for our method are reported independently
from their statistical significativity. The analysis of GO
terms enrichment did not lead to significative results in
the case of Affymetrix chips.

Performance comparison

Performance results are summarized in Figures 2, 3 and 4.
The “ssem” label in the figures refers to the SSEM-LASSO
algorithm by [15], the “svd” label refers to the work of
[14], elsewhere named MNI (MNI relies on Singular Value

Drug Target MNI Ssem-lasso SVM
Rank Results Rank Results Rank Results Neattributes
Terbinafine ERG1 5 100 - 100 - 57 20
Lovastatin HMG2 30 100 31 100 - 59 34
Lovastatin HMGT - 100 89 100 - 59 33
[traconazole ERG11 2 100 17 100 27 100 15
Hydroxyurea RNR2 2 100 20 100 26 83 22
Hydroxyurea RNR4 6 100 4 100 7 83 30
Tunicamycin ALG7 - 100 - 100 - 59 10
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Table 3 Pathway analysis of cDNA arrays
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Drug SVM Pathways MNI Pathways Known MoA
Terbinafine Ergosterol biosynthetic process (27) Steroid Inhibition of squalene monooxygenase, thus blocking the
metabolism biosynthesis of ergosterol
(2130)
Lovastatin Lipid Inhibition of HMG-CoA reductase
metabolism
(16244)
[traconazole Ergosterol biosynthetic process (256) Steroid Interaction with 14-a demethylase an enzyme necessary to
metabolism convert lanosterol to ergosterol.
(2130)
Hydroxyurea Deoxyribonucleotide biosynthetic process (704) Dna replication  Inhibition of ribonucleotide reductase and consequently of
(5480) DNA synthesis
Tunicamycin  Cellular nitrogen compound catabolic process (6678), Protein-ER N-linked glycosylation

Protein targeting to ER (585)

targeting (585)

Decomposition for modeling the interactions, as described
in the previous sections), “svm” refers to our work. The
tests have been realized for a number of genes varying
from few hundreds to 40 thousands and for a number of
500 and 1500 experiments.

CPU consumption (Figures 2 and 3) is affected by
both the number of experiments and the number of
probe sets in the chip. Independently from the dataset
dimension, the best performing method is MNI. The
SVM regression algorithm is markedly more demanding
than MNI, but, over both, SSEM-LASSO requires sev-
eral orders of magnitude more CPU. It is heavily
affected by both the number of genes and the number
of experiments. Indeed a Sun Grid Engine cluster of 94
dual-processor 2GB-RAM machines was employed in
the original work by Cosgrove et al. [15]. Estimating the
interaction model took about 4 days using 50 nodes of
the cluster for a dataset of 6681 genes x 647 experi-
ments. As a consequence we had to stop the simulations
after a reasonable amount of days. The use of SSEM-
LASSO by an ordinary computer is actually unfeasible
and this makes its use prohibitive.

The memory test results were unaffected by the num-
ber of experiments and the results showed refer to the
500 experiments dataset (Figure 4). The tests show that
MNI, while being favorable in terms of time, requires an
amount of memory which rises rapidly with the number

Table 4 Results for drug perturbations of the Affymetrix
compendium

Drug Target MNI Ssem-lasso SVM
Ranks

Caspofungin FKS1 - 27 532

Caspofungin GSC2 - 942 3249

Thiolutin RPB10 - 1494 724

Nocodazole TUB1 - 978 5980

Benomyl TUBI1 - 978 918

of genes in the chip. This makes the MNI execution
prohibitive for a common desktop PC given that the
number of probe sets on microarray chips is rapidly
increasing and is well above the 40 thousands probe sets
since the begin of the past decade.

Our algorithm scales well if considering both time and
memory consumption. In its Java implementation we
could use the multi-thread paradigm, where the number
of threads for the yeast dataset execution, was limited
from the number of CPU cores rather than from the
available memory. Memory requirements are due to the
correlation feature selection step of the gene network
topology configuration, thus it is configurable on the
number of genes to be retained after the first gain ratio
filtering.

Conclusions

Gene network filtering of expression profiles has been
demonstrated to be a valuable tool for the identification
of compound mode of action. In particular these tools
can distinguish the direct target of the compounds bet-
ter than simply detecting the gene expression ratio with
respect to some reference sample.

MNI and SSEM-LASSO have showed good rates of
target identification and anyway an improvement over
the tested null methods. While SSEM-LASSO performed
better than MNI on simulated datasets, it has been out-
performed by the latter on real yeast two-color array
datasets. Our approach demonstrated very good perfor-
mances on synthetic datasets, and results comparable to
MNI on promoter insertion samples. Unfortunately the
SVM based algorithm obtained a lower rate of success
on compound treated samples. Nevertheless when it
comes to the pathway identification we showed that we
identified more specific pathways than MNI on cDNA
arrays. Cosgrove et al. [15] conducted a Gene Ontology
term enrichment for the top 100 ranked genes for all
drug perturbations with known targets, but they did not
observe enrichment of the appropriate terms.
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Figure 2 Time performance comparison for 1500 experiments.

Cosgrove et al. [15] reported a major improvement over
the null method on affymetrix datasets rather than two-
color arrays. However while in the first case the target
rank was in most cases between five hundreds and one
thousand, in the second it was below one hundred. This
actually suggests that gene network filtering hasn’t been
applied successfully on single-channel microarray data and
that much work can be done in this sense.

One of the major drawbacks of MNI and SSEM-LASSO
is their poor scalability both in terms of memory and ela-
boration time. They can’t be applied to contemporary
gene expression microarrays, given the number of probe
sets in each chip, by means of common desktop compu-
ters. On the contrary the behavior of our strategy is accep-
table also in the absence of more powerful means.

Methods
As depicted in Figure 5, the dataset is divided in training
and validation samples. For each gene a sub list of

connected genes is selected using a computationally effi-
cient algorithm. The list of genes is used to build a quanti-
tative model of expression. This model is applied to the
unseen validation samples, obtaining a predicted value for
each sample. The residual difference of the real values
from the predicted ones is used to compute a residual dis-
tribution describing the accuracy of the model. This distri-
bution is used to compute the likelihood that the residual
computed for the test sample is due to model inaccuracy
or to a network perturbation on the given gene (details in
the following sections). The algorithm has been imple-
mented in the R statistical software and some components
have been implemented in Java.

Datasets

The whole-genome yeast expression data sets is a com-
pendium of 300 profiles of gene deletions, titratable pro-
moter insertions and drug compound treatments from
Hughes et al. [5] and a second set of 215 titratable
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Figure 3 Time performance comparison for 500 experiments.

promoter insertions in essential genes from Mnaimneh
et al. [18].

The Affymetrix yeast S. cerevisiae compendium
included 904 Affymetrix Yeast Genome S98 high-density
oligonucleotide arrays and 9335 probes and is available
for browsing and download as yg_s98_v3_Build_2 at the
Many Microbe Microarrays Database (M3D) (http://
m3d.bu.edu) [19].

Simulated datasets [20] have been generated such that
the network topology is produced by selecting sub net-
works from regulatory networks reconstructed for E. Coli
and described by Ma et al. [21]. Randomly selected nodes
are chosen as initial seeds. Subsequent nodes are added in
an iterative process. Only randomly selected nodes that
have at least one connection to the current graph are
retained. The seeds are chosen and the network grows
until the desired network dimension is met.

Interaction kinetics are modeled by equations based
on Michaelis-Menten and Hill kinetics. These equations

are used to model gene regulation in steady-state condi-
tions: this allows on one hand to reduce the computa-
tional complexity that would have been reached with
ODE models and on the other hand this kind of data is
more suited for the MoA identification algorithms
described so far, which require steady-state expression
profiles. Biological noise is modeled by a function based
on a lognormal distribution superposed on the kinetic
equations. Kinetic parameters are randomly chosen
from a discrete set of parameters that give place to
behaviors observed in real organisms. External condi-
tions are modeled by choosing a gene set without regu-
latory inputs and setting their expression level to a
different value for each experiment. The expression
levels of the genes in the network are subsequently cal-
culated, as specified by their transition functions, start-
ing from the input genes. Each connected sub network
is simulated separately and the results are merged to
generate datasets with a number of genes greater than
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the original E. Coli network. Lognormal experimental
noise is added afterwards.

Attribute selection

So far, several methods have been applied to address the
network topology reconstruction issue [22]. Our attribute
selection was performed in two steps. First the attributes
were discretized using equal frequency bins, with a fixed
number of 10 bins. After that the information gain (IG)
[23] for each attribute a was computed as given in the
following equation, where T is the set of samples, H the
information entropy, v is one of the discretized values of
the attribute/gene a4, x is an instance/sample.

l{x € Tlxq = v}

IG(T,a) = H(T) — Z l{x e T}|

vevals(a)

“H({x € Tlx, = v})

The attributes were sorted according to their informa-
tion gain and only the more informative # attributes were

retained. In the second step a correlation based feature
selection [24,25] gave the list of regressors for the gene
expression model. The metric for a given subset of fea-
tures is given by the following equation, where Mj is the
heuristic “merit” of a feature subset S containing k fea-
tures, T¢f is the mean feature-class correlation (fe S ),
and 7 is the average feature-feature inter-correlation.

_ kTCf
Sk k(e — 1)rg

The search progresses forward through the search
space adding single features. The search was terminated

if five consecutive fully expanded subsets showed no
improvement over the current best subset.

s

SVM regression
The support vector machine for regression has been
used to build the regression model. The parameters
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could be learned using an improvement of the SMO
Algorithm for SVM Regression, developed by Keerthi et
al. [26] The complexity parameter has been set to 0.8,
the data has been normalized, the tolerance parameter
has been set to 0.001, the epsilon to 1.0E - 12 and the
kernel to polynomial of the first order.

Filtering and target identification

The residual estimation has been performed via a boot-
strap procedure. N sub samples were created and each
subsample has been 60/40 splitted into training and test
set. The models for each gene were created on the train-
ing set and evaluated on the test set. The residuals were
computed as difference of the predicted and real values.
The normal density function for each gene of the trea-
ted sample was computed, with mean and standard
deviation computed from the residuals. The genes hav-
ing a probability of belonging to the residual distribution
below a given threshold were returned to the user. If the

list contained more than 100 genes only the first 100
genes were returned. The threshold was adapted to the
number of genes in order to control the rate of false
positives.

The following pseudo-code shows how the p-values
for each gene of the perturbed sample are computed
from the residuals. The list of perturbed genes is
obtained applying a threshold on the p-values.

for (i in 1:num_genes){

[train, test] = sample(data)
attributes[i] = attribute_selection(i, train)
model[i] = estimate_model(attributes[i], train)
predicted[i] = apply_model(model[i], test)
observed[i] = test[i]
residuals[i] = observed[i] - predicted[i]
quantile = perturbed_sample[i]
p_value[i] = pnorm (quantile,
mean(residuals[i]),
sd(residuals[i],
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lower. tail = quantile<0

)

Pathway analysis

The list of genes filtered by our algorithm was subse-
quently used for pathway analysis. Hypergeometric p-
values for over or under-representation of each GO
term in the specified ontology among the GO annota-
tions for the interesting genes were computed. The
computations were done conditionally based on the
structure of the GO graph. For this analysis was used
the hyperGTest function from the Bioconductor GOStats
package [27]. The p-value cutoff was set to 0.01.
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