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Abstract

Background: Simulated nucleotide or amino acid sequences are frequently used to assess the performance of
phylogenetic reconstruction methods. BEAST, a Bayesian statistical framework that focuses on reconstructing
time-calibrated molecular evolutionary processes, supports a wide array of evolutionary models, but lacked matching
machinery for simulation of character evolution along phylogenies.

Results: We present a flexible Monte Carlo simulation tool, called πBUSS, that employs the BEAGLE high
performance library for phylogenetic computations to rapidly generate large sequence alignments under complex
evolutionary models. πBUSS sports a user-friendly graphical user interface (GUI) that allows combining a rich array of
models across an arbitrary number of partitions. A command-line interface mirrors the options available through the
GUI and facilitates scripting in large-scale simulation studies. πBUSS may serve as an easy-to-use, standard sequence
simulation tool, but the available models and data types are particularly useful to assess the performance of complex
BEAST inferences. The connection with BEAST is further strengthened through the use of a common extensible
markup language (XML), allowing to specify also more advanced evolutionary models. To support simulation under
the latter, as well as to support simulation and analysis in a single run, we also add the πBUSS core simulation routine
to the list of BEAST XML parsers.

Conclusions: πBUSS offers a unique combination of flexibility and ease-of-use for sequence simulation under
realistic evolutionary scenarios. Through different interfaces, πBUSS supports simulation studies ranging from modest
endeavors for illustrative purposes to complex and large-scale assessments of evolutionary inference procedures.
Applications are not restricted to the BEAST framework, or even time-measured evolutionary histories, and πBUSS can
be connected to various other programs using standard input and output format.
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Background
Recent decades have seen extensive development in phy-
logenetic inference, resulting in a myriad of techniques,
each with specific properties concerning evolutionary
model complexity, inference procedures and performance
both in terms of speed of execution and estimation
accuracy. With the development of such phylogenetic
inference methods comes the need to synthesize evolu-
tionary data in order to compare estimator performance
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and to characterize strengths and weaknesses of different
approaches (e.g. [1,2]). Whereas the true underlying evo-
lutionary relationships between biological sequences are
generally unknown, Monte Carlo simulations allow gener-
ating test scenarios while controlling for the evolutionary
history as well as the tempo and mode of evolution.
This has been frequently used to compare the perfor-
mance of tree topology estimation (e.g. [3]), but it also
applies to evolutionary parameter estimation and ances-
tral reconstruction problems (e.g. [4]). In addition, Monte
Carlo sequence simulation has proven useful for assess-
ing model adequacy (e.g. [5]) and for testing competing
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evolutionary hypotheses (e.g. [6]). It is therefore not sur-
prising that several general sequence simulation programs
have been developed (e.g. Seq-Gen [7]), but also inference
packages that do not primarily focus on tree reconstruc-
tion, such as PAML [8] and HyPhy [9], maintain code to
simulate sequence data under the models they implement.
As a major application of phylogenetics, estimating

divergence times from molecular sequences requires
an assumption of roughly constant substitution rates
throughout evolutionary history [10]. Despite the restric-
tive nature of this molecular clock assumption, its applica-
tion in a phylogenetic context has profoundly influenced
modern views on the timing of many important events
in evolutionary history [11]. Following a long history of
applying molecular clock models on fixed tree topolo-
gies, the Bayesian Evolutionary Analysis by Sampling
Trees (BEAST) package [12] fully integrates these mod-
els, including more realistic relaxed clock models [13,14],
in a phylogenetic inference framework. Despite its pop-
ularity this framework has lacked a flexible and efficient
simulation tool. Here, we address this pitfall by intro-
ducing a parallel BEAST/BEAGLE utility for sequence
simulation (πBUSS) that integrates substitution models,
molecular clock models, tree-generative (coalescent or
birth-death) models and trait evolutionary models in a
modular fashion, allowing the user to simulate sequences
under different parameterizations for each module.

πBUSS readily incorporates the temporal dimension of
evolution through the possibility of specifying different
molecular clock model. Further, many models and data
types available for BEAST inference are matched by their
simulation counter-parts in πBUSS, including relatively
specific processes, such as for discrete phylogeography
with rate matrices that can be sparse or non-reversible
[15] that are generally beyond the scope of most sequence
simulation tools. The BEAST-πBUSS connection is fur-
ther reinforced by the fact that πBUSS can easily gener-
ate simulation specification in XML format for BEAST.
Finally, we implement the core simulation routine within
the BEAST code-base to ensure a shared XML syntax
between the two packages and to allow for joint simulation
and inference analysis using a single input file.

Implementation
Through different implementations, we support several
sequence simulation procedures that balance between
ease-of-use and accessibility, to model complexity. On
the one hand, the core simulation routine can be per-
formed following specifications in an XML input file that
is understood by BEAST (Figure 1A). This procedure
provides the most comprehensive access to the πBUSS
arsenal of models, but may require custom XML edit-
ing. On the other hand, πBUSS also represents a stand-
alone package that conveniently wraps the simulation

routines in a user-friendly graphical user interface (GUI),
allowing users to set up and run simulations by load-
ing input, selecting models from drop-down lists, setting
their parameter values, and generating output in differ-
ent formats (Figure 1B). To facilitate scripting, πBUSS
is further accessible through a command-line interface
(CLI), with options that mirror the GUI. The simula-
tion routines are implemented in Java and interface with
the Broad-platform Evolutionary Analysis General Likeli-
hood Evaluator (BEAGLE) high-performance library [16]
through its application programming interface (API) for
computationally intensive tasks.
The core of πBUSS consists of a recursive tree-traversal

that is independent of the BEAST inference machinery.
The algorithm simulates discrete state realizations by vis-
iting the tree nodes in pre-order fashion, i.e., parental
nodes are visited before child nodes. When a child node
is visited, πBUSS samples its state from the conditional
probabilities of changing to state j given state i at the
parental node. For a branch length t and clock rate r, the
finite-time transition probability matrix P (r × t) is cal-
culated through the eigen-decomposition of the infinites-
imal rate matrix Q along that branch. For a review of
methods to numerically approximate a matrix exponen-
tial, we refer to [17]. By sharing the set of XML parsers
with BEAST, we simplify the simultaneous development
of both packages and facilitate the ability to perform joint
simulation and inference analyses.

Program input
The core implementation of the software can be invoked
by loading an XML file with simulation settings in the
BEAST software. The simulation procedure requires a
user-specified tree topology or a set of taxa with their
heights (inversely proportional to their sampling time) for
which a tree topology can be simulated using a coales-
cent model. Setting all heights to 0 would be equivalent to
contemporaneously-sampled taxa. In πBUSS, such a tree
can be loaded in NEXUS or NEWICK format, or a taxa
list can be set-up in the Data panel for subsequent coa-
lescent simulation of the genealogy. Creating the latter is
further facilitated by the ability to load a tab-delimited file
with a set of taxa and their corresponding heights. The
input tree or taxon list can also be specified through the
command-line interface of πBUSS.

Program output
πBUSS generates sequence output in FASTA or NEXUS
format but it also supports XML output of the simula-
tion settings. The XML provides a notation for the models
used, it can also be used to store a record of the set-
tings. Similar to BEAuti for BEAST, πBUSS can generate
an xml template for editing more complex simulations,
or this can be amended with BEAST analysis settings
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Figure 1 Overview of the πBUSS simulation procedures and GUI screenshot. A. Schematic representation of the different ways to employ the
πBUSS simulation software. Based on an XML input file, simulations can be performed using the core implementation. BEAST can parse the
specified πBUSS instructions and generate sequence data as well as analyze the replicate data in a single run. Using both the GUI or CLI, πBUSS can
run simulations based on an input tree or a list of taxa and their heights. The software can also write the simulation settings to an XML file that can
be then read by BEAST. B. The screenshot example shows the set-up of a codon position partitioned simulation in the Partitions panel of the
graphical user interface. The Hasegawa, Kishino and Yano (HKY) model is being set as the substitution model for partition 1, with a κ (the
transition-transversion bias) parameter value of 4.0.

order to directly analyze the generated sequence data,
which avoids writing to an intermediate file. The tuto-
rial hosted on πBUSS webpage provides examples of these
possibilities.

Models of evolution
πBUSS is capable of generating trees from a list of taxa
using simple coalescent models, including a constant
population size or exponential growth model. The soft-
ware supports simulation of nucleotide, amino acid and
codon data along the simulated or user-specified phy-
logeny using standard substitution models. For nucleotide

data, the Hasegawa, Kishino and Yano model (HKY; [18]),
the Tamura Nei model (TN93; [19]) and the general
time-reversible model (GTR; [20]) can be selected from
a drop-down list, and more restrictive continuous-time
Markov chain (CTMC) models can be specified by tai-
loring parameters values. Coding sequences can be sim-
ulated following the Goldman and Yang model of codon
evolution (GY94; [21]), which is parameterized in terms
of a non-synonymous and synonymous substitution rate
ratio (dN/dS or ω) and a transition/transversion rate
ratio (κ) or following the Muse and Gaut model (MG94;
[22]). Several empirical amino acid substitution models
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are implemented, including the Dayhoff [23], JTT [24],
BLOSUM [25],WAG [26] and LG [27] model. Equilibrium
frequencies can be specified for all substitution models as
well as among-site rate heterogeneity through the widely-
used discrete-gamma distribution [28] and proportion of
invariant sites [29].
An important feature of πBUSS is the ability to set up

an arbitrary number of partitions for the sequence data
and associate independent substitution models to them.
Such settings may reflect codon position-specific evolu-
tionary patterns or approximate genome architecture with
separate substitution patterns for coding and non-coding
regions. Partitions may also be set to evolve along dif-
ferent phylogenies, which could be used, for example, to
investigate the impact of recombination or to assess the
performance of recombination detection programs in spe-
cific cases. Finally, partitions do not need to share the
exact same taxa (e.g. reflecting differential taxon sam-
pling), and in partitions where a particular taxon is not
represented the relevant sequence will be padded with
gaps.

πBUSS is equipped with the ability to simulate evolu-
tionary processes on trees calibrated in time units. Under
the strict clock assumption, this is achieved by spec-
ifying an evolutionary rate parameter that scales each
branch from time units into substitution units. πBUSS
also supports branch-specific scalers drawn indepen-
dently and identically from an underlying distribution (e.g.
log normal or inverse Gaussian distributions), modeling
an uncorrelated relaxed clock process [13]. Simulations do
not need to accommodate an explicit temporal dimension
and input trees with branch lengths in substitution units
will maintain these units with the default clock rate of 1
(substitution/per site/per time unit).
The data types and models described above are avail-

able through the πBUSS GUI or CLI, but additional data
types and more complex models can be specified directly
in an XML file. This allows, for example, simulating any
discrete trait, e.g. representing phylogeographic locations,
under reversible and nonreversible models [15,30], with
potentially sparse CTMC matrices [15], as well as sim-
ulating a combination of sequence data and such traits.
As an example of available model extensions is the abil-
ity to specify different CTMCmatrices over different time
intervals of the evolutionary history, allowing for example
to model changing selective constraints through differ-
ent codon model parameterizations or seasonal migration
processes for viral phylogeographic traits [31].

Results and discussion
We have developed a new simulation tool, called πBUSS,
that we consider to be a rejuvenation of Seq-Gen [7],
with several extensions to better integrate with the BEAST
inference framework. Compared to Seq-Gen and other

simulation software (Table 1), πBUSS covers a relatively
wide range of models while, similar to Mesquite, offer-
ing a cross-platform, user-friendly GUI. πBUSS is imple-
mented in the Java programming language, and therefore
requires a Java runtime environment, and depends on
the BEAGLE library. Although speed is unlikely to
be an impeding factor in most simulation efforts, the
core implementation using the BEAGLE library provides
substantial increases in speed for large-scale simula-
tions, in particular when invoking multi-core architec-
ture to produce highly partitioned synthetic sequence
data.

Program validation
We validate πBUSS in several ways. First, we compare
the expected site probabilities, as calculated using tree
pruning recursion [56], with the observed counts resulting
from πBUSS simulations. To this purpose, we calculate
the probabilities for all 43 possible nucleotide site pat-
terns observed at the tips of a particular 3-taxon topology
using an HKY model with a discrete gamma distribution
to model rate variation among sites. We then compare
these probabilities to long-run (n = 100, 000) site pat-
tern frequencies simulated under this model and observe
good correspondence in distribution (Pearson’s χ2 test,
p = 0.42).
We also perform simulations over larger trees and esti-

mate substitution parameters (e.g. κ in the HKY model)
using BEAST for a large number of replicates. Not only
do the posterior mean estimates agree very well with
the simulated values, but we also find close to nominal
coverage, and relatively small bias and variance (mean
squared error). These good performance measures have
also recently been demonstrated for more complex substi-
tution processes [31].

Example application
We illustrate the use of simulating sequence data along
time-calibrated phylogenies to explore the limitations
of estimating old divergence times for rapidly-evolving
viruses. Wertheim and Kosakovsky Pond [57] examine
the evolutionary history of Ebola virus from sequences
sampled over the span of three decades. Although main-
taining remarkable amino acid conservation, the authors
estimate nucleotide substitution rates on the order of
10−3 substitutions/per site/per year and a time to most
recent common ancestor (tMRCA) of about 1,000 years
ago. These estimates suggest a strong action of purifying
selection to preserve amino acid residues over longer evo-
lutionary time scales, which may not be accommodated
by standard nucleotide substitution models. The authors
demonstrate that accounting for variable selective pres-
sure using codon models can result in substantially older
origins in such cases.
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Table 1 Comparison between a selection of sequence simulation packages

Evolutionary modelling Implementation

Program Codons1 Amino acids2 Indels Partitions Molecular clocks Ancestral sequences Coalescent models3 GUI Multi-core Cross-platform4

πBUSS X X X X X X X X X

Seq-Gen [7] X X X

indel-Seq-Gen2 [32] X X X X X

PhyloSim [33] X X X X X X

Recodon [34] X X X X X

NetRecodon [35] X X X X X

Indelible [36] X X X X X

DAWG [37] X X X X

Mesquite [38] X X X X

Rose [39] X X

Evolver [8] X X X X X

ProteinEvolver [40] X X X X X

ALF [41] X X X X X X X X

GenomePop [42] X X X5 X

SIMCOAL [43] X X X

SIMPROT [44] X X X X X

1πBUSS: GY94, MG94; PhyloSim: GY94 x M0 - M4; Recodon: GY94 x M0, M1, M7, M8; NetRecodon: GY94 x M0, M1, M7, M8; Indelible: GY94 x M0 - M10; Evolver: GY94 x M0, M1, M2, M3, M7, M8; ALF: GY94 x M0, M1, M7 and M8;
GenomePop: MG94.
2πBUSS: BLOSUM [25], CPREV [45], Dayhoff [23], FLU [46], JTT [24], LG [27], MTREV [47], WAG [26]; Seq-Gen: JTT, WAG,
PAM [48], BLOSUM, MTREV; indel-Seq-Gen2: PAM, JTT, MTREV, CPREV; PhyloSim: CPREV, JTT, LG , MTART [49], MTMAM [50], MTREV24 [51], MTZOA [52], PAM, WAG; Indelible: Dayhoff, JTT, WAG, VT [53], LG, BLOSUM, MTMAM,
MTREV, MTART, CPREV, RTREV [54], HIVb [55], HIVw [55]; Evolver: Dayhoff, JTT, WAG, MTMAM, MTREV; ProteinEvolver: BLOSUM, CPREV, Dayhoff, HIVb, HIVw, JTT, Jones [24], LG, MTART, MTMAM, MTREV24, RTREV, VT, WAG;
ALF: PAM,GTT,LG,WAG; SIMPROT: PAM, JTT, PMB.
3πBUSS: demography; Recodon: recombination, migration, demography; NetRecodon: recombination, migration, demography; Mesquite: speciation; ProteinEvolver: recombination, migration, demography; SIMCOAL:
demography and migration.
4PhyloSim: R package; Indelible: Executables for Windows and MacOS; ALF: Web interface; GenomePop: Executables for Windows and Linux; SIMCOAL: Executables for Windows; SIMPROT: GUI, Web interface; SIMPROT:
Executables for Windows and Linux.
5Forward simulation including recombination, demography and migration.
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Here, we explore the effect of temporally varying
selection pressure throughout evolutionary history on
estimates of the tMRCA using nucleotide substitution
models. In particular, we model a process that is char-
acterized by increasingly stronger purifying selection as
we go further back in to time. To this purpose, we set
up an ‘epoch model’ that specifies different GY94 codon
substitution processes along the evolutionary history [31],
and parameterize them according to a log-linear relation-
ship between time and ω. Specifically, we let the process
transition from ω = 1.0, 0.2, 0.1, 0.02, 0.01, 0.002, and
0.001 at time = 10, 50, 100, 500, 1000 and 5000 years in
the past, respectively. We simulate a constant population
size genealogy of 50 taxa, sampled evenly during a time
interval of 25 years, and simulate sequences according to
the time-heterogeneous codon substitution process with a
constant clock rate of 3×10−3 codon substitutions/codon
site/year.We simulate 100 replicates over genealogies with
varying tMRCAs, by generating topologies under different
population sizes parameterized by the product of effec-
tive population size (Ne) and generation time scaled in
years (τ ):

Ne × τ = 1, 5, 10, 50, 100, 500, 1000

We note that under this model, trees with tMRCAs of
about 10,000 years still result in sequences with a notice-
able degree of homology (resulting in a mean amino acid
distance of about 0.5, which is in the same range of
the mean amino acid distance for sequences represen-
tative of the primate immunodeficiency virus diversity).

Using a constant ω of 0.5 on the other hand results
in fairly randomized sequences. We subsequently ana-
lyze the replicate data using a codon position partitioned
nucleotide substitution model in BEAST and plot the cor-
respondence between simulated and estimated tMRCAs
in Figure 2.
Our simulation exercise shows that a linear relationship

between simulated and estimated tMRCAs only holds for
100 to 200 years in the past, and estimates quickly level off
after about 1000 years in the past. This can be explained
by the unaccounted decline in amino acid substitutions
and saturation of the synonymous substitutions as we
go further back in time. Although we are not claiming
that evolution occurs quantitatively or even qualitatively
according to the particular process we simulate under, and
we ignore other confounding factors (such as potential
selective constraints on non-neutral synonymous sites),
this simulation does conceptualize some of the limita-
tions to estimating ancient origins for rapidly evolving
viruses that experience strong purifying selection over
longer evolutionary time scales.

Conclusion
πBUSS provides simulation procedures under many
evolutionary models or combinations of models avail-
able in the BEAST framework. This feature facilitates
the evaluation of estimator performance during the
development of novel inference techniques and the gen-
eration of predictive distributions under a wide range
of evolutionary scenarios that remain critical for testing
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competing evolutionary hypotheses. Combinations of dif-
ferent evolutionary models can be accessed through a
GUI or CLI, and further extensions can be specified in
XML format with a syntax familiar to the BEAST user
community. Analogous to the continuing effort to sup-
port model set-up for BEAST in BEAUti, future releases
of πBUSS aim to provide simulation counterparts to the
BEAST inference tools, both in terms of data types and
models, while also maintaining general purposes simula-
tion capabilities. Interesting targets include discrete traits,
which can already be simulated through XML specifica-
tion, continuously-valued phenotype data [58] and indel
models. Finally, πBUSS provides opportunities to pursue
further computational efficiency through parallelization
on advancing computing technology. We therefore hope
that πBUSS will further stimulate the development of
sequence and trait evolutionary models and contribute
to advancement of our knowledge about evolutionary
processes.

Availability and requirements
Project name: πBUSS;
Project home page: www.rega.kuleuven.be/cev/ecv/
software/pibuss;
Operating system(s): Platform independent;
Programming language: Java;
Other requirements: Java 1.5 or higher, BEAGLE library;
License: GNU Lesser GPL;
Any restrictions to use by non-academics: None.
Source code of the parallel BEAST/BEAGLE utility for

sequence simulation is freely available as part of the
BEAST Google Code repository: www.code.google.com/
p/beast-mcmc/.
The Broad-platform Evolutionary Analysis General

Likelihood Evaluator (BEAGLE) library has it’s both
source code and binary installers available from www.
code.google.com/p/beagle-lib.
Scripts and input files required for repeating the simu-

lation study presented in Example application are hosted
at www.github.com/phylogeography/DeepRoot.
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