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Abstract

global optimum) quickly in the artificial environment.

Background: Recent microbiologic studies have shown that quorum sensing mechanisms, which serve as one of
the fundamental requirements for bacterial survival, exist widely in bacterial intra- and inter-species cell-cell
communication. Many simulation models, inspired by the social behavior of natural organisms, are presented to
provide new approaches for solving realistic optimization problems. Most of these simulation models follow
population-based modelling approaches, where all the individuals are updated according to the same rules.
Therefore, it is difficult to maintain the diversity of the population.

Results: In this paper, we present a computational model termed LCM-QS, which simulates the bacterial quorum-
sensing (QS) mechanism using an individual-based modelling approach under the framework of Agent-
Environment-Rule (AER) scheme, i.e. bacterial lifecycle model (LCM). LCM-QS model can be classified into three
main sub-models: chemotaxis with QS sub-model, reproduction and elimination sub-model and migration sub-
model. The proposed model is used to not only imitate the bacterial evolution process at the single-cell level, but
also concentrate on the study of bacterial macroscopic behaviour. Comparative experiments under four different
scenarios have been conducted in an artificial 3-D environment with nutrients and noxious distribution. Detailed
study on bacterial chemotatic processes with quorum sensing and without quorum sensing are compared. By
using quorum sensing mechanisms, artificial bacteria working together can find the nutrient concentration (or

Conclusions: Biomimicry of quorum sensing mechanisms using the lifecycle model allows the artificial bacteria
endowed with the communication abilities, which are essential to obtain more valuable information to guide their
search cooperatively towards the preferred nutrient concentrations. It can also provide an inspiration for designing
new swarm intelligence optimization algorithms, which can be used for solving the real-world problems.

Background

Many agent-based models, inspired by biological phenom-
enon, have been formulated to provide new approaches
for solving realistic optimization problems especially com-
plex NP problems [1]. Two different types of agent-based
models, population-based and individual-based models,
have been classified based on the viewpoint of biological
simulation. In population-based models such as the parti-
cle swarm optimization algorithm [2], all individuals have
unique characters and follow the same evolutionary rules.
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Nevertheless, in individual-based models (IBM) [3], an
individual is regarded as a discrete entity endowed with its
own attributes, states and behaviors. Every heterogeneous
entity can communicate with each other and then make
group decisions by social intelligence.

Early in 1988, Kreft and his colleagues proposed an
individual-based model termed BacSim to simulate the
evolution process of Escherichia coli (E. coli) from an
individual bacterium to a group. As he says, we can see
a macroscopic world in the microscopic object [4]. An
E-CELL model was illustrated by Tomita et al. in 1999,
inspired by developmental processes of Mycoplasma
genitalium [5]. Ginovart et al. (2002) designed a discrete

© 2013 Niu et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.


mailto:drniuben@gmail.com
http://creativecommons.org/licenses/by/2.0

Niu et al. BMC Bioinformatics 2013, 14(Suppl 8):S8
http://www.biomedcentral.com/1471-2105/14/58/S8

IBM called INDISIM to simulate the growth of bacterial
cultures [6]. An alternative model based on the COS-
MIC system to simulate the artificial bacterial interac-
tion and evolution was shown by Paton et al. in 2004
[7]. Soon after, Emonet et al. (2005) developed an IBM
termed AgentCell to simulate bacterial chemotactic pro-
cesses at the single-cell level [8]. Another individual-
based model of low-population bacteria cultures in the
lag stage was presented by Prats et al. in 2006 [9].
Recently, an IBM termed iDynoMiCS, which employs
new bacterial biofilm modelling approaches, was formu-
lated by Lardon et al. (2011) [10].

In our previous work, we formulated a lifecycle model
(LCM) guided by the Agent-Environment-Rule architec-
ture to simulate the bacterial evolution in 2008 [11].
LCM mainly focuses on microscopic and macroscopic
evolution processes of bacteria in different growth
phases. Three main developmental phases of E. coli
including the lag, dynamic and decline phases are stu-
died. Compare with the population-based computational
model, the individual-based LCM has improved flexibil-
ity where the behaviors of every individual could be
investigated and controlled. The original LCM, however,
is in its infancy [11]. Recent studies have demonstrated
that quorum sensing (QS) systems generally exist in
bacteria acting as communication with and between
groups [12]. Incorporating intra- and inter-species QS
mechanisms into LCM is the primary aim and work of
this paper.

Methods

Lifecycle model (LCM)

A bio-inspired lifecycle model (LCM), according to bacter-
ial evolution processes during their lifecyle, was proposed
as a new inspiration to solve optimization problems in
2008 [11]. Behaviors of E. coli in different life phases are
concentrated on in LCM. In biological science, behaviors
of E. coli have been intensively studied for more than 150
years and four key behavioral patterns of E. coli, i.e. che-
motaxis, reproduction, migration and elimination, have
been detailed described in [13].

In absence of gradient information about attractant or
repellent chemical concentration, a bacterium runs in a
straight line using flagella as propellers for a few sec-
onds, and then tumbles with random directions. The
run-tumble-run cycle will be repeated during the whole
bacterial lifecycle. A bacterium with gradient informa-
tion shows distinctly different behaviors. It has been
suggested that the bacteria can possess the memory abil-
ity so that it can compare current gradient information
with previous ones [14]. If the concentration of attrac-
tant chemicals raises or the density of repellent chemi-
cals reduces, the frequency of run increases. Otherwise,
the frequency of tumble increases. The run-tumble-run
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cycle is the essential property of bacterial chemotactic
behaviors.

When a bacterium obtains sufficient energy from the
environment, it has a chance to reproduce. The healthy
bacterium splits into two identical daughter cells in the
same spatial position. Those with poor nutrients intake
may undergo extinction or migrate to new niches for sur-
vival [15]. Of course, the population varies between dif-
ferent life phases. In the lagging phase, most bacteria
absorb rich nutrients and thus the population of bacteria
grows exponentially. The increasing of population size
leads to the intensified competition for nutrients. During
dynamic phase, the population size of bacterial colony
fluctuates markedly in the early stage and then gradually
stagnates in a relatively stable state. With the food
depleted gradually, some bacteria are not able to find suf-
ficient food sources, which will be eliminated or migrate
to new places with good nutrient concentrations, the
population size reduces at the decline stage.

In LCM, each bacterium has different characters and
is independent from each other. Therefore, it is also
considered as the artificial individual possessing an abil-
ity of autonomous. LCM consists of three underlying
components. The most important component is the arti-
ficial bacteria, which possesses plenty of attributes and
behavioral features [16]. N-dimension environment with
gradient information where artificial bacteria undertake
metabolisms is the second key component. The most
complex component is interaction rules between artifi-
cial bacteria and environment. The original LCM model
is presented in Figure 1.

Although the theoretical modelling based on individual
bacterial behaviors is insufficient. The flexible structure
of LCM allows it to retain the potential of incorporating
quorum-sensing (or cell-cell communication) mechan-
isms. This paper chiefly concentrates on the integration
of QS systems into LCM for achieving a more accurate
biological simulation model. A brief description of QS
mechanisms is given as follows.

Quorum-sensing (QS) mechanisms

New microbial discoveries have illustrated that though as
the simple unicellular microbes on earth, bacteria can
utilize cell-to-cell communication to make group deci-
sions, synthesize beneficial molecules for themselves and
so on [17]. Information about other bacteria and the
environment can be acquired by an individual bacterium,
and interpreted in a ‘meaningful’ way which finally results
in sharing of knowledge [18]. Possessing the sophisticated
linguistic communication abilities, bacteria are able to
take on some advanced features of social intelligence,
such as cooperative foraging and creating complex niches
[19]. Such communication process via chemical signals is
termed quorum sensing (QS).
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Figure 1 Lifecycle model under the agent-environment-rule architecture.

We now know that QS systems have been found in
both Gram-positive and Gram-negative bacteria [20].
For example, the first known QS mechanism was dis-
covered in bioluminescent bacteria called Vibrio fischeri.
It resides in light-producing organs of the squid for
reproduction. AI-1 synthase produced by Vibrio fischeri
diffuses AHL molecules to increase the cell-population
concentration. As long as the cell-population density
exceeds a threshold level, luciferase operons will be acti-
vated and result in the generation of light [21]. More
and more studies have shown that the A/-1 QS system
is mainly responsible for local interactions between col-
ony members [22]. In contrast, another famous AI-2 QS
system functions as interspecies communication [23].
According to different QS mechanisms, two kinds of
topologic schemas are presented in Figure 2.

Two main kinds of QS systems in individual-wide and
population-wide scales are considered and simulated in
the paper [24]. It is clear that via the use of intrinsic QS
mechanisms, global behaviors of bacterial species are
coordinated for maximizing group benefits as well as
individual benefits [25].

LCM with QS mechanisms

Lifecycle model with QS mechanisms (LCM-QS) not only
involves microscopic objects such as the run-tumble-run
cycle, but also includes macroscopic entities such as the
interspecies communication. LCM-QS is more in accor-
dance with the natural metabolic processes compared with

the original LCM. LCM-QS is made up of five core com-
ponents, i.e., chemotaxis, quorum sensing, reproduction,
elimination and migration, as shown in Figure 3.

The bacterial movement of chemotaxis is run through
in the whole lifecyle. During each movement of run or
tumble, each bacterium pursues nutrients or avoid nox-
ious. Bacteria with high energy intake will broadcast
their search information to other bacteria with low
energy level by QS mechanism. When a mass of bacteria
congregate together and the local environment becomes
overcrowded, they compete with each other instead of
cooperated with others. Some bacteria with strong fora-
ging abilities accumulate sufficient nutrients for repro-
duction. Others that lack competitive edges are easily
eliminated. In the proposed model, these dead bacteria
are replaced by copies of bacteria possessing the oppor-
tunity of reproduction. The rest of bacteria, which have
a little energy and average foraging capacities, will
migrate to a new region together through interspecies
communication. To reduce computational complexity,
the lifecycle model with QS mechanisms is divided into
three sub-models, which are presented in detail as
follows.

Chemotaxis with QS sub-model

In the primary LCM, bacterial movement of runs and
tumbles with no information exchange within and
between bacterial strains, which is not in accord with
recent biological discoveries. In fact, the chemotactic
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(a) QS system in individual-wide scales

Figure 2 Two kinds of topologic schemas of QS.
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(b) QS system in population-wide scales

behavior is always accompanied with intra-species and
inter-species communication via QS systems in the
whole bacterial optimization processes. Microbial che-
motactic behaviors are mainly influenced by personal
previous experiences, information exchange and random
direction choices, which are shown in Figure 4. The
chemotactic behavior with QS mechanisms prolongs
motion towards a favorable orientation and restrains
movement in an adverse direction [26].

The specific formulae about bacterial motion are pre-
sented below. Equation 1 indicates chemotactic beha-
viors of simulated bacteria in the absence of QS
mechanisms. On the contrary, artificial bacterial move-
ment with QS systems is characterized in Equation 2.
P;(k) donates position of the i-th bacterium in the k-th
iteration step. R indicates a random number. C; is the
run length of i-th bacterium. randDir(i, k) stands for a
random orientation choice of the i-th bacterium in the
k-th iteration step. Gbest donates current optimal loca-
tion with richest nutrients.

Pi(k + 1) = Pi(k) + R*Ci*randDir (i, k) (1)

Pi(k+ 1) = Py(k) + Ry*Ci*randDir(i, k) + Ry*(Gbest — P;(k))  (2)

It is expected that the integration of QS mechanisms
into chemotaxis will facilitate the cooperative search of
the global optimum and accelerate the convergence rate.
Subsequently, the reproduction and elimination sub-
model will been conducted until the number of run and
tumble reaches a certain value (N,, or Ngj;). Note that
the number of chemotaxis step equals the total number
of iterations (iterMax).

Reproduction and elimination sub-model

After long-time chemotactic steps, some bacteria with
higher energy level (represented by nutrient concentra-
tions) have more opportunities to reproduce and maxi-
mize lifespan, whereas other bacteria with lower energy
level are faced with being eliminated. Bacteria accumulate
enough nutrients can propagate by binary fission and
produce two identified daughter cells at the same posi-
tion. Besides, if an artificial bacterium move out of the
restricted area, it should be deleted and replaced by a
new bacterium for better control of the model. Detailed
conditions of reproduction or elimination are presented
below in Equations 3 and 4.

ifT; > Jinreshola && iter > Ny, theni € healthy and reproduce i (3)

ifJ; < Jinreshoid && iter > Ny, theni € unhealthy and eliminate i (4)

where J; is fitness value of ith bacterium, Jesnoid is a
predefined threshold. The asexual reproduction of healthy
bacteria doubles the population of the group. Nevertheless,
the colony population size may shrink rapidly owing to the
sudden death of a mass of unhealthy bacteria. Hence, the
total number of artificial bacteria in the proposed model
remains unchanged. From the viewpoint of computation,
the reproduction and elimination progress may disturb
chemotactic processes in the next iteration step. But more
importantly, it could improve the computational speed
and possibly find the global optimum.

Migration sub-model
Owing to the increment of bacteria in a given region,
the competition for nutrients becomes more and more
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intensive. The nutrient-rich food sources will not satisfy
the requirements of all bacteria. Naturally, some bacteria
with average foraging capacities but poor energy level
are more inclined to migrate to new areas with expected
richer nutrient concentrations rather than die directly.
From a perspective of optimization, the long-distance
migration to new random niches, described in Figure 5,
is able to keep the diversity of colony and avoid being
trapped into local optimum.

A core formula of the migration sub-model is pre-
sented in Equation 5.

Pi(d, k + 1) = Ib + rand* (d, k)* (ub — Ib) )

where [p indicates the lower boundary and yb donates
the upper boundary, d is the number of the dimensions,
k is the current chemotatic step. The values of lower
and upper boundaries are always determined according
to the constraints defined in the realistic optimization
problems.

To simplify LCM-QS, it is suggested that the entire
migration process will be conducted only if certain
migration conditions are satisfied. For instance, if the
chemotactic steps reach a predefined threshold value,
the migration process will be performed.

Implementation of LCM-QS

Some population-based optimization models, such as
BFO [13], utilize a nested loop structure, which requires
more computational time and thus influences the conver-
gence rate. However, LCM-QS adapts a sequential imple-
mentation structure to reduce computational time. In
our proposed LCM-QS, a bridge between individual
behaviors and group interactions is built and a right bal-
ance between computational simplicity and model

Nutrients

Inter-Species Migrate

Communicate

> o o >
(__—

Figure 5 Long-distance migration mechanism.
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complexity is maintained. The implementation procedure
of LCM-QS is presented in Figure 6.

It should be noted that some initial parameters, such
as boundary conditions and the bacterial initial position,
are under user control. Table 1 gives a detailed descrip-
tion of the optimization processes of LCM-QS. It is
obvious that the reproduction and elimination sub-
model as well as the migration sub-model are condi-
tion-dependent.

Results and discussion
To measure the search performance of artificial bacteria
using the proposed new model, simulation studies have
conducted in a 3-D environment with nutrient-noxious
distribution. As illustrated above, information exchange
mechanism is one of key indicators in swarm optimiza-
tion, our experimental studies are conducted with four
types of information exchange scenarios.

A: Bacterial chemotaxis without information exchange;

B: Bacterial chemotaxis with group information
exchange;

C: Bacterial chemotaxis with individual information
exchange;

D: Bacterial chemotaxis with individual and group
information exchange.

The nutrient distribution of 3-D environment is set by
the function as Equation (6), which is also illustrated in
Figure 7.

F (x) =5*exp—o,1((x,—15)1+(x2—zo)z) _ z*exp—o.os((xl—zo)z+(x2—15)2)

4 3»ﬁexpfo.08((xl —25)%+(x,—10)%) i 2*exp’0'1((""10)2*("2’10)2)

—0.5((x1=5)+(x2—10)%) _ 4*exp‘°'1 ((x1=15)?+(x2—5)%) (6)

— 2%exp

—0.5((x1-8)*+(12-25)%) _ o —0.1((x—21)? +(x,-25)%)

— 2%exp
—0.5((@1-25)"+(12=16)*) | 5%

*exp

+2%exp exp—O.S((x1—5)2+(xz—l4)z)

A: Bacterial chemotaxis without information exchange

In this section, bacterial chemotaxis will be operated
without considering information exchange between indi-
viduals and groups. Bacterium runs and tumbles to nutri-
tion area by stochastic turbulence. Figure 8 shows the
bacterial optimization process with the chemotaxis step
N¢ ranging from 1 to 2000. In LCM-QS, chemotaxis goes
along with entire optimization process. From Figure 8,
the bacterial colonies have to spend more than 500 che-
motaxis steps to find the global optimum. After a long
time of chemotaxis (without communication), reproduc-
tion and elimination process, the final fitness value of
each bacterium have been shown in Figure 9.

Figure 10 and Figure 11 indicate the individual best
position (#; and 6, are two dimensional vectors)
obtained by each bacterium during 2000 chemotactic
step. Figure 10 points out that not all of bacteria in group
find the global optimum after the maximal iterations
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satisfied, which is also confirmed by Figure 11. From Fig-
ure 11, chemotaxis process is divided into four stages and
every stage has 500 chemotatic steps. But even in the
fourth stage, some of bacteria cannot find the global
optimum.

B: Bacterial chemotaxis with group information exchange
Section A suggests that the bacterial chemotaxis without
information exchange fails to find global optimum

efficiently. Therefore, bacterial chemotaxis with group
information exchange is considered for getting better
search performance in this section. Similar to the above
section, Figure 12 shows the average optimal fitness
obtained by bacterial colonies over 2000 chemotactic
steps. The bacterial colonies approach the best nutrient
concentrations with a faster convergence rate compared
to the case of no information exchange. The individual
best position found by each bacterium during 2000
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Table 1 Implementation of LCM-QS

For (each loop or iter<iterMax)

// chemotaxis process
For (each bacterium )
If (given probability >random)
Share information with surrounding neighbours
Tumble (Pi(k + 1) = Pi(k) + Ry  C; * randDir(i, k) + Ry * (Gbest — Pi(k)))
While (current function value Fc< previous function value Fp)
Swim (using Equation 2)
End While
Else
Share the information with two random-choice bacteria
Tumble (using Equation 2)
While (current function value Fc< previous function value Fp)
Swim (using Equation 2)
End While
End if
End For
// reproduction or elimination
If (reproduction conditions meet)
Sort and Split
Reproduction and elimination (using Equations 3 and 4)
End If
// migration
For (each bacterium)
If (a given probability Nmig > random)
Migrate to a new niche (using Equation 5)
End if
End For
End For

chemotactic step is shown in Figure 14 and Figure 15.
From the figures, we can find that most bacteria can
reach the global optimum position in the first stage.
Because most of the them can locate in the global opti-
mum in the first stage, the best position obtained by
bacterial colonies keep nearly unchanged at the later

0 o0
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three stages. Specifically, in Figure 13, the fitness of the
bacteria mostly assemble between -3.986 and -3.987 with
little difference, and only a few of individuals cannot
arrive at the global optimum but run very close to it.

C: Bacterial chemotaxis with individual information
exchange

Section B aims at improving the search efficiency of bac-
terial chemotaxis through group information exchange. In
this section, individual information exchange is incorpo-
rated as one of communication mechanisms to speed up
the search speed of global optimum. Figure 16 confirms
that the participating of individual information exchange
indeed helps a lot in guiding the bacteria to approach the
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Figure 12 The average fitness values during 2000 iterations
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Figure 13 The final optimal function values of each individual
with group information exchange.

nutrient area. After maximum iterations reached, all bac-
teria can find the global optimum shown in Figure 17.
Figure 18 and Figure 19 once again illustrate that the indi-
vidual communication mechanism is favorable to orient
bacteria colony to global optimum. With the help of the
individual information exchange between bacteria, the
bacterial colony can find the global optimum in the first
500 chemotatic steps.

D: Bacterial chemotaxis with individual and group
information exchange

The average fitness values obtained by bacterial colony
with individual and group information exchange are
shown in Figure 20. It converges in a high speed in the
early iterations (chemotatic step), but a relatively slow
convergence rate in the later iterations. When approach
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\

the promising area (near global optimum), many itera-
tions are used to fine-tune the local search. Finally, all
the bacteria are able to find the global optimum when
the maximum iterations reached.

Figure 22 and Figure 23 inform that that bacteria can
search for global optimum quickly with help of individual
and group information exchange. Figure 22 even shows
that the bacteria can find the global optimum no more
than 100 iterations. There is no doubt that these two com-
munication mechanisms have increasingly improved the
search efficiency of original model with no information
exchange or individual information exchange.

The results presented in the above figures indicate the
emergent behavior of comparative search from a macro-
scopic view. LCM-QS model is in relating the macroscopic
effects of bacterial colony to microscopic behavior of
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individual and group information exchange.
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Figure 23 The process of finding the global optimum with
both individual and group information exchange.

single bacterial cell. Figure 24 and Figure 25 describe opti-
mization process in bacterial micro-communities, where
four bacteria are selected. Those four bacteria are ran-
domly distributed in the artificial environment. After 100
iterations, all of them located the global optimum with the
best nutrient concentrations. Chemotaxis process of a sin-
gle bacterium during four different stages (25 chemotatic
steps in one stage) is shown in Figure 26. From the figure
we can find that the bacterium located in the global opti-
mum position with the best nutrient concentrations after
25 steps. The overall search procedure during 100 chemo-
tactic steps is illustrated in Figure 27.

Nc=1-~25 Nc=26~50
20 20
20 20
& &
10 @E = C 10
0 - 0
0 10 20 2 0 20
e‘I
Nc=51-~75
20 20
L= =i
20 @ 20
Ky =) Ky
10} (& 10
0 0
0 2 0 2
e1 61
Figure 24 Global optimum found by four bacteria during 100
chemotactic steps.
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Bacterium Chemotaxis,Nc=1~100
30 . . .
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1

Figure 25 Optimal process of four bacteria during 100
chemotactic steps.

Conclusions

In this paper, a new computational model, termed
LCM-QS (lifecycle model with quorum sensing mechan-
ism) is proposed to simulate emergent behaviour of bac-
terial quorum sensing. The communication mechanism
is the most important factor to indicate a swarm intelli-
gence system. The artificial bacteria are endowed with
communication ability by using the principle of swarm
intelligence. Additionally, reproduction, elimination and
migration are all viewed as optimization strategies to
build the LCM-QS model. To illustrate the performance
of the proposed model, four types of communication
schemes between individuals or groups are studied by

Figure 26 Global optimum found by single bacterium during
100 chemotactic steps.

Bacterium Chemotaxis,Nc=1~100

Figure 27 Optimal process of one bacterium during 100
chemotactic steps.

adapting a 3-D artificial environment with nutrient-nox-
ious distribution. The results show that by using
quorum sensing mechanism artificial bacteria are able to
response quickly to the complex environment and can
find the global optimum in a short time.

The primary goal of this paper concentrates on devel-
oping a novel individual-based modelling approach to
simulate the quorum sensing mechanism among bacter-
ial colonies. Meanwhile, the LCM-QS model is expected
to give an inspiration to present a new swarm intelli-
gence optimization algorithm. However, little considera-
tion is given to other factors such as varying population,
dynamic environment. Therefore, in our future work,
these issues will be focused on and some real-world
applications will be considered, such as the design of
new evolutionary neural networks [27-30].
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