
Teso and Passerini BMC Bioinformatics 2014, 15:16
http://www.biomedcentral.com/1471-2105/15/16

METHODOLOGY ARTICLE Open Access

Joint probabilistic-logical refinement of
multiple protein feature predictors
Stefano Teso* and Andrea Passerini*

Abstract

Background: Computational methods for the prediction of protein features from sequence are a long-standing
focus of bioinformatics. A key observation is that several protein features are closely inter-related, that is, they are
conditioned on each other. Researchers invested a lot of effort into designing predictors that exploit this fact. Most
existing methods leverage inter-feature constraints by including known (or predicted) correlated features as inputs
to the predictor, thus conditioning the result.

Results: By including correlated features as inputs, existing methods only rely on one side of the relation: the output
feature is conditioned on the known input features. Here we show how to jointly improve the outputs of multiple
correlated predictors by means of a probabilistic-logical consistency layer. The logical layer enforces a set of weighted
first-order rules encoding biological constraints between the features, and improves the raw predictions so that they
least violate the constraints. In particular, we show how to integrate three stand-alone predictors of correlated
features: subcellular localization (Loctree [J Mol Biol 348:85–100, 2005]), disulfide bonding state (Disulfind [Nucleic
Acids Res 34:W177–W181, 2006]), and metal bonding state (MetalDetector [Bioinformatics 24:2094–2095, 2008]), in a
way that takes into account the respective strengths and weaknesses, and does not require any change to the
predictors themselves. We also compare our methodology against two alternative refinement pipelines based on
state-of-the-art sequential prediction methods.

Conclusions: The proposed framework is able to improve the performance of the underlying predictors by removing
rule violations. We show that different predictors offer complementary advantages, and our method is able to
integrate them using non-trivial constraints, generating more consistent predictions. In addition, our framework is
fully general, and could in principle be applied to a vast array of heterogeneous predictions without requiring any
change to the underlying software. On the other hand, the alternative strategies are more specific and tend to favor
one task at the expense of the others, as shown by our experimental evaluation. The ultimate goal of our framework
is to seamlessly integrate full prediction suites, such as Distill [BMC Bioinformatics 7:402, 2006] and
PredictProtein [Nucleic Acids Res 32:W321–W326, 2004].

Background
Automatic assessment of protein features from amino acid
sequence is a fundamental problem in bioinformatics.
Reliable methods for inferring features such as secondary
structure, functional residues, subcellular localization,
among others, are a first step towards elucidating the
function of newly sequenced proteins, and provide a
complement and a reasonable alternative to difficult,
expensive and time-consuming experiments. A wealth of
predictors have been developed in the last thirty years for

*Correspondence: teso@disi.unitn.it; passerini@disi.unitn.it
Department of Information Engineering and Computer Science, Università
degli Studi di Trento, Trento, Italy

inferring many diverse types of features, see e.g. Juncker
et al. [1] for a review.
A key observation, often used to improve the prediction

performance, is that several protein features are strongly
correlated, i.e., they impose constraints on each other.
For instance, information about solvent accessibility of a
residue can help to establish whether the residue has a
functional role in binding other proteins or substrates [2],
whether it affects the structural stability of the chain [3],
whether it is susceptible to mutations conferring resis-
tance to drugs [4], whether it occurs within a flexible
or disordered segment [5], etc. There are several other
examples in the literature.

© 2014 Teso and Passerini; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto: teso@disi.unitn.it
mailto: passerini@disi.unitn.it
http://creativecommons.org/licenses/by/2.0

Teso and Passerini BMC Bioinformatics 2014, 15:16 Page 2 of 14
http://www.biomedcentral.com/1471-2105/15/16

Researchers have often exploited this observation by
developing predictors that accept correlated features as
additional inputs. This way, the output is conditioned
on the known value of the input features, thus reduc-
ing the possible inconsistencies. It is often the case that
the additional input features are themselves predicted.
Highly complex prediction tasks like 3D protein structure
prediction from sequence are typically addressed by split-
ting the problem into simpler subproblems (e.g., surface
accessibility, secondary structure), whose predictions are
integrated to produce the final output. Following this
practice, multiple heterogeneous predictors have been
integrated into suites (see e.g. Distill [6], SPACE [7]
and PredictProtein [8]) providing predictions for a large
set of protein features, from subcellular localization to
secondary and tertiary structure to intrinsic disorder.
However, existing prediction architectures (with a few

specific exceptions, e.g. [9] and [10]) are limited in that
the output feature can’t influence a possibly mis-predicted
input feature. In other words, while feature relations
establish a set of mutual constraints, all of which should
simultaneously hold, current predictors are inherently
one-way.
Motivated by this observation, we propose a novel

framework for dealing with the integration and mutual
improvement of correlated predicted features. The idea is
to explicitly leverage all constraints, while accounting for
the fact that both the inputs, i.e., the raw predictions, and
the constraints themselves are not necessarily correct. The
refinement is carried out by a probabilistic-logical con-
sistency layer, which takes the raw predictions as inputs
and a set of weighted rules encoding the biological con-
straints relating the features. To implement the refiner,
we use Markov Logic Networks (MLN) [11], a statistical-
relational learning method able to perform statistical
inference on first-order logic objects. Markov logic allows
to easily define complex, rich first-order constraints, while
the embedded probabilistic inference engine is able to
seamlessly deal with potentially erroneous data and soft
rules. We rely on an adaptation of MLN allowing to
include grounding-specific weights (grounding specific
Markov Logic Networks) [12], i.e. weights attached to spe-
cific instances of rules, corresponding in our setting to
the raw predictions. The resulting refining layer is able to
improve the raw predictions by removing inconsistencies
and constraint violations.
Our method is very general. It is designed to be appli-

cable, in principle, to any heterogeneous set of predic-
tors, abstracting away from their differences (inference
method, training dataset, performance metrics), without
requiring any changes to the predictors themselves. The
sole requirement is that the predictions be assigned a
confidence or reliability score to drive the refinement
process.

As an example application, we show how to apply our
approach to the joint refinement of three highly related
features predicted by the PredictProtein Suite [8]. The tar-
get features are subcellular localization, generated with
Loctree [13]; disulfide bonding state, with Disulfind [14];
and metal bonding state, with MetalDetector [15].
We propose a few simple, easy to interpret rules, which

represent biologically motivated constraints expressing
the expected interactions between subcellular localiza-
tion, disulfide and metal bonds.
The target features play a fundamental role in study-

ing protein structure and function, and are correlated
in a non-trivial manner. Most biological processes can
only occur in predetermined compartments or organelles
within the cell, making subcellular localization predic-
tions an important factor for determining the biological
function of uncharacterized proteins [13]; furthermore,
co-localization is a necessary prerequisite for the occur-
rence of physical interactions between binding partners
[16], to the point that lack thereof is a common mean to
identify and remove spurious links from experimentally
determined protein-protein interaction networks. Disul-
fide bridges are the result of a post-translational modi-
fication consisting in the formation of a covalent bond
between distinct cysteines either in the same or in differ-
ent chains [17]. The geometry of disulfide bonds is funda-
mental for the stabilization of the folding process and the
final three-dimensional structure by fixing the configura-
tion of local clusters of hydrophobic residues; incorrect
bond formation can lead to misfolding [18]. Furthermore,
specific cleavage of disulfide bonds directly controls the
function of certain soluble and cell-membrane proteins
[19]. Finally, metal ions provide key catalytic, regulatory
or structural features of proteins; about 50% of all proteins
are estimated to be metalloproteins [20], intervening in
many aspects of of the cell life.
Subcellular localization and disulfide bonding state are

strongly correlated: a reducing subcellular environment
makes it less likely for the protein to form disulfide
bridges [21]. At the two extremes we find the cytosol,
which is clearly reducing, and the extra-cellular envi-
ronment for secreted proteins, which is oxydizing and
does not hinder disulfide bonds, with the other compart-
ments (nucleus, mitochondrion, etc.) exhibiting milder
behaviors. Similarly, due to physicochemical and pack-
ing constraints, it is unlikely for a cysteine to link both
another cysteine (or more than one) and a ligand; with few
exceptions, cysteines are involved in at most one of these
bonds [15].
This is the kind of prior knowledge we will use to

carry out the refinement procedure. We note that all
these constraints are not hard: they hold for a majority
of proteins, but there are exceptions [21]. In the fol-
lowing, we will show that that different predictors offer

Teso and Passerini BMC Bioinformatics 2014, 15:16 Page 3 of 14
http://www.biomedcentral.com/1471-2105/15/16

complementary advantages, and how our method is able
to integrate them using non-trivial constraints, resulting
in an overall improvement of prediction accuracy and
consistency.

Overview of the proposedmethod
In this paper we propose a framework to jointly refine
existing predictions according to known biological con-
straints. The goal is to produce novel, refined predictions
from the existing ones, so as to minimize the inconsis-
tencies, in a way that requires minimal training and no
changes to the underlying predictors. The proposed sys-
tem takes the raw predictions, which are assumed to
be associated with a confidence score, and passes them
through a probabilistic-logical consistency layer. The lat-
ter is composed of two parts: a knowledge base (KB) of
biological constraints relating the features to be refined,
encoded as weighted first-order logic formulae, which
acts as an input to the second part of the method; and
a probabilistic-logical inference engine, implemented by
a grounding-specific Markov Logic Network (gs-MLN)
[15]. For a graphical depiction of the proposedmethod see
Figure 1.
An example will help to elucidate the refinement

pipeline. For simplicity, let’s assume that we are interested
in refining only two features: subcellular localization and
disulfide bonding state. The first step is to employ two
arbitrary predictors to generate the raw predictions for a
given protein P. Note that disulfide bonding state is a per-
cysteine binary prediction, while subcellular localization
is a per-protein n-ary prediction; both have an associ-
ated reliability score, which can be any real number. For a
complete list of predicates used in this paper, see Table 1.
Let’s assume that the predictions are as follows:

PredLoc(P,Nuc,0.1), PredLoc(P,Cyt,1.2)
!PredLoc(P,Mit,0.8), PredLoc(P,Ext,1.0)
!PredDis(P,11,0.2)
PredDis(P,20,0.8)
PredDis(P,26,0.6)

Table 1 Predicates

Predicate Meaning

PredLoc(p,l,w) Protein p is predicted in compartment l with
confidence w

PredDis(p,n,w) Cysteine at position n is predicted disulf. bound
with confidence w

PredMet(p,n,w) Cysteine at position n is predicted metal bound
with confidence w

IsLoc(p,l) Protein p is in compartment l

IsDis(p,n) Cysteine at position n is disulf. bound

IsMet(p,n) Cysteine at position n is metal bound

ProxyLoc(p,l) Proxy predicate to account for estimated Loctree
performance

ProxyDis(p,n) Proxy predicate to account for estimated
Disulfind performance

ProxyMet(p,n) Proxy predicate to account for estimated
MetalDetector performance

where ! stands for logical negation. The first four predi-
cates encode the fact that protein P is predicted to reside
in the nucleus with confidence 0.1, in the cytosol with con-
fidence 1.2, etc. The remaining three predicates encode
the predicted bonding state of three cysteines at positions
11, 20 and 26: the first cysteine is free with confidence
0.2, the remaining two are bound with confidence 0.8 and
0.6, respectively. In this particular example, the protein
is assigned conflicting predictions, as the cytosolic envi-
ronment is known to hinder the formation of disulfide
bridges. We expect one of them to be wrong.
Given the above logical description, our goal is to infer

a new set of refined predictions, encoded as the predi-
cates IsLoc(p,l) and IsDis(p,n). To perform the
refinement, we establish a set of logical rules describing
the constraints we want to be enforced, and feed it to the
inference engine. For a list of rules, see Table 2.
First of all, we need to express the fact that the raw pre-

dictions should act as the primary source of information
for the refined predictions. We accomplish this task using

PredDis(p,n,w) PredMet(p,n,w) PredLoc(p,l,w)

IsDis(p,n,w) IsMet(p,n,w) IsLoc(p,l,w)

Inference Engine (gs-MLN)
{DL1: IsLoc(p,l)=>!IsDis(p,n)

DM: !(IsDis(p,n)^IsMet(p,n))
etc.

KB =

Rule weights

Figure 1 Refinement pipeline.

Teso and Passerini BMC Bioinformatics 2014, 15:16 Page 4 of 14
http://www.biomedcentral.com/1471-2105/15/16

Table 2 Knowledge base

Rule name Weight Rule Description

I1 per-protein PredLoc(p,l,w) ∧ IsLoc(p,l) Input rule for subcellular localization

I2 per-cysteine PredDis(p,n,w) ∧ IsDis(p,n) Input rule for disulfide bonding state

I3 per-cysteine PredMet(p,n,w) ∧ IsMet(p,n) Input rule for metal bonding state

I1P per-protein PredLoc(p,l,w) ∧ ProxyLoc(p,l) Input rule for proxy subcellular localization

I2P per-cysteine PredDis(p,n,w) ∧ ProxyDis(p,n) Input rule for proxy disulfide bonding state

I3P per-cysteine PredMet(p,n,w) ∧ ProxyMet(p,n) Input rule for proxy metal bonding state

PX1 from data ProxyLoc(p,l) ⇔ IsLoc(p,l) Proxy rule for subcellular localization

PX2 from data ProxyDis(p,n) ⇔ IsDis(p,n) Proxy rule for disulfide bonding state

PX3 from data ProxyMet(p,n) ⇔ IsMet(p,n) Proxy rule for metal bonding state

DL1 from data IsLoc(p,l) ⇒ !IsDis(p,n) Compartment l hinders the formation of
disulf. bonds

DL2 from data IsLoc(p,l) ⇒ IsDis(p,n) Compartment l favors the formation of
disulf. bonds

DM from data !(IsDis(p,n) ∧ IsMet(p,n)) A half-cysteine can’t bind a metal atom

L1 ∞ ∨
l IsLoc(p,l) A protein must belong to at least one

compartment

L2 ∞ ∀l1 IsLoc(p,l1) ∧∧
l2 !IsLoc(p,l2) A protein must belong to at most one

compartment

the input rules I1 and I2. These rules encode how the
refined prediction predicates IsDis and IsLoc depend
primarily on the raw predicates PredDis and PredLoc.
The weight w is computed from the estimated reliabil-
ity output by the predictor, and (roughly) determines how
likely the refined predictions will resemble the raw ones.
Next we need to express the fact that a protein must

belong to at least one cellular compartment, using rule
L1, and, as normally assumed when performing subcellu-
lar localization prediction, that it can not belong to more
than one, using rule L2. In this example, and in the rest of
the paper, we will restrict the possible localizations to the
nucleus, the cytosol, the mitochondrion, and the extracel-
lular space. The two above rules are assigned an infinite
weight, meaning that they will hold with certainty in the
refined predictions.
The last two rules used in this example are DL1 and

DL2, which express the fact that the cytosol, mitochon-
drion and nucleus tend to hinder the formation of disul-
fide bridges, while the extracellular space does not. In this
case, the weights associated to the rules are inferred from
the training set, and reflect how much the rules hold in
the data itself.
Once we specify the raw predictions and knowledge

base, we feed them to the gs-MLN. The gs-MLN is
then used to infer the set of refined predictions, that is,
the IsLoc and IsDis predicates. The gs-MLN allows
to query for the set of predictions that is both most
similar to the raw predictions, and at the same time
violates the constraints the least, taking in account the

confidences over the raw predictions and the constraints
themselves. See the Methods section for details on how
the computation is performed. In this example, the result
of the computation is the following: IsLoc(P,Ext),
IsDis(P,11), IsDis(P,20), IsDis(P,26). The
protein is assigned to the second most likely subcellular
localization, “extracellular”, and the cysteine which was
predicted as free with a low confidence is changed to
disulfide bonded.
It is easy to see that this framework allows to express

very complicated rules between an arbitrary number of
features, without particular restrictions on their type
(binary, multi-label) and at different levels of detail (per-
residue or per-protein). Furthermore, this approach min-
imizes the impact of overfitting: there is only one learned
weight for each rule, and very few rules. To assess the per-
formance of our refiner, we experiment with improving
subcellular localization together with disulfide bonding
state and metal bonding state. The knowledge base used
for localization and disulfide bridges was introduced in
this section. As for metals, the information is input using
rule I3, and wemodel the interaction with disulfide bonds
through rule DM, which states that the two types of bonds
are mutually exclusive.

Related work
There is a vast body of work dedicated to the issue of
information integration, and in particular to the exploita-
tion of correlated protein features. In many cases, the
proposed methods are limited to augmenting the inputs

Teso and Passerini BMC Bioinformatics 2014, 15:16 Page 5 of 14
http://www.biomedcentral.com/1471-2105/15/16

using correlated features (either true or predicted) as addi-
tional hints to the predictors. In this setting, a work closely
related to ours is [22], in which Savojardo and colleagues
propose a prediction method for disulfide bridges that
explicitly leverages predicted subcellular localization [23].
As in the other cases, the authors implement a one-way
approach, in which a predicted feature (localization) is
employed to improve a related one (disulfide bonding
state). The protein prediction suites briefly mentioned
above (Distill [6], SPACE [7] and PredictProtein [8]) pro-
vide another clear example of one-way architectures. Pre-
diction suites are built by stacking multiple predictors on
top of each other, with each layer making use of the pre-
dictions computed by the lower parts of the stack. In this
case, the main goal is the computation of higher-level fea-
tures from simpler ones. Note however that the issue of
two-way consistency is ignored: these architecture do not
back-propagate the outputs of the upper layers to the bot-
tom ones. On the other hand, our approach allows to
jointly improve all predictions by enforcing consistency in
the refined outputs.
Another popular way to carry out the prediction of cor-

related features is multi-task learning. In this setting, one
models each prediction task as a separate problem and
trains all the predictors jointly. The main benefit comes
from allowing information to be shared between the pre-
dictors during the training and inference stages. These
methods can be grouped in two categories: iterative and
collective.
Iterative methods exploit correlated predictions by re-

using them as inputs to the algorithm, and iterating the
training procedure until a stopping criterion is met. This
approach can be found in, e.g. Yip et al. [10], which pro-
poses a method to jointly predict protein-, domain-, and
residue-level interactions between distinct proteins. Their
proposal involves modeling the propensity of each pro-
tein, domain and residue to interact with other objects
at the same level as a distinct regression task. After each
iteration of the training/inference procedure, the most
confident predictions at one level are propagated as addi-
tional training samples at the following level. This simple
mechanism allows for information to bi-directionally flow
between different tasks and levels. Another very relevant
work is [9], in which Maes et al. jointly predict the state
of five sequential protein features: secondary structure (in
3 and 8 states), solvent accessibility, disorder and struc-
tural alphabet. Also in this case, distinct predictors are
run iteratively using the outputs at the previous time slice
as additional inputs. Collective methods instead focus on
building combinations of classifiers, e.g., neural network
ensembles, using shared information in a single training
iteration. As an example, [24] describes how to maxi-
mize the diversity between distinct neural networks with
the aim of improving the overall accuracy. However most

applications in biology focus on building ensembles of
predictors for the same task, as is the case in Pollastri
et al. [25] for secondary structure.
The main differences with our method are the follow-

ing: (a) There exist a number of independently developed
predictors for a plethora of correlated features. It would be
clearly beneficial to refine their predictions in some way.
Our goal is to be able to integrate them without requir-
ing any change to the predictors themselves. The latter
operation may be, in practice, infeasible, either because
the source is unavailable, or because the cost of retraining
after every change is unacceptably high. All of the meth-
ods presented here are designed for computing predic-
tions from the ground up; our method is instead designed
for this specific scenario. (b) Our method allows one to
control the refinement process by including prior knowl-
edge about the biological relationships affecting the fea-
tures of interest; furthermore the language used to encode
the knowledge base, first-order logic, is well defined and
flexible. The other methods are more limited: any prior
knowledge must be embedded implicitly in the learning
algorithm itself. (c) The weights used by our algorithm are
few, simple statistics of the data, and do not require any
complex training. On the other hand, all the methods pre-
sented here rely on a training procedure, and have a higher
risk of incurring in overfitting issues.

Results and discussion
Data preparation
We assessed the performance of our framework on a
representative subset of the Protein Data Bank [26], the
2010/06/16 release of PDBselect [27]. The full dataset
includes 4,246 unique protein chains with less than 25%
mutual sequence similarity.
Focusing only on proteins containing cysteines, we

extracted the true disulfide bonding state using the DSSP
software [28], and the true metal bonding state from the
PDB structures using a contact distance threshold of 3 Å.
Metals considered in this experiment are the same used

for training MetalDetector, a total of 33 unique metal
atoms and 75 molecular metals. See Passerini et al. [29]
for more details.
Subcellular localization was recovered using the anno-

tations in DBSubLoc [30] and UniProt [31]; we translated
between PDB and UniProt IDs using the chain-level map-
ping described by Martin [32], dropping all proteins that
could not be mapped. To increase the dataset coverage,
we kept all those proteins whose true localization did not
belong to any of the classes predicted by Loctree (which
for animal proteins amount to cytosol, mitochondrion,
nucleus and extracellular – secreted), was ambiguous
or missing, and marked their localization annotation as
“missing”. Loctree is also able to predict proteins in a
fifth, composite class, termed “organelle”, which includes

Teso and Passerini BMC Bioinformatics 2014, 15:16 Page 6 of 14
http://www.biomedcentral.com/1471-2105/15/16

the endoplasmic reticulum, Golgi apparatus, peroxysome,
lysosome, and vacuole. The chemical environment within
these organelles can be vastly different, so we opted for
removing them from the dataset, for simplicity.
Subcellular localization prediction requires different

prediction methods for each kingdom. The preprocessing
resulted in a total of 1184 animal proteins, and a statisti-
cally insignificant amount of plant and bacterial proteins;
we discarded the latter two. Of the remaining proteins,
526 are annotated with a valid subcellular localization (i.e.
not “missing”). The data includes 5275 cysteines, of which
2456 (46.6%) are half cysteines (i.e., involved in a disulfide
bridge) and 458 (8.7%) bind metal atoms.
We also have two half cysteines that bind a metal (in

protein 2K4D, chain A); we include them in the dataset
as-is.

Evaluation procedure
Each experiment was evaluated using a standard 10-fold
cross-validation procedure. For each fold, we computed
the rule weights over the training set, and refined the
remaining protein chains using those weights. The rule
weights are defined as the log-odds of the probability that
a given rule holds in the data, that is, if the estimated pre-
diction reliability output by the predictor is r, the weight
is defined as w = log(r/(1 − r)). Given the weights, we
refine all the raw features of proteins in the test set. If the
subcellular localization for a certain protein is marked as
“missing”, we use the predicted localization to perform
the refinement. In this case, the refined localization is
not used for computing the localization performance, and
only the disulfide and metal bond refinements contribute
to the fold results, in a semi-supervised fashion.
For binary classification (i.e., disulfide and metal bond-

ing state prediction) let us denote by Tp, Tn, Fp and Fn the
number of true positives, true negatives, false positives,
and false negatives, respectively, and N the total number
of instances (cysteines). We evaluate the performance of
our refiner with the following standard measures:

Q = Tp + Tn
N

(1)

P = Tp
Tp + Fp

(2)

R = Tp
Tp + Fn

(3)

F1 = 2 · P · R
P + R

(4)

The accuracy Q, precision P and recall R are stan-
dard performance metrics. The F1 score is the harmonic
mean of precision and recall, and is useful as an estimate
balancing the contribution of the two complementary

measures. We report the average and standard devia-
tion of all above measures taken over all folds of the
cross-validation.
For multi-class classification (subcellular localization)

we compute the confusion matrix M over all classes,
where each element Mij counts the number of instances
whose true class is i and were predicted in class j. The
more instances lie on the diagonal of the confusionmatrix,
the better the predictor.
We note that, in general, it is difficult to guarantee that

our test set does not overlap with the training set of the
individual raw predictors. This may result in an artificial
overestimate of the performance of the raw predictors.
However, training in our model consists in estimating the
rule weights from the raw predictions themselves. As a
consequence, the results of our refiner may be underes-
timated when compared with the inflated baseline per-
formance. We also note that, since our model requires
estimating very few parameters, i.e., one weight per rule,
it is less susceptible to overfitting than methods hav-
ing many parameters which rely on a full-blown training
procedure.

Raw predictions
We generate the predictions for subcellular localization,
disulfide bridges, metal bonds and solvent accessibil-
ity using the respective predictors. All predictors were
installed locally, using the packages available from the
PredictProtein Debian package repository [33], and con-
figured to use the default parameters. For all protein
chains predicted in the “organelle” class, we marked the
prediction as “missing”, for the reasons mentioned above.
For Disulfind and MetalDetector, we converted the

per-cysteine weighted binary predictions into two
binary predicates for each cysteine, PredDis/3 and
PredMet/3, using as prediction confidence w the SVM
margin.
For Loctree, we output four PredLoc/3 predicates for

each protein, one for each possible subcellular localiza-
tion, and computed the confidence by using a continu-
ous version of the Loctree-provided output-to-confidence
mapping. The raw predictor performance can be found
alongside with the refiner performance in Tables 3, 4, 5, 6.

Alternative refinement pipelines
In order to assess the performance of our method, we car-
ried out comparative experiments using two alternative
refinement architectures. Both architectures are based
on state-of-the-art sequential predictionmethods, namely
HiddenMarkov Support VectorMachines (HMSVM) [34]
and Bidirectional Recurrent Neural Networks (BRNN)
[35]. Both methods can naturally perform classification
over sequences, and have been successfully applied to
several biological prediction tasks.

Teso and Passerini BMC Bioinformatics 2014, 15:16 Page 7 of 14
http://www.biomedcentral.com/1471-2105/15/16

Table 3 Results for true Sub. Loc.

Disulfide bonding state

Experiment Q P R F1

Raw predictions 0.804 ± 0.03 0.720 ± 0.06 0.917 ± 0.04 0.811 ± 0.04

Dis. + Met. 0.832 ± 0.04 0.767 ± 0.05 0.913 ± 0.04 0.833 ± 0.04

Dis. + Loc. 0.857 ± 0.03 0.801 ± 0.04 0.921 ± 0.03 0.856 ± 0.03

Dis. + Met. + Loc. 0.867 ± 0.03 0.819 ± 0.04 0.919 ± 0.03 0.865 ± 0.03

HMSVM 0.874 ± 0.03 0.884 ± 0.06 0.851 ± 0.03 0.866 ± 0.03

BRNN 0.892 ± 0.02 0.900 ± 0.03 0.863 ± 0.05 0.880 ± 0.03

Metal bonding state

Experiment Q P R F1

Raw predictions 0.952 ± 0.02 0.686 ± 0.09 0.827 ± 0.10 0.747 ± 0.09

Dis. + Met. 0.950 ± 0.02 0.711 ± 0.09 0.739 ± 0.14 0.713 ± 0.09

Dis. + Loc. – – – –

Dis. + Met. + Loc. 0.952 ± 0.02 0.709 ± 0.08 0.783 ± 0.11 0.736 ± 0.07

HMSVM 0.950 ± 0.02 0.741 ± 0.12 0.697 ± 0.08 0.711 ± 0.07

BRNN 0.948 ± 0.02 0.683 ± 0.09 0.763 ± 0.11 0.715 ± 0.07

The alternative architectures are framed as follows. The
predictors are trained to learn a mapping between raw
predictions and the ground truth, using the same kind of
pre-processing as theMLN refiner. Cysteines belonging to
a protein chain form a single example, and all cysteines in
an example are refined concurrently. The input consists of
all three raw predictions in both cases.
The two methods were chosen as to validate the behav-

ior of more standard refinement pipelines relying on both
hard and soft constraints. In the case of HMSVMs, the
model outputs a single label for each residue: a cysteine
can be either free, bound to another cysteine, or bound
to a metal. This encoding acts as a hard constraint on
the mutual exclusivity between the two labels. In the case
of BRNNs, each cysteine is modeled by two indepen-
dent outputs, so that all four configurations (free, disulfide
bound, metal bound, or both) are possible. The BRNN
is given the freedom to learn the (soft) mutual exclu-
sivity constraint between the two features from the data
itself.
Pure sequential prediction methods, like HMSVMs,

are at the same specialized for, and limited to, refining
sequential features, in our case disulfide and metal bond-
ing state. Therefore, we can’t use the HMSVM pipeline
for localization refinement. As a result, the alternative
pipeline is faced with a reduced, and easier, computa-
tional task. While BRNN are also restricted to sequen-
tial features, more general recursive neural networks
[36] can in principle model arbitrary network topologies.
However, they cannot explicitly incorporate constraints
between the outputs, which is crucial in order to gain

mutual improvement between subcellular localization and
bonding state predictions. As experimental results will
show, these alternative approaches already fail to jointly
improve sequential labeling tasks.
We performed a 10-fold inner cross-validation to esti-

mate the model hyperparameters (regularization tradeoff
for the HMSVM, learning rate for the neural network),
using the same fold splits as the main experiment. The
results can be found in Table 3 through 6.

True subcellular localization
As a first experiment, we evaluate the effects of using
the true subcellular localization to refine the remaining
predictions, i.e., we supply the refiner with the correct
IsLoc directly, while querying the IsDis and IsMet
predicates. The experiment represents the ideal case of
a perfect subcellular localization predictor, and we can
afford to unconditionally trust its output.
The experiment is split in four parts of increasing

complexity.

• In the ‘Dis. + Met.’ case we refine both IsDis and
IsMet from the respective raw predictions, using
only the DM rule (see Table 2) to coordinate disulfide
and metal bonding states; the localization in this case
is ignored. The experiment is designed to evaluate
wheter combining only disulfide and metal
predictions is actually useful in our dataset.

• In the ‘Dis. + Loc.’ case we refine IsDis from the
raw disulfide predictions and the true localization,
using the DL1 and DL2 rules.

Teso and Passerini BMC Bioinformatics 2014, 15:16 Page 8 of 14
http://www.biomedcentral.com/1471-2105/15/16

Table 4 Results for predicted Sub. Loc.

Disulfide bonding state

Experiment Q P R F1

Raw predictions 0.804 ± 0.03 0.720 ± 0.06 0.917 ± 0.04 0.811 ± 0.04

Dis. + Met. 0.832 ± 0.04 0.767 ± 0.05 0.913 ± 0.04 0.833 ± 0.04

Dis. + Loc. 0.809 ± 0.03 0.732 ± 0.06 0.923 ± 0.04 0.815 ± 0.04

Dis. + Met. + Loc. 0.843 ± 0.03 0.779 ± 0.04 0.919 ± 0.04 0.843 ± 0.03

HMSVM 0.882 ± 0.03 0.890 ± 0.05 0.856 ± 0.04 0.872 ± 0.04

BRNN 0.884 ± 0.03 0.895 ± 0.03 0.847 ± 0.05 0.870 ± 0.03

Metal bonding state

Experiment Q P R F1

Raw predictions 0.952 ± 0.02 0.686 ± 0.09 0.827 ± 0.10 0.747 ± 0.09

Dis. + Met. 0.950 ± 0.02 0.711 ± 0.09 0.739 ± 0.14 0.713 ± 0.09

Dis. + Loc. – – – –

Dis. + Met. + Loc. 0.949 ± 0.02 0.707 ± 0.09 0.731 ± 0.14 0.705 ± 0.08

HMSVM 0.952 ± 0.02 0.755 ± 0.07 0.707 ± 0.09 0.725 ± 0.06

BRNN 0.950 ± 0.02 0.694 ± 0.09 0.768 ± 0.11 0.723 ± 0.08

Subcellular localization

Raw predictions

Cytosol ExtraCell. Mitoch. Nucleus

Cytosol 14 11 2 5

ExtraCell. 17 206 2 29

Mitoch. 12 8 6 8

Nucleus 46 67 15 78

Dis. + Loc.

Cytosol 15 10 2 5

ExtraCell. 18 223 2 11

Mitoch. 12 223 2 8

Nucleus 48 55 16 87

Dis. + Met. + Loc.

Cytosol 15 9 2 6

ExtraCell. 18 223 2 11

Mitoch. 12 6 8 8

Nucleus 48 44 21 93

• In the ‘Dis. + Met. + Loc.’ case we refine IsDis and
IsMetmaking the refined disulfide bonding state
interact with metals (using the DM rule), solvent
accessibility (with the DA rule), and subcellular
localization (with DL1 and DL2.)

The results can be found in Table 3.
Three trends are apparent in the results. First of all,

we find subcellular localization to have a very strong
influence on disulfide bonding state, as expected. In par-
ticular, in the ‘Dis. + Loc.’ case, which includes no metal

predictions, the accuracy and F1 measure improves from
0.804 and 0.811 (raw) to 0.857 and 0.856 (refined), respec-
tively. The change comes mainly from an increase in
precision: the true subcellular localization helps reducing
the number of false positives.
The interaction between metals and disulfide bonds is

not as clear cut: in the ‘Dis. +Met.’ case, which includes no
subcellular localization, the refined disulfide predictions
slightly improve, in terms of F1 measure, while the metal
predictions slightly worsen. The latter case is mainly due
to the drop in recall, from 0.827 to 0.739. This is to be

Teso and Passerini BMC Bioinformatics 2014, 15:16 Page 9 of 14
http://www.biomedcentral.com/1471-2105/15/16

Table 5 Results for true Sub. Loc. with proxy

Disulfide bonding state

Experiment Q P R F1

Raw predictions 0.804 ± 0.03 0.720 ± 0.06 0.917 ± 0.04 0.811 ± 0.04

Dis. + Met. 0.838 ± 0.03 0.776 ± 0.04 0.912 ± 0.04 0.838 ± 0.04

Dis. + Loc. 0.853 ± 0.03 0.796 ± 0.05 0.921 ± 0.03 0.853 ± 0.03

Dis. + Met. + Loc. 0.865 ± 0.03 0.817 ± 0.04 0.917 ± 0.03 0.863 ± 0.03

HMSVM 0.874 ± 0.03 0.884 ± 0.06 0.851 ± 0.03 0.866 ± 0.03

BRNN 0.892 ± 0.02 0.900 ± 0.03 0.863 ± 0.05 0.880 ± 0.03

Metal bonding state

Experiment Q P R F1

Raw predictions 0.952 ± 0.02 0.686 ± 0.09 0.827 ± 0.10 0.747 ± 0.09

Dis. + Met. 0.952 ± 0.02 0.696 ± 0.08 0.795 ± 0.11 0.739 ± 0.08

Dis. + Loc. – – – –

Dis. + Met. + Loc. 0.952 ± 0.02 0.695 ± 0.08 0.807 ± 0.10 0.743 ± 0.08

HMSVM 0.950 ± 0.02 0.741 ± 0.12 0.697 ± 0.08 0.711 ± 0.07

BRNN 0.948 ± 0.02 0.683 ± 0.09 0.763 ± 0.11 0.715 ± 0.07

expected, as the natural scarcity of metal residues makes
the metal prediction task harder (as can be seen observing
the differential behavior of accuracy and F1 measure). As
a consequence the confidence output by MetalDetector
is lower than the confidence output by Disulfind. In
other words, in the case of conflicting raw predictions,
the disulfide predictions usually dominate the metal
predictions.
Finally, in ‘Dis. + Met. + Loc.’ case, both disulfide and

metal bonds improve using the true subcellular localiza-
tion compared to the above settings. In particular, metal
ligand prediction, while still slightly worse than the base-
line (again, due to class unbalance, as mentioned above)
sees a clear gain in recall (from 0.739 in the ‘Dis. + Met.’
case to 0.783). This is an effect of using localization:
removing false disulfide positives leads to less spurious
conflicts with the metals.
The two alternative pipelines behave similarly. They

both manage to beat the Markov Logic Network on the
easier of the two tasks, disulfide refinement, while per-
forming worse on the metals. We note that the HMSVM
and BRNN, contrary to our method, both have a chance
to rebalance the raw metal predictions with respect to the
disulfide predictions during the training stage, learning a
distinct bias/weight for the inputs. Nevertheless, they still
fail to improve upon our refined metals.

Predicted subcellular localization
This experiment is identical to the previous one, except we
use predicted subcellular localization in place of the true
one. Similarly to the previous section, we consider three
sub-cases. In the ‘Dis. + Loc.’ case, we refine localization

and disulfide bonding state, while in the ‘Dis. + Met. +
Loc.’ case we refine all three predicted features together.
The results can be found in Table 4. The ‘Dis. + Met.’ case
is reported as well for ease of comparison.
Here we can see how our architecture can really help

with the mutual integration of protein features. In gen-
eral, we notice that refined disulfide bonds are enhanced
by the integration of localization, even if less so than in the
previous experiment. At the same time, localization also
benefits by the interaction with disulfide bonds, as can be
seen in the ‘Dis. + Loc.’ case. The biggest gain is obtained
for the ExtraCellular and Nucleus classes, which are also
the most numerous classes in the dataset: several protein
chains are moved back to their correct class. The intro-
duction of metals improves directly disulfide bonds and
indirectly localization, even though its effect is relatively
minor.
On the downside, refined metal predictions worsen in

all cases. This is due, again, to the unbalance of the
small number of metal binding residues found in the data,
and to the difference between the confidences output by
Disulfind and MetalDetector.
Surprisingly, the alternative pipelines are not as affected

by the worsening of the localization information: their
performance is on par as with the true localization. This is
in part explained by the simpler task the alternative meth-
ods carry out, as it does not involve refinement of the raw
localization itself. It turns out that using predicted local-
ization itself, the alternative methods manage to perform
better than us also for metal refinement. In the following,
we will show an improvement to our pipeline to address
this issue.

Teso and Passerini BMC Bioinformatics 2014, 15:16 Page 10 of 14
http://www.biomedcentral.com/1471-2105/15/16

Table 6 Results for predicted Sub. Loc. with proxy

Disulfide bonding state

Experiment Q P R F1

Raw predictions 0.804 ± 0.03 0.720 ± 0.06 0.917 ± 0.04 0.811 ± 0.04

Dis. + Met. 0.838 ± 0.03 0.776 ± 0.04 0.912 ± 0.04 0.838 ± 0.04

Dis. + Loc. 0.803 ± 0.03 0.727 ± 0.05 0.922 ± 0.04 0.811 ± 0.04

Dis. + Met. + Loc. 0.846 ± 0.03 0.784 ± 0.04 0.918 ± 0.04 0.845 ± 0.04

HMSVM 0.882 ± 0.03 0.890 ± 0.05 0.856 ± 0.04 0.872 ± 0.04

BRNN 0.884 ± 0.03 0.895 ± 0.03 0.847 ± 0.05 0.870 ± 0.03

Metal bonding state

Experiment Q P R F1

Raw predictions 0.952 ± 0.02 0.686 ± 0.09 0.827 ± 0.10 0.747 ± 0.09

Dis. + Met. 0.952 ± 0.02 0.696 ± 0.08 0.795 ± 0.11 0.739 ± 0.08

Dis. + Loc. – – – –

Dis. + Met. + Loc. 0.952 ± 0.02 0.706 ± 0.08 0.782 ± 0.10 0.735 ± 0.06

HMSVM 0.952 ± 0.02 0.755 ± 0.07 0.707 ± 0.09 0.725 ± 0.06

BRNN 0.950 ± 0.02 0.694 ± 0.09 0.768 ± 0.11 0.723 ± 0.08

Subcellular localization

Raw predictions

Cytosol ExtraCell. Mitoch. Nucleus

Cytosol 14 11 2 5

ExtraCell. 17 206 2 29

Mitoch. 12 8 6 8

Nucleus 46 67 15 78

Dis. + Loc.

Cytosol 13 13 2 4

ExtraCell. 22 224 0 8

Mitoch. 12 6 8 8

Nucleus 61 56 14 75

Dis. + Met. + Loc.

Cytosol 14 12 2 4

ExtraCell. 22 224 0 8

Mitoch. 12 6 8 8

Nucleus 67 41 17 81

Predicted subcellular localization with predictor reliability
The previous experiment shows that our refiner performs
suboptimally on the metal refinement task due to class
unbalance. A common way to alleviate this issue is to
re-weight the classes according to some criterion. In our
case, the positive metal residues are dominated by the
negative ones, making the overall accuracy of MetalDe-
tector higher than that of Disulfind. Our method naturally
supports the re-weighting of predictors with different
accuracy: the weight assigned to a Pred predicate can be

strengthened or weakened depending on our estimate of
the predictor accuracy.
To implement this strategy, we add an intermediate

proxy predicate, weighted according to the actual predic-
tor performance over the training set. The proxy predi-
cate mediates the interaction between the raw prediction
(the Pred predicate) and the refined prediction (the Is
predicate). The actual proxy predicates are ProxyLoc,
ProxyDis and ProxyMet, used by rules I1P to I3P,
and PX1 to PX3. See Tables 1 and 2 for the details. The

Teso and Passerini BMC Bioinformatics 2014, 15:16 Page 11 of 14
http://www.biomedcentral.com/1471-2105/15/16

results can be found in Table 6. For completeness, we also
include the proxy results for true subcellular localization
in Table 5.
The proxy helps theMLN refiner: the refined metal pre-

dictions are on-par with the raw ones, while at the same
time improving the disulfide bonds. The effects are espe-
cially clear when comparing the ‘Dis. + Met.’ cases of
Tables 3 (true localization, no proxy) and 5 (true local-
ization, with proxy), with F1 scores changing from 0.833
and 0.713 for bridges and metals, respectively, to 0.838
and 0.739. We note that our method is the only one able
to recover the same performance as MetalDetector while
also improving the other two refined features. On the
contrary, the alternative pipelines tend to favor one task
(disulfide bridges) over the other, and fail in all cases to
replicate the baseline performance.
The down-side is that localization refinement is slightly

worse: the raw Nucleus predictions are less accurate than
the Cytosol ones, leading to the Cytosol being assigned
a higher proxy weight. Since both compartments prevent
disulfide bonds, the MLN refiner tends to assign chains
with no half cysteines to the latter.

Conclusions
In this paper we introduced a novel framework for
the joint integration and refinement of multiple related
protein features. The method works by resolving con-
flicts with respect to a set of user-provided, biologically
motivated constraints relating the various features.
The underlying inference engine, implemented as a
grounding-specific Markov Logic Network [12], allows to
perform probabilistic reasoning over rich first-order logic
rules. The designer has complete control over the refine-
ment procedure, while the inference engine accounts for
potential data noise and rule fallacy.
As an example, we demonstrate the usefulness of our

framework on three distinct predicted features: subcel-
lular localization, disulfide bonding state, metal bonding
state. Our refiner is able to improve the predictions by
removing violations to the constraints, leading to more
consistent results. In particular, we found that subcellular
localization plays a central role in determining the state
of potential disulfide bridges, confirming the observations
of Savojardo et al. [22]. Our method however also allows
to improve subcellular localization in the process, help-
ing to discriminate between chains residing in reducing
and oxydizing cellular compartments, especially nuclear
and secreted chains. We also found that disulfide predic-
tions benefit frommetal bonding information, although to
a lesser extent, especially when used in conjunction with
localization predictions. On the other hand metals, which
are in direct competition with the more abundant disul-
fide bonds, are harder to refine. We presented a simple
and natural re-weighting strategy to alleviate this issue.

The task would be further helped by better localization
predictions, which tend to improve the distribution of
disulfide bridges, as shown by the experiments with true
subcellular localization.
We compared our refinement pipeline with two alter-

natives based on state-of-the-art sequential prediction
methods, Hidden Markov Support Vector Machines and
Bidirectional Recursive Neural Networks. These methods
have two fundamental advantages: they are run through
a full-blown training procedure, and are only asked to
refine the two sequential features, a task for which they
are highly specialized. However, the results show that they
tend to favor the easier task (disulfide bridges) over the
other, struggling to achieve the same results of the baseline
on the harder task (metals). On the contrary, our method
is more general, and does not favor one task at the expense
of the others.
Our framework is designed to be very general, with the

goal of refining arbitrary sets of existing predictors for cor-
related features, such as Distill [6] and PredictProtein [8],
for which re-training is difficult or infeasible. As a conse-
quence, our framework does not require any change to the
underlying predictors themselves, only requiring that they
provide an estimated reliability for their predictions.

Methods
Predictors
Disulfind [14] is a web server for the prediction of disul-
fide bonding state and binding geometry from sequence
alone. Like other tools for the same problem, Disulfind
splits the task in two simpler sub-problems as follows.
First an SVM binary classifier is employed to indepen-
dently infer the bonding state of each cysteine in the
input chain. The SVM is provided with both local and
global information. Local information includes a window
of position-specific conservations derived from multiple
alignment, centered around each target cysteine. Global
information represent global features of the whole chain,
such as length, amino acid composition, and average cys-
teine conservation. Then a bidirectional recursive neural
network (BRNN) is used to collectively refine the possi-
bly incorrect SVMpredictions, assigning a revised binding
probability to each cysteine.
Finally, the predictions are post-processed with a simple

finite-state automaton to enforce an even number of pos-
itive disulfide bonds. For the technical details, see Vullo et
al. [37].
MetalDetector [29] is a metal bonding state classifier,

whose architecture is very similar to Disulfind. It is split
in two stages, an SVM classifier for local, independent
per-residue
Loctree [13] is a multiclass subcellular localization pre-

dictor based on a binary decision tree of SVM nodes.
The topology of the tree mimics the biological structure

Teso and Passerini BMC Bioinformatics 2014, 15:16 Page 12 of 14
http://www.biomedcentral.com/1471-2105/15/16

of the cellular protein sorting system. It is designed to
predict the subcellular localization of proteins given only
their sequence, and uses multiple input features: a multi-
ple alignment step is performed against a local, reduced
redundancy database of UniProt proteins, and makes use
of a stripped, specially tailored version of Gene Ontol-
ogy vocabulary terms to improve its performance. It also
uses psort 3.0 [38]. The predictor incorporates three dis-
tinct topologies, one for each of the considered kingdoms:
prokaryotes, eukariotic plants (viridiplantae), eukariotic
non-plants (metazoa).

First-order logic background
For the purpose of this paper, first-order logic formulae
are used to construct a relational representation of the fea-
tures of interest, their mutual constraints, and to perform
probabilistic-logical reasoning on them. Some definitions
are in order.
A formula can be constructed out of four syntactical

classes: constants, which represent fixed objects in the
domain (e.g., “PDB1A1IA”); variables, which are place-
holders for constants (e.g., “protein”); functions, which
map a tuple of objects to another object (not needed
in our case); and predicates, which describe properties
of objects (e.g., “ IsDis(p,n)”), or relations between
objects. Constants, variables are terms, and so are pred-
icates applied to a tuple of terms. If a term contains no
variables, it is said to be ground.
Predicates are assigned a truth value (True or False)

which specifies whether the property/relation is observed
to hold or not. An atom is a predicate applied to a tuple
of terms. A formula is recursively defined as being either
an atom, or as a set of formulae combined through logi-
cal connectives (negation !, conjunction ∧, disjunction ∨,
implication ⇒, and equivalence ⇔) or quantifiers (exis-
tential ∃ or universal ∀). A formula F containing a refer-
ence to a variable x can be used to build ∀x.F, which is
true iff F is true for all possible values of x in the domain,
and ∃x.F, which is true iff F is true for at least one value of
x. A formula F whose variables have all been replaced by
constants is called a grounding of F.
An interpretation or (possible) world is an assignment

of truth values to all ground atoms. A collection of implic-
itly conjoined formulae KB =

∧
i Fi is a knowledge base,

and can be seen as a single big formula. Logical inference
is the problem of determining whether a knowledge base
KB entails a given formula Q, written KB |= Q, which is
equivalent to asking whether the formula Q is true in every
interpretation (world) where KB is true.
Whenever any two formulae in a KB are in contradic-

tion, the knowledge base admits no interpretation at all.
This is an issue when reasoning over conflicting facts
taken from unreliable information sources, as is often the
case for biological information.

Grounding-specific Markov logic networks
A Markov Logic network (MLN) [11], is a method to
define a probability distribution over all possible worlds
(truth assignments) of a set of formulae allowing to per-
form reasoning over possibly wrong or conflicting facts.
AMLN consists of a finite domain of objects (constants)

C and a knowledge base KB of logical rules. Each formula
Fi in KB is associated a real-valued weight wi, represent-
ing the confidence we have in that rule. Weights close to
zero mean that the formula is very uncertain, while larger
weights mean that it is likely to hold (if positive) or not
(if negative). Contrarily to pure FOL, in Markov Logic the
formulae in the KB are explicitly fallible; as a consequence,
Markov Logic admits interpretations that don’t satisfy all
the constraints.
Instantiating all the formulae in KB using all possible

combinations of constants in C leads to a grounding of
the knowledge base. As an example, if C consists of
three objects, a protein P and two cysteines at posi-
tion 4 and 19, and the knowledge base consists of
the formula DM = !(IsDis(p,n) ∧ IsMet(p,n)),
then the grounding will be the set of ground formu-
lae: {DM(P,4),DM(P,19)}. A possible world is a truth
assignment of the grounding of KB. Markov Logic defines
a way to assign to each possible world a probabil-
ity, determined by the weight of the formulas that it
satisfies.
A MLN defines a joint probability distribution over

the set of interpretations (i.e. truth assignments) of the
grounding of KB. In the previous example, if the for-
mula DM has a positive weight, then the assignment
DM(P,4) ∧ DM(P,19) will be the most likely, while
! DM(P,4)∧!DM(P,19) will be the least likely, with the
other possible worlds standing in between. In addition, if
an assignment satisfies a formula with a negative weight,
it becomes less likely.
Given a set of ground atoms x of known state, and a

set of atoms y whose state we want to determine, we can
define the conditional distribution generated by a MLN as
follows:

p(y |x ; w) = 1
Z(x)

exp
∑

Fi∈KB
wini(x,y)

Here ni(x,y) counts how many times the formula Fi
is satisfied by groundings of world (x,y), and Z(x) is a
normalization term. In other words, the above formula
says that the probability of y being in a given state is
proportional to the weighted number of formulae in KB
that the interpretation (x, y) satisfies. We can query a
MLN for the most likely state of the unknown predicates
y from the known facts x by taking the truth assignment
of y that maximizes the above conditional probability. See
Richardson et al. [11] for a full-length description.

Teso and Passerini BMC Bioinformatics 2014, 15:16 Page 13 of 14
http://www.biomedcentral.com/1471-2105/15/16

An issue with standard Markov Logic is that distinct
groundings of the same formula Fi are assigned the same
weight wi. This is not the case for our raw predictions,
which are specific for each protein (e.g. subcellular local-
ization) or each residue within a protein (e.g. metal or
disulfide bonding state).
To overcome this issue, we make use of grounding-

specific Markov Logic Networks (gs-MLN), introduced
in Lippi et al. [12], an extension that adds the ability of
specifying per-grounding weights. The idea is to substi-
tute the fixed per-formula weight w with a new function ω

that depends on the particular grounding. The conditional
distribution is modified to be of the form:

p(y|x; θ) = 1
Z(x)

exp
∑

Fi∈KB

∑

g∈G(Fi)

ω(g, θi)nij(x, y)

Here the variable g ranges over all satisfied groundings
of formula Fi, and the function ω evaluates the weight of
the given grounding g according to a set of per-formula
parameters θi.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
ST implemented the framework and ran the experiments. AP provided the
original idea and supervised the experiments. ST and AP both wrote and
revised the manuscript. Both authors read and approved the final manuscript.

Acknowledgements
The authors would like to thank the Rost Lab for providing the LocTree,
Disulfind, and MetalDetector predictors in their package repository; and the
anonymous reviewers for their insightful comments. This research was
partially supported by grant PRIN 2009LNP494 (Statistical Relational Learning:
Algorithms and Applications) from Italian Ministry of University and Research.

Received: 3 September 2012 Accepted: 6 November 2013
Published: 15 January 2014

References
1. Juncker A, Jensen L, Pierleoni A, Bernsel A, Tress M, Bork P, Von Heijne G,

Valencia A, Ouzounis C, Casadio R, et al.: Sequence-based feature
prediction and annotation of proteins. Genome Biol 2009, 10(2):206.

2. Toscano M, Woycechowsky K, Hilvert D:Minimalist active-site
redesign: teaching old enzymes new tricks. Angew Chem Int Ed 2007,
46(18):3212–3236.

3. Bromberg Y, Rost B: SNAP: predict effect of non-synonymous
polymorphisms on function. Nucleic Acids Res 2007, 35(11):3823–3835.

4. Bush R, et al.: Predicting adaptive evolution. Nat Rev Genet 2001,
2(5):387–391.

5. Radivojac P, Obradovic Z, Smith DK, Zhu G, Vucetic S, Brown CJ,
Lawson JD, Dunker AK: Protein flexibility and intrinsic disorder. Protein
Sci 2004, 13:71–80.

6. Baú D, Martin A, Mooney C, Vullo A, Walsh I, Pollastri G: Distill: a suite of
web servers for the prediction of one-, two-and three-dimensional
structural features of proteins. BMC Bioinformatics 2006, 7:402.

7. Sobolev V, Eyal E, Gerzon S, Potapov V, Babor M, Prilusky J, Edelman M:
SPACE: a suite of tools for protein structure prediction and analysis
based on complementarity and environment. Nucleic Acids Res 2005,
33(suppl 2):W39–W43.

8. Rost B, Yachdav G, Liu J: The predictprotein server. Nucleic Acids Res
2003, 31(13):3300–3304.

9. Maes F, Becker J, Wehenkel L: Iterative multi-task sequence labeling
for predicting structural properties of proteins. In 19th European
Symposium on Artificial Neural Networks (ESANN). 2011.

10. Yip K, Kim P, McDermott D, Gerstein M:Multi-level learning: improving
the prediction of protein, domain and residue interactions by
allowing information flow between levels. BMC Bioinformatics 2009,
10:241.

11. Richardson M, Domingos P:Markov logic networks.Mach Learn 2006,
62:107–136.

12. Lippi M, Frasconi P: Prediction of protein β-residue contacts by
Markov logic networks with grounding-specific weights.
Bioinformatics 2009, 25(18):2326–2333.

13. Nair R, Rost B:Mimicking cellular sorting improves prediction of
subcellular localization. J Mol Biol 2005, 348:85–100.

14. Ceroni A, Passerini A, Vullo A, Frasconi P: DISULFIND: a disulfide
bonding state and cysteine connectivity prediction server.
Nucleic Acids Res 2006, 34(suppl 2):W177–W181.

15. Lippi M, Passerini A, Punta M, Rost B, Frasconi P:MetalDetector: a web
server for predicting metal-binding sites and disulfide bridges in
proteins from sequence. Bioinformatics 2008, 24(18):2094–2095.

16. Jiang JQ, Wu M: Predicting multiplex subcellular localization of
proteins using protein-protein interaction network: a comparative
study. BMC bioinformatics 2012, 13(Suppl 10):S20.

17. Wedemeyer W, Welker E, Narayan M, Scheraga H: Disulfide bonds and
protein folding. Biochemistry 2000, 39(15):4207–4216.

18. Sevier CS, Kaiser CA: Formation and transfer of disulphide bonds in
living cells. Nat Rev Mol Cell Biol 2002, 3(11):836–847.

19. Hogg PJ: Disulfide bonds as switches for protein function.
Trends Biochem Sci 2003, 28(4):210–214.

20. Degtyarenko K: Bioinorganic motifs: towards functional classification
of metalloproteins. Bioinformatics 2000, 16(10):851–864.

21. Rietsch A, Beckwith J: The genetics of disulfide bondmetabolism.
Annu Rev Genet 1998, 32:163–184.

22. Savojardo C, Fariselli P, Alhamdoosh M, Martelli P, Pierleoni A, Casadio R:
Improving the prediction of disulfide bonds in Eukaryotes with
machine learning methods and protein subcellular localization.
Bioinformatics 2011, 27(16):2224–2230.

23. Pierleoni A, Martelli P, Fariselli P, Casadio R: BaCelLo: a balanced
subcellular localization predictor. Bioinformatics 2006,
22(14):e408–e416.

24. Islam MM, Yao X, Murase K: A constructive algorithm for training
cooperative neural network ensembles. Neural Netw, IEEE Trans 2003,
14(4):820–834.

25. Pollastri G, Przybylski D, Rost B, Baldi P: Improving the prediction of
protein secondary structure in three and eight classes using
recurrent neural networks and profiles. Proteins: Struct, Funct,
Bioinformatics 2002, 47(2):228–235.

26. Berman H, Westbrook J, Feng Z, Gilliland G, Bhat T, Weissig H, Shindyalov
I, Bourne P: The protein data bank. Nucleic Acids Res 2000, 28:235–242.

27. Griep S, Hobohm U: PDBselect 1992–2009 and PDBfilter-select.
Nucleic Acids Res 2010, 38(suppl 1):D318–D319.

28. Kabsch W, Sander C: Dictionary of protein secondary structure:
pattern recognition of hydrogen-bonded and geometrical features.
Biopolymers 1983, 22(12):2577–2637.

29. Passerini A, Punta M, Ceroni A, Rost B, Frasconi P: Identifying cysteines
and histidines in transition-metal-binding sites using support
vector machines and neural networks. Proteins: Struct, Funct,
Bioinformatics 2006, 65(2):305–316.

30. Guo T, Hua S, Ji X, Sun Z: DBSubLoc: database of protein subcellular
localization. Nucleic Acids Res 2004, 32(suppl 1):D122–D124.

31. Bairoch A, Apweiler R, Wu C, Barker W, Boeckmann B, Ferro S, Gasteiger E,
Huang H, Lopez R, Magrane M, et al.: The universal protein resource
(UniProt). Nucleic Acids Res 2005, 33(suppl 1):D154–D159.

32. Martin A:Mapping PDB chains to UniProtKB entries. Bioinformatics
2005, 21(23):4297–4301.

33. https://www.rostlab.org/owiki/index.php/Packages.
34. Altun Y, Tsochantaridis I, Hofmann T, et al.: Hiddenmarkov support

vector machines. In 20th International Conference onMachine Learning
(ICML). 2003.

35. Schuster M, Paliwal KK: Bidirectional recurrent neural networks.
Signal Process IEEE Trans 1997, 45(11):2673–2681.

https://www.rostlab.org/owiki/index.php/Packages

Teso and Passerini BMC Bioinformatics 2014, 15:16 Page 14 of 14
http://www.biomedcentral.com/1471-2105/15/16

36. Frasconi P, Gori M, Sperduti A: A general framework for adaptive
processing of data structures. IEEE Trans Neural Netwo 1998, 9:768–786.

37. Vullo A, Frasconi P: Disulfide connectivity prediction using recursive
neural networks and evolutionary information. Bioinformatics 2004,
20(5):653–659.

38. Dyrløv Bendtsen J, Nielsen H, von Heijne G, Brunak S: Improved
prediction of signal peptides: SignalP 3.0. J Mol Biol 2004,
340(4):783–795.

doi:10.1186/1471-2105-15-16
Cite this article as: Teso and Passerini: Joint probabilistic-logical refinement
of multiple protein feature predictors. BMC Bioinformatics 2014 15:16.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

	Abstract
	Background
	Results
	Conclusions

	Background
	Overview of the proposed method
	Related work

	Results and discussion
	Data preparation
	Evaluation procedure
	Raw predictions
	Alternative refinement pipelines
	True subcellular localization
	Predicted subcellular localization
	Predicted subcellular localization with predictor reliability

	Conclusions
	Methods
	Predictors
	First-order logic background
	Grounding-specific Markov logic networks

	Competing interests
	Authors' contributions
	Acknowledgements
	References

