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Abstract

We present a new iterative algorithm for the molecular distance geometry problem with inaccurate and sparse
data, which is based on the solution of linear systems, maximum cliques, and a minimization of nonlinear least-
squares function. Computational results with real protein structures are presented in order to validate our
approach.

Background
The knowledge of the protein structure is very important
to understand its function and to analyze possible interac-
tions with other proteins. Different methods can be applied
to acquire protein structural information. Until 1984, the
X-ray crystallography was the ultimate tool for obtaining
information about protein structures, but the introduction
of nuclear magnetic resonance (NMR) as a technique to
obtain protein structures made it possible to obtain data
with high precision in an aqueous environment much clo-
ser to the natural surroundings of living organism than the
crystals used in crystallography [1].
The NMR technique provides a set of inter-atomic dis-

tances for certain pairs of atoms of a given protein. The
molecular distance geometry problem (MDGP) arises in
NMR analysis context. The MDGP consists of finding
one set of atomic coordinates such that a given list of
geometric constraints are satisfied [2]. Formally, the
molecular distance geometry problem can be defined as
the problem of finding Cartesian coordinates

x1, . . . , xn ∈ R
3 of atoms of a molecule such that lij ≤ ||

xi - xj|| ≤ uij, ∀(i, j) Î E, where the bounds lij and uij for
the Euclidean distances of pairs of atoms (i, j) Î E are
given a priori [3].

As suggested by Crippen and Havel [3], the MDGP can
also be formulated as the global optimization problem of
minimizing the function

f (x) =
∑

(i,j)∈ E

pij(xi − xj),

where the pairwise function pij : Rn → R is defined
by

pij(x) = max

{
l2ij − ||x||2

l2ij
,
||x||2 − u2ij

u2ij
, 0

}
.

Clearly, x = (x1, . . . , xn) ∈ R
3n solves the MDGP if,

and only if, x is a global minimizer of f and f(x) = 0.
An overview on methods applied to the MDGP is

given in [4] and a very recent survey on distance geome-
try is given in [5].
Particular cases of the MDGP can be solved in a rela-

tively easy way. For instance, when we know all dis-
tances dij = ||xi - xj||, i.e., dij = lij = uij and E = {1, 2, ...,
n}2, a solution can be obtained by factoring the distance
matrix D = [dij]. Assuming that D = [dij] has the singu-
lar value decomposition U∑Ut = D, then x = U∑1/2 is a
solution for the exact MDGP defined by lij = uij = dij
[3]. Even in the case where the set of known distances is
incomplete, i.e., when some entries of the distance
matrix D = [dij] is unknown, we can solve the MDGP in
linear time using an iterative algorithm called geometric
buildup [6]. First, this algorithm initializes a set B
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(base) with the index of four points, whose distances
between all of them are known. Then, the coordinates
of the points in B are set using the singular value
decomposition of the incomplete distance matrix D
restricted to the base B , and the remaining unset coor-
dinates xj are calculated by solving the linear system

〈xi, xj〉 =
d2i,1 − d2i,j + d2j,1

2
, (1)

where i ∈ {i1, i2, i3, i4} ⊂ B and dij = ||xj - xi||. The
indexes i1, i2, i3, i4 can be chosen in an arbitrarily way,
allowing us to choose another base subset when calcu-
lating the coordinate of the next xj. At each iteration,
the index j of the new coordinate xj is inserted in the
set B increasing the number of subsets {i1, i2, i3, i4}
used as anchors to fix the remaining unset coordinates.
Unfortunately, in practice, the NMR experiments just

provide a subset of distances between atoms spatially
close and the data accuracy is limited. Thus in the real
scenario, the set E is sparse and lij < uij. So, we just
have bounds to some of the entries of the distance
matrix D. In this situation, neither the singular value
decomposition nor the buildup algorithm can be
applied directly because they are both designed to deal
with exact distances. In fact, the inaccurate and sparse
instances of MDGP, where lij <uij, are much harder to
solve as pointed by Moré and Wu who showed that the
MDGP with inaccurate distances belongs to the NP-
hard class of problems [7].
Our contribution is a new algorithm that can handle

with inaccurate and sparse distance data. We propose
an iterative method based on simple ideas: generate an
approximated distance matrix D, take as base a clique in
the graph that has D as a connectivity matrix, solve the
system (1) and refine the solution using a nonlinear
least-squares method. It needs to be pointed that the
authors of the buildup algorithm and coworkers have
done some modifications in the original form of the
algorithm in order to handle inaccurate data [8,9]. How-
ever, the main advantage of our proposal is its simplicity
and robustness. We have been able to find solutions
with acceptable quality to instances of MDGP with inac-
curate and sparse data, considering up to thousands of
atoms.

The new iterative method
Defining the initial base
The set E of pairs (i, j) and the set of indexes V = {1, 2,
..., n} can be considered as a set of edges and a set of
vertexes of a graph G = (V, E), respectively. One may
decide to use as base the biggest complete subgraph of
G. The problem of calculating the biggest complete sub-
graph belongs to the NP-complete class and it has a

large number of applications (for a review in this subject
consult [10]). We decided to use the algorithm cliquer
proposed by Östergård in [11,12] mainly because its good
behavior in graphs of moderately size and its availability
on the Internet [13,14]. The cliquer algorithm uses a
branch-and-bound algorithm developed by Östergård
[15], which is based on an algorithm proposed by Carra-
ghan and Pardalos [16].

Setting the coordinates
Once we have obtained the base B associated with a
complete subgraph using the algorithm cliquer, we
need to set its coordinates. In order to generate an
approximated Euclidean distance matrix (EDM)
restricted to the points in the base, we define a matrix
D(t) = [dij(t)], where

dij(t) = (1 − tij)lij + tijuij (2)

for tij Î [0, 1] for each (i, j) Î E. With this choice, we
have lij ≤ dij ≤ uij, but D may not be an EDM with
appropriated embedding dimension (k = 3). This may
happen because the entries dij can violate the triangular
inequality dij ≤ dik + djk for some indexes i, j, k, or
because the rank of D is greater than 3. With this in
mind, instead of considering the solution given by sin-
gular value decomposition directly, we take the columns
(eigenvectors) of U associated with the 3 largest eigenva-
lues, getting the best 3-approximation rank of the solu-
tion to xxt = D(t) [17].

Refinement process
We should not expect great precision in x, because the
matrix D(t) is just an approximation. Then, we try to
refine it by minimizing the nonlinear function

min
x

φλ,τ (x) =
∑

(i,j)∈E:i,j∈B
φ
i,j
τ ,λ(x, l, u), (3)

where

φ
i,j
τ ,λ(x, l, u) = λ(lij − uij) + θ

ij
τ ,λ(x, l) + θ

ij
τ ,λ(x, u),

and

θ
ij
τ ,λ(x, c) =

√
λ2(c −

√
||xi − xj||2 + τ 2)

2
+ τ 2,

with l >0, τ >0. The parameter τ controls the smooth-
ness degree and l controls the intensity (weight) of the
penalty function �l,τ (see Figure 1).
The function �τ,l is infinitely differentiable with

respect to x, and therefore allows the application of clas-
sical optimization methods. The function �τ,l is a varia-
tion of the hyperbolic penalty technique used in [18,19].
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In order to minimize the function �τ,l, we used the local
minimization routine va35 encoded in FORTRAN and
available at Harwell Subroutine Library. The routine
va35 implements the method BFGS with limited mem-
ory [20] (For additional information on this routine, see
[21]).
Once we have refined the coordinates of the points in

the base B , we start to set the remaining (free) points.
We begin with the points that have at least four con-
straints with the points in the base. In order to set the
coordinate xj, instead of using just four constraints invol-
ving the index j (like in the original version of the buildup
algorithm), we use all constraints involving the index j and
the indexes in the base. Explicitly, to set the coordinate xj,
we use the approximated distance matrix D(t) for some t
Î [0, 1]|E|, solve the linear system

〈
xi, xj

〉
=
d2i,1 − d2i,j + d2j,1

2
, i ∈ B, (4)

and then we refine the solution by minimizing the
function �l ,τ(x) restricted to the index j and to the
indexes in the base (see eq. (3)). Each newly calculated
coordinate is included in the base. In the end, some
points may not be fixed because they have less than
four constraints involving the points in the base. In this
case, we just position these points solving an undeter-
mined system defined by constraints with points in the
base. Our presented ideas are compiled in the algorithm
lsbuild (see Additional file 1).

Methods
We have implemented our algorithm lsbuild in Matlab
and tested it with a set of model problems on an Intel

Core 2 Quad CPU Q9550 2.83 GHz, 4GB of RAM and
Linux OS-32 bits. In all experiments the parameters of
the function �l,τ of the algorithm lsbuild were set at
l = 1.0 and at τ = 0.01.
We compared our results with the algorithms dgsol

and buildup. The algorithm dgsol proposed by Moré
and Wu in [22] uses a continuation approach based on
the Gaussian transformation

〈
f
〉
λ
(x) =

1
πn/2λn

∫
Rn

f (y) exp
(

−||y − x||2
λ2

)
dy

of the nonsmooth function

f (x) =
∑
(i,j)∈E

pij(xi−xj),

where the potentials pij are given by

pij(x) = max

{
l2ij − ||x||2

l2ij
,
||x||2 − u2ij

u2ij
, 0

}2

.

The algorithm dgsol starts with an approximated
solution and, given a sequence of smoothing parameters
l0 > l1 > ... > lp = 0, it determines a minimizer xk+1 of
〈f〉l. The algorithm dgsol uses the previous minimizer xk
as the starting point for the search. In this manner a
sequence of minimizers x1, ..., xp+1 is generated, with the
xp+1 a minimizer of f and the candidate for the global
minimizer. In our experiments, we used the implemen-
tation of the algorithm dgsol encoded in language C
and downloaded from [23].
We also compared our results with the ones obtained

by the version of the algorithm buildup proposed by
Sit, Wu and Yuan in [8]. The algorithm buildup starts
defining a base set using four points whose distances
between all of them are known (a clique of four points).
Then, at each iteration, a new point xk with known dis-
tances to at least four points in the base is selected. In
order to avoid the accumulation of errors, instead of
just positioning the new point, in the modified version
of the algorithm buildup the entire substructure formed
by the point xk and its neighbors in the base is calcu-
lated by solving the nonlinear system

〈
xi, xj

〉
=
d2i,1 − d2i,j + d2j,1

2
,∀i, j ∈ B

with variables xi = (x1i , x
2
i , x

3
i ), xj = (x1j , x

2
j , x

3
j ) ∈ R

3

and B being the set formed by the index k and the
indexes of all neighbors of xk in the current base set.
The parameters dkj are the given distances between the
node xk and its neighbors xj in the base and, for the
nodes xj and xi already in the base, if the distance
between them is unknown, we consider dij = ||xi - xj||.

Figure 1 The hyperbolic smooth penalty function. The
parameter τ controls the smoothness and the parameter l is
related to the intensity of the penalty.
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Once the substructure is obtained, it is inserted in the
original structure by an appropriated rotation and trans-
lation and the point xk is included in the base. This pro-
cess is repeated until all nodes are included in the base.
We have implemented the buildup algorithm in Matlab.
Our decision to compare the lsbuild with the algo-

rithms dgsol and buildup is mainly motivated by theirs
similarities with our proposal. In fact, the algorithm
dgsol uses a smooth technique in order to avoid the
local minimizers and the algorithm buildup solves a
sequence of systems which produce partial solutions
and iteratively try to construct a candidate to global
solution. Our algorithm combines some variations of
these two ideas. We use a hyperbolic smooth technique
to insert differentiability in the problem and a divide-
and-conquer approach based in sucessive solutions of
overdetermined linear systems in order to construct a
candidate to global solution.
In our experiments, the distance data were derived

from the real structural data from the Protein Data
Bank (PDB) [24]. It needs to be pointed that each of the
algorithms considered has a level of randomness, the
algorithm dgsol takes random start point and the algo-
rithms lsbuild and buildup starts with an incomplete
random matrix D = [dij] where lij ≤ dij ≤ uij. So, in
order to do a fair comparison, we run each test 30
times.
We considered two set of instances. The first one was

proposed by Moré and Wu in order to validate the algo-
rithm dgsol [22]. This set is derived from the three-
dimensional structure of the fragments made up of the
first 100 an 200 atoms of the chain A of protein
PDB:1GPV[25,26]. For each fragment, we generated a
set of constraints considering only atoms in the same
residue or the neighboring residues. Formally,

E = {(i, j) : xi ∈ R(k), xj ∈ (R(k) ∪ R(k + 1)),∀k},
where R(k) represents the k-th residue.
In this set of instances, the bounds lij and uij were

given by the equations

lij = (1 − ε)d̂ij, uij = (1 + ε)d̂ij,

where d̂ij is the real distance between the nodes xi
and xj in the known structure x* of protein PDB:1GPV.
In this way, all distances between atoms in the same
residue or neighboring residues were considered. We
generated two instances for each fragment by taking ε
equals to 0.00 and 0.08.
In order to measure the precision of the solutions just

with respect to the constraints, without providing any
information about the original structure x*, we use the
function

LDME =

⎛
⎝ 1

|E|
∑
(i,j)∈E

e2ij

⎞
⎠

1/2

, (5)

where

eij = max{lij − ||xi − xj||, ||xi − xj|| − uij, 0}
is the error associated to the constraint lij ≤ ||xi - xj||

≤ uij: We also measured the deviation
of the solutions generated by each algorithm with

respect to the original solution x* in the PDB files, using
the function

RMSD =
1√
n
min
Q,h

||x∗ − Q(x − h)||F, (6)

with h ∈ R
n×3 and Q ∈ R

3×3 orthogonal.
In the second experiment, we use a more realistic set of

instances with larger proteins proposed by Biswas in [17].
Typically, just distances below 6Å (1Å = 10-8 cm) between
some pair of atoms can be measured by NMR techniques.
So, in order to produce more realistic data, we considered
only 70% of the distances lower than R = 6 Å. To introduce
noise in the model, we set the bounds using the equations

lij = d∗
ij max(0, 1 − |ε̄ij|), uij = d∗

ij(1 + |ε−
ij
|), (7)

where d∗
ij is the true distance between atom i and

atom j and ε̄ij, ε−
ij

∼ N (0, σ 2
ij ) (normal distribution).

With this model, we generate a sparse set of constraints
and introduce a noise in the distances that are not so
simple as the one used in the instances proposed by
Moré and Wu.

Results and discussion
In Table 1 we can see the results of the first experiment
defined from the protein PDB:1GPV and all distances in
the same or neighboring residues. The values show that
the algorithms buildup and lsbuild worked better
(lower LDME and RMSD and CPU time) than the algo-
rithm dgsol in all instances. The algorithms buildup
performed slightly better than the algorithm lsbuild
being the fastest algorithm. Despite its simplicity, this
set of instances worked as an indication of the correct-
ness of our implementation of the buildup algorithm.
Table 2 shows the results of the second experiment

with more realistic data. We can see that our approach
was more efficient than the algorithms buildup and
dgsol that were not able to find good solutions in these
harder instances. In this table, |V| is the number of
atoms in the instance, and CPU time is given in sec-
onds. We also point out that LDME was low and the
RMSD was lower than 3.5Å in all instances, which
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means that the algorithm is robust and able to find pro-
tein structures very similar to the original ones [1]. The
results in Table 3 shows that the buildup algorithm was
again the fastest. The CPU time of the algorithm lsbuild
was in the average around to 2.45 times the time con-
sumed by the algorithm buildup, this fact must be miti-
gated by the better quality of the solutions obtained be
the algorithm lsbuild.

Finally, the results of both set of instances indicate
that our algorithm lsbuild based on the combination of
the resolution of linear systems, derived from the
approximated EDM matrices, and the refinement pro-
cess based on hyperbolic smoothing penalty is a very
effective strategy to solve MDGP instances with sparse
and inaccurate data.

Conclusions
We presented a new algorithm to solve molecular dis-
tance geometry problems with inaccurate distance data.
These problems are related to molecular structure cal-
culations using data provided by NMR experiments
which, in fact, are not precise. Our algorithm combines
the divide-and-conquer framework and a variation of
the hyperbolic smoothing technique. The computational
results show that the proposed algorithm is an effective
strategy to handle uncertainty in the data.

Additional material

Additional file 1: Algorithm lsbuild.

Table 2 RMSD and LDME for the larger instance set.

〈LDME〉 〈RMSD〉

PDB |V| lsbuild buildup dgsol lsbuild buildup dgsol

1PTQ 402 2.61E-03 1.80E+00 5.41E-01 1.31E-02 9.49E+00 6.89E+00

1LFB 641 2.03E-04 1.84E+00 3.91E-01 4.19E-03 1.23E+01 5.48E+00

1AX8 1003 2.00E-04 1.83E+00 4.33E-01 1.62E-02 1.35E+01 7.95E+00

1F39 1534 3.03E-02 1.89E+00 4.74E-01 4.22E-01 1.79E+01 1.28E+01

1RGS 2015 1.08E-01 1.87E+00 4.73E-01 1.74E+00 1.92E+01 1.35E+01

1KDH 2846 1.39E-02 1.86E+00 5.19E-01 9.43E-02 2.11E+01 1.61E+01

1BPM 3671 2.20E-02 1.90E+00 5.14E-01 7.86E-02 2.29E+01 1.55E+01

1TOA 4292 6.90E-03 1.89E+00 6.75E-01 2.56E-01 2.52E+01 2.39E+01

1MQQ 5681 1.93E-02 1.91E+00 8.86E-01 1.89E-01 2.50E+01 2.50E+01

Results with instances considering just 70% of the distances below 6Å. The 〈LDME〉 and 〈RMSD〉 represent the mean LDME and mean RMSD respectively.

Table 1 RMSD, LDME and the CPU time in seconds for PDB:1GPV protein.

Fragment with 100 atoms

ε = 0.00 ε = 0.08

〈LDME〉 〈RMSD〉 〈TIME〉 〈LDME〉 〈RMSD〉 〈TIME〉

dgsol 8.29E-03 3.93E-01 3.61E+00 3.31E-03 8.25E-01 4.40E+00

buildup 3.50E-15 1.46E-14 1.08E-01 0.00E+00 3.13E-01 1.08E-01

lsbuild 6.47E-15 1.20E-14 1.51E-01 0.00E+00 7.77E-02 1.33E-01

Fragment with 200 atoms

ε = 0.00 ε = 0.08

〈LDME〉 〈RMSD〉 〈TIME〉 〈LDME〉 〈RMSD〉 〈TIME〉

dgsol 3.18E-02 2.58E+00 1.48E+01 4.00E-03 2.45E+00 1.73E+01

buildup 4.85E-15 2.45E-14 3.11E-01 0.00E+00 5.18E-01 3.11E-01

lsbuild 1.90E-14 5.21E-14 6.01E-01 0.00E+00 4.21E-01 5.25E-01

Results for the fragments made up with the first 100 and 200 atoms of protein PDB:1GPV. The 〈LDME〉 and 〈RMSD〉 represent the LDME and RMSD measures
respectively and 〈TIME〉 represents the mean time in seconds.

Table 3 TIME for the larger instance set.

〈TIME〉

PDB lsbuild buildup dgsol

1PTQ 9.99E-01 5.34E-01 1.03E+01

1LFB 1.86E+00 1.01E+00 2.55E+01

1AX8 2.98E+00 1.70E+00 4.36E+01

1F39 7.21E+00 3.57E+00 8.59E+01

1RGS 1.43E+01 4.70E+00 1.33E+02

1KDH 2.12E+01 7.28E+00 2.09E+02

1BPM 2.47E+01 8.04E+00 2.99E+02

1TOA 3.93E+01 1.14E+01 7.03E+02

1MQQ 3.93E+01 1.82E+01 7.63E+02

The mean CPU time in seconds with the instances considering just 70% of the
distances below 6Å.
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