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Abstract

Background: Different methods have been proposed for analyzing differentially expressed (DE) genes in microarray
data. Methods based on statistical tests that incorporate expression level variability are used more commonly than
those based on fold change (FC). However, FC based results are more reproducible and biologically relevant.

Results: We propose a new method based on fold change rank ordering statistics (FCROS). We exploit the variation
in calculated FC levels using combinatorial pairs of biological conditions in the datasets. A statistic is associated with
the ranks of the FC values for each gene, and the resulting probability is used to identify the DE genes within an error
level. The FCROS method is deterministic, requires a low computational runtime and also solves the problem of
multiple tests which usually arises with microarray datasets.

Conclusion: We compared the performance of FCROS with those of other methods using synthetic and real
microarray datasets. We found that FCROS is well suited for DE gene identification from noisy datasets when
compared with existing FC based methods.
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Background
To select the differentially expressed (DE) genes in a
microarray dataset with two biological conditions, the
Fold Change (FC) which is calculated as a ratio of aver-
ages from control and test sample values was initially
used [1,2]. Levels of change or cutoffs, (e.g. 0.5 for down-
and 2 for up-regulated) are used and genes under/above
thresholds are selected. Then, other statistical methods
were introduced. Many of these methods use three steps.
First, a statistical test (e.g. Student’s t-test or similar)
is performed to obtain a p-value for each gene in the
study. Second, these p-values are compared to a thresh-
old which is chosen to have an acceptable False Discov-
ery Rate (FDR), and a list of genes is obtained. Third,
a selection is done from the above list using FC level
thresholds for down- and up-regulated genes [3,4]. New
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statistical methods more adapted to microarray data were
proposed [5-9]. The significance analysis of microarrays
(SAM) method [6] provides an improvement to the ordi-
nary Student t-test, as it imposes limits on the variability
of genes, to exclude genes that do not change and which
are associated with very low p-values. The performances
of several methods were compared in [10-13] using two
classes microarray datasets.
It has been shown that the FC based selection of genes

leads to more reproducible results irrespective of the
technology that is used [14-16]. Kadota et al. [12] pro-
posed a FC based method, weighted average difference
(WAD), which promotes highly expressed genes. WAD
uses a weight factor for the average difference (AD) for
each gene. The AD is obtained using log signals while
the FC is computed from non-log signals. Comparative
results in [12,13] show that the WAD method is power-
ful for detecting DE genes in microarray data. However,
like the simple FC based method,WAD does not associate
an error to the list of selected genes. Hence, Farztdinov
and McDyer [17] proposed a distributional fold change
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(DFC) test using the AD. A score is computed for each
gene which is used for the ranking and selection of genes.
The exact statistic of the DFC score is unknown even if
it allows detection of weakly expressed genes that are lost
with the WAD method. To take into account the vari-
ability in gene expression levels, many statistical methods
were proposed. Some of these methods include the FC
information to avoid the three step selection procedure
mentioned above. McCarthy et al. [18] directly include a
threshold for the gap between the averages in the Student
t-test: t-test relative to a threshold (TREAT). The TREAT
method is based on the linear model in [9]. In [19], the
FC is combined with the hypothesis testing for assessing
prediction error in the selection of the DE genes. More
recently, Xiao et al. [20] combined the FC with a two sam-
ples statistical test p-value to obtain a score they called
π-value. In all methods that can calculate a probability
for each gene independently of the others, the problem of
multiple tests arises. To avoid this problem, Qi et al. [21]
used a mixture model. This model has four components
corresponding to the expression status (yes or no) for the
two biological conditions for each gene in the dataset.
After model parameters estimation via an Expectation-
Maximization type algorithm, the probabilities associated
with genes are sorted, and a threshold is used to deter-
mine the list of genes given an error level. The method we
propose here also avoids the problem of multiple tests and
has a lower computational load.
Breitling et al. [22] devised a statistical method based

only on the FC information. In their method, the FCs
obtained in multiple pairs of control/test samples are
ranked in decreasing order, and the product of the ranks
(RP) for each gene is calculated. Combined probabilities
p′ are calculated by multiplying the RP values by a scalar
factor which is determined using a permutation analysis
to obtain an approximation of the expected RP values, see
[22] for more details. A percentage of false-positive (PFP)
is associated to each gene, and an acceptable PFP value is
chosen to define the list of the DE genes. To select down-
regulated genes the sorting is done in increasing order
and all subsequent steps are modified accordingly. The
quality of the selection of the DE genes using the rank
products method will depend mainly on the quality of the
approximation of the expectation of the RP values using
a permutation analysis. More recently, an exact statistic
was proposed for the RP method [23]. However, for data
with a large number of samples, the computational load
is very heavy and this method is thus not recommended.
Here, we propose another method based only on FC
ranks. This method is very fast in comparison to the RP
method, even for large numbers of samples in the dataset.
In our method it is not necessary to search for up- and
down-regulated genes in two separate steps. The statis-
tic we obtain for each gene gives direct information on

its status: down-regulated, up-regulated or not changed.
This method also solves the problem of multiple tests
which is usually encountered for microarray datasets. We
exploit variations in the FC using several pairs of con-
trol/test samples. A statistics is associated to each gene,
which results from the variation of the rank and the level
of its FC.

Methods
Preliminaries
We consider a two conditions microarray experiment
where n probes (genes) are used with m1 control and m2
test samples. The number n of probes is generally greater
than 10, 000 except for few species like yeast. Values for
m1 andm2 are however small, most often lower than 100.
We note xi = (xci , xti) = (xci1 x

c
i2 . . . xcim1

xti1 x
t
i2 . . . xtim2

)
the values for the gene i (i = 1, 2, . . . , n) for the con-
trol samples (xcij, j = 1, 2, . . . ,m1) and the test samples
(xtij, j = 1, 2, . . . ,m2), respectively. For a single color
microarray, values (xcij, xtij) are log2 levels, while they are
log2 ratios for a two-color microarray. Here are exam-
ples of log2 transformed data for two genes (MACF1
and TREM2) taken from an experiment using Agilent
microarrays (SurePrint, design 028004_D_F_20101102),
with one color hybridization. Data for MACF1 are: xc. =
(11.1435, 11.2860, 11.2249, 11.1258, 11.0325, 11.1108,
11.3377, 11.1821,11.0675, 11.2381), xt. =(11.0375, 11.0792,
10.9673, 11.0367, 11.1054, 10.9261, 11.0433, 10.9484,
10.9412, 10.8385); data for TREM2 are: xc. = (6.2856,
6.4891, 5.7799, 6.1081, 6.3129, 6.3208, 6.4826, 6.2005,
5.8922, 6.2148), xt. = (11.6792, 8.1128, 6.6253, 6.8334,
7.6417, 7.5133, 5.9633, 7.4631, 6.5666, 7.6020). There are
m1 = 10 control and m2 = 10 test samples. The FC and
the Student t-test p-value for MACF1 and TREM2 are
(0.8806, 0.000248) and (6.2570, 0.01259), respectively.
These results lead to the following two observations: a) a
small Student t-test p-value is not necessary associated to
a high FC, b) a high Student t-test p-value can be asso-
ciated to a high FC. Indeed, the Student t-test statistic is
calculated as t = x̄t−x̄c

sp , where x̄t and x̄c are average levels
of the control and test samples respectively, s2p is the com-
bined variance from those of the control and test samples:
s2p = (m1−1)s21+(m2−1)s22

m1+m2−2 , (s21 and s22 are variances of xt and
xc). For the same average difference (x̄t − x̄c), a small s2p
can lead to high t (small p-value), on the other hand, a
large x2p can lead to a small t (high p-value). Hence, a small
(high) average difference can have a small (high) Student
t-test p-value. The variances of data for genes MACF1
and TREM2 given above are 0.008 and 1.26, leading to
t-statitics equal to 4.549 and 2.711 respectively. These
observations are highlighted by Xiao et al. [20] and corre-
spond to the SFSV (small fold change, small variance) and
the LFLV (large fold change, large variance), respectively.
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For the proposed method, the probability of the statistic
obtained is close to zero (one) for down-(up)regulated
genes. Using the method described below, the probabili-
ties associated to the statistics obtained for MACF1 and
TREM2 are 0.12105 and 0.9964, respectively. These val-
ues mean that MACF1 does not change and that TREM2
is up-regulated.

Description of the method
Being given expression values for n genes in m1 con-
trol and m2 test samples, we perform k ≤ m1m2
pairwise comparisons and compute FCs for each gene
(test/control). In each comparison, the n FCs obtained are
sorted in increasing order and their corresponding ranks
are associated to genes. Hence, for gene i, we get a vector
ri = (ri1 ri2 . . . rij . . . , rik) where rij corresponds to the
rank of the FC for gene i in the j comparison ( j = 1, . . . , k).
The ranks are integers that belong to the set {1, 2, . . . , n}.
To deal with ties, the rank values are adjusted in such a
way that their sum reaches the same total as that reached if
there is no tie. By construction, knowledge of one compo-
nent of the vector ri does not allow to predict the another
ones. This leads to an independence of the ranks asso-
ciated to pairwise comparisons. Hence, the components
of the vector ri can be considered as samples of the true
unknown rank associated to gene i. Ideally, the same rank
should be assigned to each gene in the k comparisons. The
probability of this event is 1

nk+1 and is unlikely to happen.
Hence, the averages of ranks (a.o.r) r̄i, i = 1, 2, . . . , n, will
vary between a minimum a = mini{r̄i} and a maximum
b = maxi{r̄i}. r̄i is an average of components in ri. We
can order all the a.o.r r̄i from the minimum to the maxi-
mum and write: r̄ =[ a, (a + δ1), (a + δ1 + δ2), . . . , (a +
δ1 + . . . + δn−2), b] where scalars δi (i = 1, . . . , n − 1)
are the differences between consecutive ordered a.o.r, and
r̄ is a vector with all r̄i. Without loss of generality, let us
assume that the differences δi have the same value which
is approximated by their mean: δ = b−a

n−1 . Hence, the
ordered a.o.r r̄i, i = 1, 2, . . . , n, can then be writen as:
r̄ =[ a, (a + δ), (a + 2δ), (a + 3δ), . . . , (a + (n − 1)δ)].
Our method is based on the behavior of the ordered a.o.r
r̄ and we have the following theorem.

Theorem 1. When the number k of the pairwise com-
parisons grows, the ordered averages of ranks (a.o.r) r̄ have
a normal distribution. The mean of this distribution is a+b

2
and its variance is n2−1

12 δ2, where a and b are the minimum
and the maximum of the observed a.o.r r̄, respectively. δ is
an average difference between consecutive ordered a.o.r. r̄.

Proof. We note r̄i = 1
k

∑k
j=1 rij the average of the com-

ponents in ri. Let us note the expectation and the variance
of the ranks in vector ri by E{ri} = Ri and Var{ri} = σ 2

Ri .

Using the central limit theorem ([24], page 259) it follows
that the quantity

√
k

σRi
(r̄i − Ri) converges to a normal dis-

tributed variable having a mean of zero and a variance of
one when k is high. Hence, we obtain n normal distributed
variables Ri.
From the selection theorem ([24], page 267), the

sequence of the n normal variables has a normal distri-
bution. Expectation and variance of variable Ri are given
by

E{Ri} = 1
n

n∑
i=1

Ri (1)

Var{Ri} = E{R2
i } − (E{Ri})2 (2)

By replacing each normal variable Ri by the average of
samples from which it is derived and by using

∑n
i=1 i =

n(n+1)
2 , we have

E{Ri} = 1
n

(a+(a + δ) + (a + 2δ) + . . . + (a + (n − 1)δ))

(3)

= 1
n

(na + (1 + 2 + . . . + (n − 1))δ) (4)

= 1
n

(
na + n(n − 1)

2
δ

)
= a + (n − 1)

2
δ = a + b

2
(5)

By using
∑n

i=1 i2 = n(n+1)(2n+1)
6 , we also have

E{R2
i } = 1

n
(a2 + (a + δ)2 + (a + 2δ)2

+ . . . + (a + (n − 1)δ)2) (6)

= 1
n

(na2+2(1+2+. . .+(n−1))aδ+(12+22

+ . . . + (n − 1)2)δ2) (7)

= 1
n

(
na2 + n(n − 1)aδ + n(n − 1)(2n − 1)

6
δ2

)

(8)

= a2 + (n − 1)aδ + (n − 1)(2n − 1)
6

δ2 (9)

Using equations 9 and 5, relation 2 leads to

Var{Ri} = a2 + (n − 1)aδ + (n − 1)(2n − 1)
6

δ2

−
(
a + (n − 1)

2
δ

)2
(10)

= (n − 1)
(
2n − 1

6
− n − 1

4

)
δ2 = n2 − 1

12
δ2

(11)
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Theorem 1 is the basis of our method for selecting the
DE genes. The presence of outlier sample(s) will impact
the a.o.r. r̄i value associated to gene i. Thus, we use a
trimmed mean by removing a percentage of low and large
ranks in the calculation of r̄i. This percentage is a tuning
parameter of the FCROS method which is summarized as
follows (see also Figure 1).

FCROS algorithm
1. Given microarray data havingm1 control andm2 test

samples, perform k ≤ m1m2 pairwise comparisons
and compute FCs for genes (test/control). These FCs
are sorted in increasing order and their
corresponding ranks are associated to genes.

2. Compute a robust average of rank r̄i for each gene
(i = 1, 2, . . . , n) using its k values. This can be done
using a trimmed mean. Sort values of r̄ by increasing
order to get r̄s where r̄s1 ≤ r̄s2 ≤ . . . ≤ r̄sn.

3. Compute sample mean R̄ = 1
n

∑n
i=1 r̄i and sample

variance σ̂ 2
R = 1

n−1
∑n

i=1(r̄i − R̄)2. The minimum
average rank is a = r̄s1, and the maximum average
rank is b = r̄sn. Compute differences between
consecutive terms of r̄si and then derive an estimate
for parameter δ as the mean of the obtained
differences: δ̂ = 1

n−1
∑n−1

i=1 (r̄si+1 − r̄si ).
4. Use R̄ and σ̂ 2

R as parameters of a normal distribution
and associate probabilities to genes through their r̄i
values. Since a p-value refers to the probability
associated with a hypothesis testing statistic, we call
probabilities associated to fold change ranks ordering
statistics f-values. A f-value close to 0.5 corresponds
to an equally expressed (EE) gene, while down- and
up-regulated genes have f-values close to 0 and 1,
respectively.

5. Set error levels, α1 and α2, for down- and
up-regulated genes to select the DE genes.

We use standardized ranks, i.e. each component in ri is
divided by n. Hence, the mean and standard deviation in
step 3 of the algorihm above should be divided by n. In the
FCROS algorithm, necessary parameters are computed
from the dataset except the trimmed mean percentage
parameter noted trim. Theorem 1 gives theoretical values

for many parameters, more precisely δ = b−a
n−1 , R̄ = b+a

2n
and σ 2

R = ( 1
12 − 1

12n2 )δ
2. For the ideal situation (a = δ = 1,

b = n) theoretical mean and variance are 1
2 + 1

2n ≈ 1
2 and

1
12 − 1

12n2 ≈ 1
12 , respectively. Let us examine the role of

parameters k, δ and trim.

Parameter k The size of the integer k allows to fulfill the
conditions to apply the central limit theorem, higher val-
ues for k being optimal. The maximum value m1m2 for k
is determined by the number of control and test samples
in the dataset.

Parameter δ Parameter δ takes its value in the interval
[0, 1]. The ideal value δ = 1 is unlikely to be obtained. A
small value of the parameter δ leads to a small variance σ̂ 2

Ri .
This will happen when the difference between upper and
lower bounds of the ordered a.o.r r̄i becomes smaller, i.e.,
if the observed changes in the ranks associated with genes
are large, so that the a.o.r will tend to move away from the
ideal bounds 1 and n. We can consider the parameter δ as
a fraction of the dataset size range: δ = b−a

n−1 = n
n−1 (β −α)

where β = b/n and α = a/n. From this point of view, a
value of δ equal to 0.98 can correspond to (b = 0.99n, a =
0.01n) and is better than a value for δ equal to 0.66 which
can correspond to the bounds (b = 5

6n, a = 1
6n) which are

more distant from n and 1. We provide numerical values
for δ in Additional file 1: Figures S3 and S5 using synthetic
and real microarray datasets.

Parameter trim To have a robust estimation of the o.a.r r̄i
we use a fraction of ranks associated to gene i. Parameter
trim allows to delete some ranks from each end (small and
high ranks) before computing the mean. Thus, a value for
trim equal to 0.1 means that 80% of the ranks for gene i
are used to calculate r̄i.

Results and discussion
To evaluate the performance of the FCROS method, we
used synthetic and real microarray datasets.We compared
the results obtained with our method to those obtained
using six other methods: the simple fold change (FC),
the weighted average difference (WAD), the rank product
(RP), the Student t-test (Ttest), the significant analysis

Figure 1 Steps of the FCROSmethod. Scheme depicting the steps of the FCROS method.
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of microarray (SAM) and the t-test relative to a thresh-
old (TREAT) methods. All calculations were performed
on the same computer (Personnal Computer equiped
with i7-2640M processor, 8GB of RAM, under Microsoft
Windows Professional 7) and R version 3.0.1. We imple-
mented a new R package, fcros, which is available from the
comprehensive R archive network (http://cran.r-project.
org/web/packages/fcros/) [25]. For all results presented,
the trim parameter was set to 0.3. We also used three
other R packages, samr [26], RankProd [27] and limma
[9] with their default settings, but the parameter huge in
the RankProd package was set to TRUE. We used the
ROC (receiver operating characteristics) R package [28]
to obtain an area under a ROC curve (AUC) for meth-
ods when true DE genes are available. For real microarray
datasets, no prefiltering was performed before searching
for the DE genes except for one dataset.

Synthetic datasets
We used the microarray data simulation model (MAD-
SIM) described in [29] to generate synthetic data with
known characteristics; in particular, the indexes of the DE
genes are known. A R package implementing MADSIM is
available from the comprehensive R archive network [30].

Synthetic datasets 1 To evaluate the behavior of the
FCROS method in the presence of noise, we used
three different values for the parameter σn of MADSIM.
100 simulations corresponding to different initializations
(rseed = 10, 20, 30, . . . , 1000.) were used. All other param-
eters of MADSIM were set to their default settings. More
precisely, m1 = m2 = 7, n = 10, 000 and the propor-
tion of DE genes was set to 0.02. These settings lead to
an expected number of 200 DE genes. Additional file 1:
Figure S1 shows the M-A plot [31] for 3 datasets which
correspond to 3 setting values for parameter σn of MAD-
SIM.
For each dataset, i.e. corresponding to a given value for

parameters rseed and σn, we used the FCROS and the six
other methods to determine the DE genes, the number of
which was set to that of true DE genes. The genes selected
by each method were split into two sets: true and false DE
genes. The results are plotted in Figure 2, which shows
that the FCROS, FC, RP, SAM and TREAT methods per-
formed well, and that the Ttest and WAD methods had a
lower performance. Of note, in these tests, the runtime of
the FCROS method was more than hundred times faster
than that of the RP method.

Synthetic dataset 2 We used MADSIM to generate a
dataset with m1 = m2 = 15 and default settings for
all other parameters. This dataset has 198 true DE genes.
Additional file 1: Figure S2 shows theM-A plot [31] of this
synthetic dataset. Synthetic dataset2 was used in different

scenarios where we specified different values (m1xm2) for
the control and test samples, and performed the follow-
ing steps: a) random selection of m1 control and m2 test
samples from their respective sets, b) running the FCROS
and the six other methods, c) selection of the top 198 DE
genes for each method, and assignment of a value of 1 to
true DE genes and of 0 to all other genes. These 3 steps are
repeated 100 times and the total occurences of 1 for each
method andm1xm2 combination is calculated as its score,
which is thus comprised between 0 and 100.
Results obtained for the seven methods are shown in

Figure 3. The FCROS, FC, RP and TREAT methods had
similar power of detection, with the TREAT and RP
methods exhibited a slightly better performance for the
case 3x3. The Student t-test and the WAD methods gave
worse results than the other methods. In addition, we per-
formed another run using the complete dataset (m1 = 15,
m2 = 15). Table 1 shows the results obtained as well as the
AUC (area under a ROC curve) values for the seven meth-
ods. The TREAT, FC and RPmethods had the lowest error
while the Ttest and WADmethods had the highest one.
We recorded values for parameter δ for runs of

the FCROS method. Results obtained are plotted in
Additional file 1: Figure S3. The values for δ are close to 1
if control and test samples are not randomized, see panel
A of Additional file 1: Figure S3. These values decrease
towards 0.7 for random and an increasing number of con-
trol and test samples, see panel B of Additional file 1:
Figure S3.

Microarray data
We used seven microarray datasets to evaluate the per-
formance of the FCROS method. All data were gener-
ated with the Affymetrix technology. The first dataset
(“Platinum Spike”) is from [32] and consists of 18 spike-in
samples (9 controls versus 9 tests). This dataset is available
from the Gene Expression Omnibus website under the
accession number GSE21344. The next six post-processed
datasets are available from [33]. For the second dataset,
58 diffuse large B-cell lymphoma (DLBCL) patients and
19 follicular lymphoma patients were used [34]. The third
dataset (Prostate) consists of 102 samples using 50 non-
tumor and 52 tumor prostate patients [35]. The fourth
dataset (Colon) consists of 22 control and 40 colon can-
cer samples [36]. For the fith dataset (Leukemia), 47
acute lymphoblastic leukemia and 25 acute myeloblas-
tic leukemia patients were used [5]. The sixth dataset
(Myeloma) was obtained using 36 patients without and
137 patients with bone lytic lesions [37]. For the sev-
enth dataset (ALL-1), 128 different individuals (95 B-cell
leukemia and 33 T-cell leukemia) were used [38].

“Platinum Spike” dataset We downloaded the Affy-
metrix CEL format files from the GEO website

http://cran.r-project.org/web/packages/fcros/
http://cran.r-project.org/web/packages/fcros/
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Figure 2 Comparison of the performance of methods with synthetic data associated with varying levels of noise. Boxplots of the number of
the true and false DE genes using the FCROS (fcros), FC (fc), WAD (wad), RP (rp), Student t-test (ttest), SAM (sam) and TREAT (treat) methods. The
noise level parameter σn was set to 0.2, 0.4 and 0.6. 100 simulations were used for these results.
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Figure 3 Comparison of the performance of methods with synthetic data and varying sizes of sample groups. Number of the true DE genes
using the FCROS, FC, WAD, RP, Ttest, SAM and TREAT methods.
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Table 1 Comparative results for the synthetic dataset 2

Method Thresholds Selection False Error AUC

FCROS 0.002348226, 0.998 198 2 1.0% 0.9999928

FC 1.5922 198 1 0.5% 0.9999933

WAD 1.2072 198 17 8.5% 0.9981039

RP 0.00009 198 1 0.5% 0.9999985

Ttest 0.00059892 198 6 3% 0.9999356

SAM 0.0007 198 3 1.5% 0.9999691

TREAT 0.00078531 198 1 0.5% 0.9999990

Synthetic dataset 2: Selection, errrors and AUC for the seven methods. Error is
calculated as the number of false genes detected divided by 198, the number of
true DE genes in the dataset.

(GSE21344) and used the RMA (robust multi-array
average) method to obtain signals for probes [39]. We
downloaded the designated FC associated to probes
from: www.biomedcentral.com/content/supplementary/
1471-2105-11-285-s5.txt (accessed on 23 september
2013). Using this file, we retained 18952 probes, among
which 1940 are known as DE. Each of these probes has
an observed FC obtained using RMA normalized data
and a designated FC read from the file we downloaded.
Additional file 1: Figure S4 shows the M-A plot [31] of the
“Platinum Spike” dataset.
We ran the seven methods and selected the top 1940

probes which were then crossed with the set of the
designated DE probes. The results are summarized in

Table 2. In this Table, the “Status” indicates whether the
gene is equally expressed (EE) or differentially expressed
(DE). The “A vs B” is the designated fold change and
“Number” is the number of probes for a status. The
AUC values and the percentages of false detection for the
seven methods are also given. The WAD, Ttest, SAM and
TREAT methods were more efficient for A vs B = 0.83
than the other methods (FCROS, FC and RP). For all other
A vs B cases, the seven methods have a similar detection
efficiency. The results obtained with the FCROS, RP, SAM
and TREAT methods are represented in a Venn diagram
in Figure 4A. This figure shows that the large majority of
DE genes were similarly detected by all 4 methods. The t-
test based methods (SAM and TREAT) were slightly more
sensitive than the FC-based methods as they detected 39
DE genes (mostly with low FC values, Figure 4C) that
neither the FCROS or RP methods detected.
We further compared the performances of the 4 FC-

based methods, Figure 4B. This comparison revealed that
the WAD method outperformed the other methods, as
it specifically detected 71 DE genes (Figure 4C). How-
ever, it should be noted that the FC, FCROS and RP
methods collectively identified 68 DE genes (mostly with
low expression values, Figure 4D) that were not detected
by the WAD method.

Results for six sets of microarray data We used the
DLBCL, Prostate, Colon, Leukemia, Myeloma and ALL-1

Table 2 Comparative results for the Platinum spike dataset

Status A vs B Number FCROS FC WAD RP Ttest SAM TREAT

EE 0 13337 216 220 19 221 142 203 176

DE 0.25 192 161 161 158 161 162 161 161

DE 0.28 174 162 163 154 163 157 163 163

DE 0.4 163 132 134 127 133 131 133 133

DE 0.66 189 151 155 147 154 89 149 139

DE 0.83 166 46 43 111 40 118 60 83

EE 1 3426 52 49 232 50 158 56 77

DE 1.5 167 134 134 131 135 114 135 131

DE 1.7 166 150 150 141 150 145 149 149

DE 2 184 161 161 158 162 162 162 161

DE 3 98 94 94 92 94 94 94 94

DE 3.5 445 397 394 382 396 388 393 392

EE/DE MC 231 74 74 77 73 71 74 73

EE/DE MF 14 10 8 11 8 9 8 8

True DE genes detected 1588 1589 1601 1588 1560 1599 1606

Error 18.14% 18.09% 17.47% 18.14% 19.58% 17.57% 17.21%

AUC 0.91054 0.90984 0.92030 0.91077 0.90891 0.91084 0.91094

Platinum Spike dataset: number of genes detected by each method for a given change condition. EE and DE are for equally expressed and differentially expressed,
respectively. “A vs B” is the designated fold change and “Number” is the number of probes for each change condition. Detection error and the AUC are also given at
the bottom of the Table.

www.biomedcentral.com/content/supplementary/1471-2105-11-285-s5.txt
www.biomedcentral.com/content/supplementary/1471-2105-11-285-s5.txt
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Figure 4 Comparison of the performance of methods with the Platinum Spike dataset. Platinum Spike dataset, Venn diagram of top 1940
genes by (A) the FCROS, RP, SAM and TREAT methods or (B) by the FCROS, FC, WAD and RP methods. Only genes that correspond to true DE genes
are represented. M-A plot: (C) highly expressed genes where magenta diamonds are used for the 24 genes detected by the TREAT method
(panel A), black triangles are used for the 15 genes detected by the SAM and TREAT methods (panel A), cyan circles are used for the 71 genes
detected by the WAD method (panel B); and (D) weakly expressed genes where green squares are used for the 54 genes detected by the FCROS,
FC and RP methods (panel B). Additional file 1: Figure S4 shows the full M-A plot of this dataset.
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Table 3 Comparative results for six microarray datasets (a)

Dataset Method Thresholds Selection Runtime (s) Error

DLBCL FCROS 0.0228, 0.9773 424 4.79 4.55%

(n=7129) FC 1.444 425 0.13 na

(m1=58,m2=19) WAD 1.1575 424 0.14 na

RP 0 425 656.36 0%

Ttest 0.0001 428 1.48 0.17%

SAM 0.00032 427 26.66 0.5%

TREAT 0.0025 425 0.16 4.19%

Prostate FCROS 0.0356, 0.9644 1009 19.58 7.12%

(n=12625) FC 1.27 1008 0.3 na

(m1=50,m2=52) WAD 1.0805 1010 0.32 na

RP 0 1010 2491.54 0%

Ttest 0.00068 1008 2.72 0.85%

SAM 0.00041 1013 55.6 0.51%

TREAT 0.0153 1010 0.33 19.12%

Colon FCROS 0.0187, 0.9802 95 0.99 3.85%

(n=2000) FC 1.8 95 0.05 na

(m1=22,m2=40) WAD 1.346 95 0.08 na

RP 0 96 168.78 0%

Ttest 0.00015 97 0.5 0.3%

SAM 0.00055 95 7.08 1.15%

TREAT 0.00028 95 0.06 0.58%

Leukemia FCROS 0.028, 0.9717 493 4.7 5.63%

(n=7129) FC 1.942 494 0.12 na

(m1=47,m2=25) WAD 1.1668 494 0.17 na

RP 0 494 768.65 0%

Ttest 0.00052 494 1.43 0.75%

SAM 0.00051 494 28.71 0.74%

TREAT 0.00153 494 0.13 2.2%

Myeloma FCROS 0.01296, 0.987 450 34.77 2.59%

(n=12625) FC 1.5189 452 0.4 na

(m1=36,m2=137) WAD 1.212 449 0.49 na

RP 0 451 4721.73 0%

Ttest 0.0051 449 2.9 14.34%

SAM 0.0055 450 94.84 15.43%

TREAT 0.0192 451 0.54 53.75%

ALL-1 FCROS 0.0355, 0.9644 1187 22.72 7.11%

(n=12625) FC 1.4176 1187 0.5 na

(m1=95,m2=33) WAD 1.1165 1185 0.64 na

RP 0 1188 3108.43 0%

Ttest 0.000057 1186 2.66 0.06%

SAM 0.000145 1187 69.48 0.15%

TREAT 0.00117 1184 0.26 1.25%

Comparative results for six microarray datasets (na = not available).
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datasets (see above) to compare results obtained with the
FCROS method and with the other six methods. To select
the list of the most DE genes for each method, we used the
results of the RP method, for which a PFP value of zero
was associated to some genes. We determined the num-
ber of such genes and then set thresholds for the other
methods to obtain a similar number of DE genes. We also
recorded the runtime of each method. Results are sum-
marized in Table 3. Errors for the Ttest, SAM and TREAT
methods are obtained using 100α n

n2 , where n is the total
number of genes, α the threshold used for the selection
and n2 the number of selected DE genes. For the FCROS
method the error is given by 100(α1 + 1 − α2), where α1
and α2 are the selection thresholds.
The results obtained show that the FC, WAD and

TREAT methods have the smallest runtime followed by
the Ttest and FCROS methods. The RP method has the
largest runtime, which is more than 100 times higher than
that of the FCROS method. The selection error (FDR)
of each method is also shown in Table 3. Except for the
Myeloma dataset, all errors are under 10%. The error
value for the RP method is the PFP. For the Prostate, the
Myeloma and the ALL-1 datasets, we noted that the RP
method detects some genes as down and up regulated at
the same time. There are 19, 27 and 6 such genes for the
Prostate, Myeloma and ALL-1 datasets, respectively. Most
of these genes have a FC close to 1. The bad detection
performance of the RP method for these datasets proba-
bly comes from the number of permutations (100) used.
An increase in this number will lead to an increase of the
runtime which is already long. Thus, the RP method is
suitable for a small number of samples but is not advisable
for larger numbers of samples.
Table 4 shows the numbers of genes detected by all

methods (common) and those uniquely detected by each
method. The SAM and TREAT methods have the small-
est number of genes not detected by any other method.
We examined genes detected only by the Ttest, WAD or
FC methods. The Ttest method detected some genes with
a fold change close to 1. TheWADmethod detected some
highly expressed genes with a small FC but missed other
genes with a high FC but low expression values. The FC

method detected some genes for which only one sample
has a large impact on the average values of all samples.
Interestingly, for some datasets (e.g. Myeloma, Prostate,
DLBCL), the FCROS method detected a relatively high
number of probes not detected by other methods. The
proportion of such probes varied highly between datasets,
and was as high as 75% of the number of commonly
detected probes (Myeloma dataset). This observation sug-
gests that the FCROS method can significantly enrich the
number of candidate DE genes.
We conducted a close inspection of the Colon and the

Prostate datasets and used the interactive Venn Diagram
plotter software [40] to search for specific and common
DE genes detected by the FCROS, RP, SAM and TREAT
methods. As expected, the FCROS method shared more
genes with the RP method than with the SAM or TREAT
methods. Figure 5A shows that 58 genes were detected
by these four methods for the Colon dataset. The FCROS
method also shared 16 genes with the SAM and the
TREAT methods, which were not detected by the RP
method. In contrast, no gene was detected jointly by the
RP, SAM or TREAT methods which was not detected by
the FCROS method. For the Prostate dataset (Figure 5B),
519 genes were detected by all four methods. Many genes
were detected only by the FCROS (105) or shared by
the FCROS, SAM and TREAT methods (161), and not
detected by the RP method. Again, only few genes (12)
were detected by the RP and the SAM or TREAT meth-
ods that were not detected by FCROS. We further used
the Prostate dataset to compare the 4 FC based methods
(Figure 5C). We considered that genes that were detected
by 2 or more methods are good candidates for true DE
genes. There were 1095 such genes, of which 56% were
commonly identified by all methods. No method clearly
outperformed the other, as each of them failed to detect ≈
10% of genes that were detected by at least 2 of the other
methods. Surpringly, the simple FC method detected the
fewest number of genes that were not detected by other
methods.

Effect of sample number A literature survey performed
in [41] shows that many biological microarray studies use

Table 4 Comparative results for six microarray datasets (b)

Dataset Common FCROS FC WAD RP Ttest SAM TREAT

DLBCL 149 22 79 54 31 99 5 0

Prostate 308 47 58 81 90 183 1 1

Colon 39 1 9 10 9 10 0 4

Leukemia 191 14 89 102 43 44 11 0

Myeloma 70 53 162 47 124 108 5 1

ALL-1 640 26 86 131 55 131 10 0

Common and specific number of genes detected by the seven methods in the six datasets.
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Figure 5 Comparison of the top seleted genes by different
methods for the Colon and the Prostate datasets. Venn diagram
of top seleted DE genes by the FCROS, RP, SAM and TREAT methods:
(A) Colon and (B) Prostate datasets or by (C) the FCROS, FC, WAD and
RP methods for the Prostate dataset.

very small number of replicates (e.g. 3 to 5). To eval-
uate the consequence of such choices on the detection
power, we used the Colon dataset, and conducted analyses
with varying numbers of control and test samples selected
from the original dataset. In a first analysis and for a
given (m1,m2) pair, we proceeded as follows: a) random

selection of m1 control and m2 test samples from their
true sample groups, b) run the seven methods to obtain
results for each, c) select the 100 top DE probes and assign
1 to them and 0 to all other probes. These three steps were
repeated 100 times and the total occurences of 1 for each
probe was calculated as its score. To set a threshold for the
score, we performed a second analysis where control and
test samples were chosen without regard for the biological
sample groups to which they belong. High scores, in inter-
val [Sthr , 100], are expected for the DE genes in the first
analysis. Small scores, in interval [0, Sthr], should be asso-
ciated to all genes in the second analysis. Sthr is the score
threshold which varies with the method used. We sorted
genes using their scores in each analysis.
Figure 6 shows the results from these analyses. For

each setting for control and test samples, we ordered
genes according their scores when control and test sam-
ples are selected from their true sample groups (green
line) or without regard for that true group (red line).
Based on these results, we used respectively the score
thresholds Sthr of 40, 70, 60, 60, 17, 20 and 18 for the
FCROS, FC, WAD, RP, Ttest, SAM and TREAT methods.
These thresholds allow to obtain the results illustrated in
Figure 7, which shows that rank based methods (FCROS,
FC, WAD and RP) select fewer genes than the Ttest, SAM
and TREAT methods. The FCROS method detects more
genes than the other FC based methods. Results depicted
in Figure 6 show that the Ttest, SAM and TREAT meth-
ods associated non zero score values to more genes, as
revealed by the departure from zero in the x-axis of the
score plots. The RP method identifies genes with a high
score for completely random control and test samples,
indicating its propensity to detect false positives. A sim-
ilar trend, less pronounced, is also observed for the FC
andWADmethods. TheWADmethod, however, assigned
high scores to more genes than the other methods (espe-
cially for the 3x3 and 5x5 cases), confirming the high
degree of reproducibility of this method [12].
We recorded the values observed for parameters δ for all

runs of FCROS using different settings form1 andm2. We
plotted in Additional file 1: Figure S5 the results obtained
for different settings for the number of control and test
samples. As for the synthetic datasets, we observed higher
values for δ, greater than 0.9, when control and test sam-
ples are not randomized. However, these values vary more
than those obtained with the synthetic datasets. When
control and test samples are randomized, values for δ

decrease towards 0.6 when the number of samples used
increases.

Analysis of reproducibility We further used the Colon
dataset to assess the reproducibility of DE genes identifi-
cation in a complex noisy dataset.We conducted 100 runs,
in which we used half of the dataset, i.e. 11 control and
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Figure 6 Impact of sample group size on the performance of the methods. Colon dataset, plot of scores obtained using the seven methods.
Genes in the abscissa are ordered according to their score. The green line is used for the random selection of the control and the test samples from
their true sample groups. The red line is used if no distinction was done between true sample groups during the selection of the control and the
test samples.
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Figure 7 Number of DE genes selected for the Colon dataset by the sevenmethods. Colon dataset, number of DE genes selected using the
FCROS (blue circle line), FC (black diamond line), WAD (red triangle line), RP (cyan square line), Student t-test (green x-mark line), SAM (red star line)
and TREAT (magenta pentagram line) methods.

20 test samples that were randomly selected. The top 100
genes identified as DE in each run were assigned a score
of 1 while all other genes were assigned a score of 0. The
overall score for each gene was calculated as the sum of its
scores. We evaluated the reproducibility of each method
by counting the number of genes with perfect (100) or
good (≥ 90) global scores (Table 5). As expected, the FC
based methods were better than the t-test based methods
in reproducibly identifying DE genes. Among these meth-
ods, FCROS and WAD were more reproducible than FC
and RP.

Conclusion
We have described here a new FC-based method and
shown that it is powerful to detect DE genes in noisy
datasets. Importantly, the FCROSmethod assigns a statis-
tic to DE genes, which can be used as a selection cri-
terion. FCROS appears to be more specific and much
faster than RP, and as sensitive and reproducible as WAD.
The FCROS method has two possible applications, when
used in combination with other methods: 1) identifica-
tion of a core set of high confidence DE genes detected
by all methods, 2) identification of additional potentially
DE genes not detected by other methods. This last pos-
sibility may be especially relevant when studying samples
with a high degree of intrinsic biological variability (like
tumor samples). Our results indeed show that the FCROS
method can detect many DE genes in tumor datasets,
which escape identification with othermethods (Figure 5).
In studies of rare diseases, the number of patient sam-
ples can be very low while the number of control samples
from healthy people is high. The results from Figures 3
and 7 show that the FCROSmethod performs well in such

Table 5 Comparative results for the Colon dataset

Number of genes

Global score FCROS FC WAD RP Ttest SAM TREAT

100 14 12 13 13 5 5 6

≥ 90 34 26 37 28 13 17 19

Colon dataset: scores obtained using the seven methods.

situations. The FCROSmethod has also other advantages.
(1) It does not require prefiltering to improve the statis-
tic associated with each gene. In contrast, prefiltering is
important for other methods, as it decreases the compu-
tational load and the FDR. (2) In contrast to the SAM
and the RP methods, for which the results can vary from
one run to another, the FCROS method is determinis-
tic. (3) The FCROS method can be easily adapted for
data originaly from different experiments for which batch
related biases can often not be completely corrected by
normalization methods. FCROS does not require inter-
batch normalization. For instance, if the data are from two
experimental batches, we can use k = k1+k2 comparisons
where k1 and k2 are the numbers of pairwise comparisons
from the first and the second batch, respectively.
We provide an R package which is deposed on the Com-

prehensible R Archive Network (CRAN) server for down-
load, see http://www.r-project.org. The function fcros2()
allows to deal with datasets from two batches. Usage of
the package fcros is available in the help function.
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