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Abstract

Background: Prioritizing genetic variants is a challenge because disease susceptibility loci are often located in
genes of unknown function or the relationship with the corresponding phenotype is unclear. A global data-mining
exercise on the biomedical literature can establish the phenotypic profile of genes with respect to their connection
to disease phenotypes. The importance of protein-protein interaction networks in the genetic heterogeneity of
common diseases or complex traits is becoming increasingly recognized. Thus, the development of a network-based
approach combined with phenotypic profiling would be useful for disease gene prioritization.

Results: We developed a random-set scoring model and implemented it to quantify phenotype relevance in a
network-based disease gene-prioritization approach. We validated our approach based on different gene phenotypic
profiles, which were generated from PubMed abstracts, OMIM, and GeneRIF records. We also investigated the validity
of several vocabulary filters and different likelihood thresholds for predicted protein-protein interactions in terms of
their effect on the network-based gene-prioritization approach, which relies on text-mining of the phenotype data.
Our method demonstrated good precision and sensitivity compared with those of two alternative complex-based
prioritization approaches. We then conducted a global ranking of all human genes according to their relevance to
a range of human diseases. The resulting accurate ranking of known causal genes supported the reliability of our
approach. Moreover, these data suggest many promising novel candidate genes for human disorders that have a
complex mode of inheritance.

Conclusion: We have implemented and validated a network-based approach to prioritize genes for human
diseases based on their phenotypic profile. We have devised a powerful and transparent tool to identify and rank
candidate genes. Our global gene prioritization provides a unique resource for the biological interpretation of data
from genome-wide association studies, and will help in the understanding of how the associated genetic variants
influence disease or quantitative phenotypes.
Background
Genome-wide association studies (GWAS) have been
successful in the discovery of many novel genetic variants
associated with human diseases. However, identifying
the causative variant(s) is still a daunting task, as the
mechanisms through which the variants influence
disease or quantitative phenotypes are often unclear,
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particularly when the associated genes are of unknown
function or have no clear connection to disease biology.
Network-based approaches to prioritize candidate genes
associated with human diseases have been proposed in a
number of studies [1-6]. They build on the idea that muta-
tions in the same gene or mutations in different members
of a gene complex, which here are defined as a set of
genes sharing (the deleted) functional identity, may lead to
similar disease phenotypes. The functional identity of a
gene complex can be co-expression patterns, or functional
association of proteins in physical complexes or in
td. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,

mailto:jiang@cbs.dtu.dk
mailto:pso@mbg.au.dk
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/


Jiang et al. BMC Bioinformatics 2014, 15:315 Page 2 of 13
http://www.biomedcentral.com/1471-2105/15/315
pathways. This means that, once a gene complex with
members involved in one disease has been identified,
the other members of the complex become candidates
for having a biological relationship with the same
disease.
Thus, a method of disease gene prioritization is to

search for genes or gene complexes that have a pheno-
typic profile similar to the phenotypic profile of the
target disease. The disease phenotype can be described
as the disease characteristics such as pathogenesis and
clinical features. Biomedical records in the life sciences
(e.g., OMIM, GeneRIF, PubMed) provide reviewed facts
under a wide variety of biological conditions. A global
examination of biological textual data will thus establish
the phenotypic profile of genes with respect to their
connection to disease biology. The phenotypic profile of
a gene, referred to as the gene-associated phenotype,
can be obtained by large-scale text-mining of biomedical
records using information extraction and retrieval
techniques, and filtering the biomedical terms with
specific vocabularies such as that from the Unified
Medical Language System (UMLS) [7].
A potential bottleneck in phenotypic profiling using

text-mining of biomedical records is that currently the
candidate genes can be of unknown function or have no
clear connection to known disease biology. However,
network-based inference may partially alleviate this prob-
lem, because the phenotypic profile of a candidate gene
will be based on all phenotypes linked to the genes in a
protein complex that consists of physical interactions or
functional associations, rather than just to the gene itself.
This poses the need for a method that can summarize

the relevance signals between the disease and candidate
complex as a whole. Because the information to be inte-
grated in this approach (i.e., protein complexes, biomed-
ical text records, and associations between genes and
textual records) is frequently updated and the choice is
optional (e.g., the use of PubMed abstracts instead of
OMIM records), it also requires a method that easily
adapts to these factors. A promising method is based on a
random-set scoring model used for gene-set enrichment
analysis of genome-wide expression data [8]. It can be
used to compute a score per gene or per complex repre-
senting an overall enrichment signal for the association of
the candidate gene with the disease. It is computationally
fast [9] and it can be calibrated in a number of ways (e.g.,
few gene-associated phenotypes that are highly similar
to the disease phenotype or many gene-associated phe-
notypes moderately similar to the disease phenotype),
providing a flexible and powerful way to quantify the
relevance of the candidate gene to the disease.
The network-based phenotypic profile of a candidate

gene depends on several factors. These include the source
or the type of the biomedical records and the type of
vocabularies [9,10], such as Medical Subject Headings
(MeSH) [11] and International Classification of Diseases
(ICD), as well as the stringency of protein associations to
define the protein complexes. These factors may affect
disease gene prioritization regardless of the quantification
method used. Examining the influences of these factors
will provide a thorough evaluation of the prioritization
performance of the random-set scoring model.
The objectives of this study were 1) to implement and

validate a random-set scoring model to quantify the
disease relevance of genes in a network-based disease
gene-prioritization approach; 2) to investigate the influ-
ence on the model of protein association validity and the
type of gene-associated phenotypic profile; and 3) to apply
this model to identify and rank human genes on a genome-
wide scale according to their phenotypic relevance to a
wide range of human diseases.

Results
We implemented and validated a random-set scoring
model for a network-based gene prioritization approach.
This approach uses biomedical records (e.g., OMIM,
PubMed, and GeneRIF) as phenotypic profile for candi-
date genes to infer their association with diseases. The
candidate gene is prioritized as a gene complex based
on the physical and functional protein-protein interaction
(PPI) network from STRING [12-18]. We validated our
approach using the known disease and gene relationships
in the OMIM database. Several of the key factors in the
prioritization approach were investigated including the
influence of the PPI confidence score threshold, distinct
sources of gene-associated phenotypes and different vo-
cabularies. We also compared the prioritization ability
of the random-set scoring model with two alternative
network-based prioritization approaches. Finally, the ap-
proach was used for a global ranking of all human genes
according to their relevance for a range of human diseases
in OMIM.

Influence of protein-protein interaction (PPI) confidence
scores
We investigated the influence of protein complexes de-
fined with different confidence thresholds on the per-
formance of our network-based prioritization approach.
The prioritization was examined with various confidence
scores (500–990) of protein complexes, corresponding to
different levels (median to high) of PPI quality (0.75–0.99)
in STRING. The result (Figure 1) showed that, at the
maximum Matthews correlation coefficient (MCC) (see
Additional file 1), the precision of the method increased
from 0.18 to 0.59, positively correlated with the PPI
confidence scores. The sensitivity (recall) of the method
was consistent, ranging between 0.31 and 0.34, using
various protein complexes; only when the confidence



Figure 1 Performance of the approach using different protein-protein interaction (PPI) confidence score thresholds. The influence of
different PPI thresholds on the precision (red) and recall (black) is shown. The precision (y-axis) and recall (y-axis) were determined for each PPI
threshold (x-axis) at the maximal Matthews correlation coefficient (MCC).
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threshold was relaxed to 500 or restricted to 990 did the
sensitivity increase to 0.38 and decrease to 0.26, respect-
ively. We then compared the number of highly ranked
causal genes for different PPI confidence thresholds
(Figure 2). The proportion of causal genes that could be
ranked in the top one (top five) was between 0.28 (0.58)
and 0.48 (0.77). Increasing the PPI confidence threshold
led to a larger percentage of causal genes being highly
ranked. However, with higher PPI confidence scores the
proportion of causal genes that could be prioritized
decreased from 0.89 to 0.45, primarily because of the
availability of PPIs dependent on the confidence thresh-
olds (see Additional file 1).

Influence of gene-associated phenotype sources and
phenotype vocabulary filters
The biomedical records from three different databases
(OMIM, PubMed, and GeneRIF) together with four
vocabulary filters (MeSH, ICD ninth revision, clinical
modification (ICD9CM), Gene Ontology (GO), and Se-
mantic Type (STY) defined 12 sets of phenotypic profiles
(see Additional file 1). Our overall evaluation showed that
the random-set scoring model was an accurate and reli-
able predictor for disease gene prioritization. The area
under the receiver operating characteristic (ROC) curve
(AUC) was between 0.70 and 0.90 (Figure 3 and Table 1)
for all the phenotypic profiles. Prioritization performance
went in decreasing order for OMIM, PubMed, and
GeneRIF. For the vocabulary filters, STY and MeSH
were superior to ICD9CM and GO in revealing disease
gene associations. The best performance, with an AUC
of 0.85–0.90 (Table 1), was based on using OMIM
records or PubMed abstracts with STY or MeSH.
The gene prioritizations were consistent across differ-

ent phenotypic profiles. For example, our model ranked
50% (OMIM), 40% (PubMed), and 40% (GeneRIF) of the
prioritized causal genes as the top candidates (Additional
file 1: Table S10) according to the different phenotypic
profiles (MeSH terms). Impressively, at least 57% of these
cases were accurately predicted by all types of biomedical
records. When taking only the causal genes that were
ranked in the top five, the proportion was even higher
(75%). When examining the prioritization results from
any two phenotypic profiles, the common set of top-
ranked causal genes accounted for a minimum of 39–82%
between biomedical records, and 28–91% between vo-
cabulary filters (Additional file 1: Tables S8 and S9). When
applying protein complexes defined by different stringen-
cies, the prioritization was generally more robust between
two similar confidence scores than between two that were
substantially different from each other (e.g., between 500
and 990) (Additional file 1: Figure S4).



Figure 3 Receiver operating characteristic (ROC) curves of prioritizations using different phenotype sources and vocabulary filters.
Each ROC curve represents the prioritization performance when combining a specific gene-associated phenotype with a vocabulary filter. The
phenotype sources were OMIM (brown), PubMed (green), and GeneRIF (purple). The vocabulary filters were STY, MeSH, ICD9CM, and GO (colored
from dark to light accordingly).

Figure 2 Influence of protein-protein interaction (PPI) thresholds on the prioritization of causal genes in the test sets. The proportion
(y-axis) of prioritized test-sets where causal genes were ranked within the top five (black) or top one (red) is shown according to different PPI
confidence score thresholds (x-axis).
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Table 1 Comparison of AUC (area under the curve), precision, and recall using different sources for the gene-associated
phenotypes and phenotype vocabulary filters

OMIM PubMed GeneRIF

AUC Precision Recall AUC Precision Recall AUC Precision Recall

STY 0.90 0.52 0.48 0.87 0.40 0.43 0.82 0.40 0.32

MeSH 0.89 0.48 0.49 0.85 0.36 0.38 0.83 0.36 0.37

ICD9CM 0.81 0.31 0.38 0.75 0.31 0.28 0.71 0.35 0.19

GO 0.82 0.38 0.30 0.73 0.32 0.18 0.71 0.23 0.19

AUC, area under the curve.
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Comparison with other methods
We compared the prioritization ability of our random-set
scoring model with that of two other network-based
prioritization approaches that rely on gene-associated
phenotypic profiles: a Bayesian prediction model pro-
posed by Lage et al. [4] and a regression prediction
model, CIPHER-DN, proposed by Wu et al. [6]. We esti-
mated the recall and precision specifically for these
comparisons using our matching test-sets. One group
consisted of 84% (1177/1404) of the test cases from
Lage et al. and the other consisted of 83% (1193/1444)
of the test cases from Wu et al. The protein networks
used in these approaches were restricted to protein
interaction data that did not include the co-occurrence
of genes in the biomedical literature. Our approach is
based on protein complexes retrieved from the STRING
database, which integrates both physical interactions
and predicted protein associations based on multiple
information sources, including text-mining of PubMed
records for the co-occurrence of two genes. To assess
the influence of gene co-occurrence in the literature, we
recalculated the PPI confidence scores independent of
the text-mining evidence (see Additional file 1). Table 2
shows the prioritization performance of the three differ-
ent approaches. Our model demonstrated higher recall
(0.43 versus 0.21) and higher precision (0.56 versus 0.45)
than the Bayesian prediction approach. When adding the
predicted interactions based on text-mining of the bio-
medical literature, the superiority of our method became
more obvious. Our approach worked almost equally as
well as the regression prediction approach (recall: 0.57 vs.
0.55; precision: 0.52 vs. 0.55) when the evidence from
text-mining was included. When the protein complexes
Table 2 Comparison with other network-based approaches

Testing sets Evaluation metrics Random-set scoring model

*PPI evidence incl. co-mention

Bayesian Recall 0.55

Precision 0.58

Regression Recall 0.57

Precision 0.52

*PPI, protein-protein interaction.
were defined excluding the text-mining evidence, we ob-
served a decrease in recall whereas precision remained
largely unaffected.

Global ranking of human genes according to their disease
relevance
We performed a genome-wide phenotypic screen (Additional
file 1 in project website) on 19,032 human genes to predict
their relevance to a range of disorders represented in the
OMIM database (3053 phenotype descriptions). For many
of these disorders, the molecular basis is known and does
not represent a unique locus. We pinpointed the respon-
sible causal gene for the corresponding disorder as the top
candidate in 8% of known heterogeneous relationships. We
observed that 66% of causal loci were ranked in the top 1%
across the whole genome for causality with the associated
disorder. Our genome-wide predictions provide a global
ranking list, thus suggesting novel yet-to-be-validated can-
didate genes for a large number of human disorders.
We identified 680 (3.6%) genes that were ranked at

least once as the top candidate gene for another range of
(1921) OMIM phenotypes for which no susceptible loci
have been identified. The gene most frequently (78 times)
top-ranked (for 4% of the phenotypes) was catechol-O-
methyltransferase (COMT).
To evaluate the ability of our gene-prioritization

model to identify known disease genes as well as to
identify unknown susceptibility factors, we selected
two neurodegenerative disorders: amyotrophic lateral
sclerosis (ALS; OMIM id: 105400) and Parkinson disease
(PD; OMIM id: 168600). For both disorders, several causal
genes have been identified although additional genetic risk
factors remain to be found [19,20]. The positions of
Bayesian/regression method

PPI evidence excl. co-mention

0.43 0.21

0.56 0.45

0.43 0.30 − 0.55

0.47 0.73 − 0.55
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recognized disease genes according to the prioritization
model for each disease were identified. Thus, ten ALS-
associated genes SOD1 (position 9), FUS (position 34),
ANG (position 19), TARDBP (position 1), ALS2 (position 4),
VAPB (position 29), OPTN (position 190),VCP (position 46),
MAPT (position 32), C9ORF72 (position 126) were priori-
tized among the top 1%, while an additional four genes
(SETX (position 816), FIG 4 (position 1024), DAO (position
1441), SPG11 (position 1085) were among the top 7.5%.
One gene SIGMAR1 position 2809) occurred among the
top 15%, while only one of the known ALS-associated
genes, UBQLN2 (position 16068), failed to be highly priori-
tized by our approach. For PD, the six top-ranked genes,
ATP13A2 (position 1), LRRK2 (position 2), PINK1 (position
3), PARK2 also known as PRKN (position 4), PARK7also
known as DJ1 (position 5), and SNCA (position 6) are all
recognized disease genes, whereas additional genes linked
to PD, UCHL1 and HTRA2, were ranked in positions 10
and 138, respectively [21]. Among the highly prioritized
genes in which mutations have not yet been identified, we
observed a number of highly interesting genes, including
CCS (position 2), RNF19A (position 5), DERL1 (position 6),
and XRN2 (position 10) for ALS, and KLK6 (position 7),
SLC6A3 (position 8), and TPPP (position 9) for PD. The
possible pathogenic roles of these genes are dealt with in
the Discussion.

Discussion
We have implemented and validated a network-based
disease gene-prioritization approach using a random-set
scoring method. This approach prioritizes candidate
disease genes using protein complexes and text-mining
of the biomedical literature. We examined the influence
of the key parameters of the approach, including the
quality of the PPI information and the use of different
sources of gene-associated phenotypes and vocabulary
filters. Our implementation has a great transparency as
it relies on publicly available data including PPI from the
STRING database and biomedical publications from the
National Center for Biotechnology Information (NCBI)
databases. We used our approach to conduct a global
ranking of all human genes for phenotypic association
with a broad range of human diseases. These results pro-
vide a unique resource for the biological interpretation of
results from GWAS, and will help understand how the as-
sociated genetic variants influence disease or quantitative
phenotypes. Overall, we have shown that our network-
based approach provides a powerful and flexible tool to
identify and rank candidate disease genes.

Assessment of our network-based gene-prioritization
approach
Comparison of the random-set scoring method with the
Bayesian prioritization model [4] and the regression
prioritization model [6] sheds light on the overall perform-
ance of network-based gene-prioritization approaches. The
PPI data used in our study was from STRING, which is a
public and comprehensive database that integrates various
molecular interactions from other repositories including
MINT (Molecular INTeraction database) [22], HPRD
(Human Protein Reference Database) [23], and BIND
(Biomolecular Interaction Network Database) [24]. By
applying the original STRING data, we ensured the trans-
parency and reliability of our approach. The STRING data
includes both physical interactions and functional or pre-
dicted interactions derived from, for example, text-mining
of the biomedical literature. The usefulness of text-mining
of the biomedical literature in STRING is to enable
searching for the co-occurrence of two biological entities
(e.g., genes or proteins) in a textual context, and thereby
establish an association between them. In contrast, the
text-mining of the biomedical literature used in this study
for gene prioritization was to convert a text record into a
list of disease-relevant biomedical terms that phenotypic-
ally characterize the linked gene. These are two different
applications of text-mining techniques for biomedical text
data. Our result indicates that the use of text-mining in
identifying the co-occurrence of two genes in biomedical
text could provide new knowledge on PPIs, which could
improve disease gene identification.
Our scoring method is very similar to gene set enrich-

ment analysis (GSEA) commonly used in expression ana-
lyses where gene-level scores (i.e. differential expression
levels) are used for detecting the enrichment signal. In our
procedure the gene-level scores are correlations measur-
ing the similarity between text (an individual document or
a set of documents) linked to the gene and text linked to
the disease. A summary statistic is subsequently computed
by averaging the correlations of the genes to the disease
phenotype in the complex. The averaging is superior when
the gene being tested contains many gene-associated phe-
notypes that weakly correlates with the target disease
phenotype. This characteristic is in line with the hypothesis
that complex diseases or traits are influenced by multiple
genes and other environmental factors. Furthermore quite
a number of studies comparing various GSEA approaches
and gene set summary statistics show that the mean/sum
statistics used in our procedure yield overall very good
results [25]. We believe that contrary to other highly
parametric Bayesian approaches, that our random-set
scoring method is a simple, but robust approach for dis-
ease gene prioritization.

Influence of gene-associated phenotypes
Our approach has the option of choosing different types
of biomedical records for gene-associated phenotypes,
including those from OMIM, PubMed, and GeneRIF.
We showed that the source influenced the performance
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of the model. The use of OMIM records resulted in the
highest recall and precision when tested on the human
diseases present in the OMIM database. This was not
surprising because, using OMIM, the phenotype for the
genes and the disease comprised the same type of data;
OMIM is the primary source of phenotypic descriptions
for human diseases in similar network-based prediction
approaches [4,6]. However, these other studies did not
examine the effect of using other types of biomedical
literature. OMIM records are curated text that reviews
the relevant references, of which the majority is indexed
publications in the PubMed database. PubMed comprises
nearly half a million gene-phenotype associations that
involve more than 28,000 human genes. This suggests that
PubMed articles and abstracts provide global phenotypic
information for gene prioritization on a genome-wide
scale. Our results also support the importance and val-
idity of PubMed as the best source of gene-associated
phenotypes apart from OMIM. A great advantage of
PubMed (and GeneRIF) is that it is not restricted to
human studies, but also includes other organisms; the
phenotypic and genetic discoveries based on experimental
models (in, for example, the mouse) can provide great
insight into human diseases. PubMed may capture the
phenotype-genotype relationships more comprehensively
than OMIM does. This has important implications for
disease gene prioritization in livestock species [26], for
which only a limited number of phenotypic descriptions
have accumulated in disease databases (e.g., OMIA), al-
though many more gene-associated phenotypes may exist
in literature databases such as PubMed or GeneRIF. The
performance evaluation using the set of known causal
genes from OMIM could be potentially overestimated
even if the associations between a test gene and diseases
(including test disease) were excluded from validation
study. This is because the PubMed abstracts may contain
the information that a test gene is involved in a test dis-
ease (e.g. the association between the gene and disease
could be mentioned in abstracts linked to proteins that
interact with the protein encoded by the test gene). In
addition the prioritization could perform modest in dis-
covering novel disease genes, because these genes may
have limited information in terms of phenotypes and PPI.
Some study suggested using an older version of pheno-
typic source (e.g., PubMed) and newly discovered causal
genes, which would give less biased estimation of the
method [27] Alternatively, one can probably adjust the
semantic similarity between phenotypes according to the
publication years to control the bias.

Influence of the PPI interaction score
Protein complexes defined by high confidence PPI scores
increased the precision of our network-based disease
gene-prioritization approach. Thus, our results support
the fact that the genes likely leading to similar disorders
are strongly connected. Meanwhile, the recall was
maintained for most PPI confidence score thresholds
(600–950). However, further increasing the confidence
threshold reduced the number of genes for which a
candidate complex could be identified. The influence
of protein confidence score thresholds was stronger on
non-causal genes than on known causal genes in test.
This is likely because known disease genes are usually
better characterized and more frequently studied, and
therefore have more known protein-protein interactions.
Particularly, those disease genes which are also essential
genes show a strong trend to encode hub proteins [28].
Despite the high stringency, we could have included more
PPIs, particularly those non-physical functional associa-
tions predicted in STRING. In practice, this may help de-
tect less-studied disease genes. It is important to note that
our method is not limited to genes with known PPIs,
although our validation was entirely dependent on the
interaction partners of the causal genes. As long as the
gene itself has one or more gene-associated phenotypes,
we could quantify the association with any disease pheno-
type. This is a clear advantage compared with some exist-
ing network-based disease gene-prioritization approaches.
In particular, as more information about gene function
and PPI data become available, we expect that network-
based approaches will become ever more accurate and
sensitive in their ranking of candidate genes.

Global ranking of genes for human diseases in OMIM
We used our approach to generate a global ranking of
all human genes according to their relevance to a large
set of human diseases. These results provide a unique
resource for the biological interpretation of results from
GWAS and will help understand how the associated gen-
etic variants might influence disease or quantitative phe-
notypes. In addition, the global ranking profile (Additional
file 1 in project website) may help to identify a set of genes
encoding for the proteins in the protein complex that have
co-susceptibility/resistibility to a common set of disorders,
and similarly, disease clusters that share relevant/irrele-
vant genes.
For a more detailed assessment of the ability of the

gene-prioritization model to identify disease genes accur-
ately, as well as to identify unknown susceptibility factors,
we selected two complex disorders for closer scrutiny:
ALS and PD. ALS is a neurodegenerative disease, usually
of adult onset, caused by the loss of motor neurons in the
brain and spinal cord. ALS is clinically characterized by
progressive muscular paralysis, leading to respiratory
failure and death usually within five years of diagnosis.
A subgroup of ALS patients develops frontotemporal
dementia. ALS is predominantly a sporadic disease, while
10% of cases are familial. To date, 13 genes and two
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chromosomal loci have been linked to ALS, two genes
with ALS-frontotemporal dementia, and one gene with
ALS-Parkinsonism-dementia complex [19]. Ideally, a
prioritization model should rank all known causal
genes in the top positions, which is essentially what we
observed. Inspection of the prioritized genes showed
that ten genes associated with ALS occurred among
the top 1%, four genes were among the top 7.5%, one
was in the top 15%, and only one gene was poorly pri-
oritized. Importantly, the model also prioritized several
genes that have not yet been annotated as being associ-
ated with ALS. One such gene was CCS, which encodes
a copper chaperone for Cu, Zn-superoxide dismutase 1
(SOD1). CCS is essential for SOD1 activity because it
delivers the copper cofactor to the enzyme and pro-
motes oxidation of an intra-subunit disulfide bond,
which is important for the structural stability of SOD1.
SOD1 mutations are responsible for up to 20% of the
hereditary forms of ALS, and a hallmark of both familial
and sporadic cases of ALS is aggregates of misfolded
SOD1 protein [29]. Ccs-null mice have markedly reduced
Sod1 activity and, like Sod1-knockout mice, exhibit re-
duced fertility and an increased sensitivity to paraquat
[30]. Furthermore, Ccs-deficient mice showed an increased
loss of motor neurons after facial nerve axotomy, similar to
Sod1 mutants [31]. Intriguingly, loss of Ccs did not affect
the time of onset or progression of motor neuron disease in
Sod1 mutants, whereas in contrast, over-expression of
Ccs in a Sod1-mutant background strongly accelerated
neurological disease. This occurred without the formation
of insoluble Sod1 aggregates, but generated a markedly
mitochondrial pathology, suggesting that Ccs may
modulate disease progression by affecting the subcellular
distribution of Sod1 between the cytosol and mitochon-
dria [32,33].
Another putative disease gene that might be linked to

ALS is XRN2, which was ranked at position 10. The
Xrn2 protein possesses 5′–3′ exoribonuclease activity and
is involved in the termination of transcription. Behind the
elongating RNA II polymerase, the nascent transcript
forms RNA-DNA hybrid structures (R-loops), in particu-
lar in the G-rich pause sequences downstream of the poly
(A) signal. The R-loops are subsequently resolved by the
RNA/DNA helicase activity of senataxin, which is encoded
by the ALS-related disease gene SETX [34]. This is a
critical step because it allows the Xrn2 exoribonuclease
to degrade the transcript from the free 5′ end generated
by cleavage of the RNA at the poly(A) site, leading to
transcriptional termination and the release of free RNA
polymerase II [35]. The neurodegenerative mechanisms
associated with mutations in SETX, and possibly also
XRN2, are presently not understood. It is noteworthy,
however, that Xrn2 has been shown to interact with
TDP43, which is also involved in various aspects of RNA
transcription and processing [36]. Mutations in the gene
encoding TDP43, TARDBP, have been found in both fa-
milial and sporadic ALS [37]. Together, these observations
support the notion that aberrant RNA processing plays a
role in ALS pathogenesis [38].
Failure to fold newly synthesized proteins in the endo-

plasmic reticulum (ER) can result in the accumulation of
misfolded proteins in the lumen, which activates ER
stress signaling to protect the cell from the adverse effects
of protein accumulation or aggregation [39]. For example,
protein mutations may prevent their correct folding,
which leads to retrotranslocation of the terminally mis-
folded proteins into the cytosol, where they are subjected
to ubiquitin-dependent degradation in the proteasome,
a process known as ER-associated degradation (ERAD).
However, prolonged activation of ER stress may induce
cell death by apoptosis, and the ER stress response has
been shown to be involved in the pathogenesis of a
number of different diseases, including SOD1-related
ALS [40]. Interestingly, two of the genes that were priori-
tized by our pipeline, DERL1 and RNF19A, are implicated
in the ERAD response to SOD1 mutations. Thus, DERL1
or derlin 1 (position 6) is most likely a component in the
channel responsible for the retrotranslocation of proteins
across the ER membrane, and derlin 1 has been demon-
strated to interact specifically with mutated SOD1, appar-
ently leading to the inhibition of ERAD and the induction
of apoptotic death in motor neurons [41]. Likewise,
the RNF19A gene product dorfin (position 5) is also
implicated in protein degradation by virtue of its
ubiquitin-ligase activity. Dorfin selectively ubiquitinates and
degrades mutated Sod1 in a dorfin-mediated ubiquitin-
proteasome pathway, thereby protecting neuronal cells
against the toxic effects of mutated Sod1 [42]. Furthermore,
overexpression of dorfin in a mouse model of ALS reduced
the number of Sod1 aggregates in the spinal cord, reduced
motor neuron degeneration, and increased the life-span
of the mutant mice [43]. Finally, dorfin colocalizes with
valosin-containing protein (VCP) in Lewy body-like in-
clusions composed of ubiquitinylated protein aggregates
in both ALS and PD. The two proteins interact and the
ATPase activity of VCP contributes to the ubiquitin ligase
activity of dorfin [44]. Notably, mutations in VCP are
associated with ALS [45]. Taken together, the tight associ-
ation of derlin 1 and dorfin with the ER stress response
and degradation of mutant Sod1 makes them strong can-
didates for ALS susceptibility.
PD is characterized by slow movements, rigidity, im-

paired balance, and tremor at rest, and the pathological
hallmarks include degeneration of dopaminergic neurons
in the substantia nigra and accumulation of protein
inclusions or Lewy bodies within nerve cells of the
substantia nigra and several other brain regions [21]. In
addition to correctly identifying known disease-linked
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genes, our computational approach prioritized three
unrecognized genes among the top ten candidates.
Among these was KLK6, also called neurosin, which
encodes a serine protease primarily expressed in ner-
vous tissue. Interestingly, neurosin is able to degrade
alpha-synuclein, which is a major constituent of Lewy
bodies in the brains of PD patients as well as one of the
known disease genes. Thus, fragmentation of alpha-
synuclein by neurosin inhibits the polymerization and
aggregation of alpha-synuclein, suggesting that neurosin
may play a role in pathogenesis [46]. Our model further
suggested an involvement for SLC6A3, a dopamine trans-
porter, an obvious candidate risk factor considering that
PD is associated with the loss of dopaminergic neurons.
Indeed, loss-of-function mutations in SLC6A3 have
recently been linked to a complex movement disorder
involving infantile Parkinsonism and dystonia [47,48]. Fi-
nally, the TPPP gene, encoding the tubulin polymerization-
promoting protein or p25alpha, was top-ranked on the
candidate gene list for PD. The TPPP gene is specifically
expressed in the brain; its exact biological function is
unknown but it seems to modulate the organization and
dynamics of the microtubular network by interacting
with tubulin [49]. Interestingly, p25alpha is primarily
expressed in oligodendrocytes; however, abnormal expres-
sion has been observed in affected nerve cells in PD and
Lewy body dementia. Furthermore, p25alpha promotes
the aggregation of alpha-synuclein and co-localizes with
alpha-synuclein in neuronal Lewy body inclusions. This
indicates that dysregulated expression of TPPP may
contribute to an increased risk of PD [50].

Conclusions
We have implemented and validated a network-based
approach to prioritize genes for human diseases based
on their phenotypic profile. We have devised a powerful
and transparent tool to identify and rank candidate
genes. Our global gene prioritization provides a unique
resource for the biological interpretation of data from
genome-wide association studies, and will help in the
understanding of how the associated genetic variants
influence disease or quantitative phenotypes.

Methods
Network-based gene-prioritization approach
The prioritization approach works as follows. For each
candidate gene, a candidate complex is determined from
PPI data in STRING. Each gene in the complex is then
linked to its biomedical text records in the OMIM,
PubMed, or GeneRIF databases. Text-mining is used to
convert the biomedical text into a vocabulary list based
on the UMLS. For each gene, the result is a vector of
weighted counts of occurrence of each of the UMLS
terms present in the biomedical text record. This vector
defines a standardized gene-associated phenotype. Vectors
for standardized disease phenotypes are determined in a
similar way. In both cases, the terms used can be limited
to specific vocabularies by applying different vocabulary
control filters (e.g., MeSH, GO). A disease relevance score
for each candidate gene is computed from the pair-wise
semantic similarities between the disease phenotype and
each of the gene-associated phenotypes in the complex. A
random-set scoring model is used to calculate the disease
relevance score. The random-set scoring model gives a
z-score per gene complex that represents an overall
enrichment signal for the association of the candidate
gene with the disease. The z-score is used to determine
whether the gene is associated with the disease, and is
used to rank/compare genes for their disease relevance.

Website
More information regarding this network-based approach
can be found on the project website at https://djfextranet.
agrsci.dk/sites/txtphenome/public/Pages/front.aspx. This
site contains the R-package txtPhenome and data pack-
ages containing processed data from OMIM, GeneRIF,
and PubMed, and genome-wide ranking of genes for
relevance to OMIM disorders (Additional file 1). txtPhenome
contains functions for dealing with the data in the
data packages.

Disease and gene-associated phenotypes
Disease and gene-associated phenotypes were obtained
from text-mining of the biomedical text data (OMIM,
GeneRIF, PubMed records). The phenotypic profile of
the disease, referred to as the disease phenotype, was
obtained from OMIM records, which include a textual
description of the disease characteristics such as patho-
genesis and clinical features. The biomedical text records
linked to human Entrez gene identifiers were from three
repositories: 1) the text field of OMIM records; 2) the
titles and abstracts of PubMed articles; and 3) the text
field of GeneRIF records. The links between the specific
Entrez gene identifiers and the biomedical text records
were obtained from the NCBI (ftp://ftp.ncbi.nih.gov/gene/
DATA/). Additional file 1: Table S11 shows an overview of
the biomedical records and the links to the genes in
different repositories.

Text-mining of biomedical records
The text field of the biomedical records from OMIM,
PubMed, or GeneRIF was processed through the text-
mining program MMTx (version V2.4.C) [51]. Each
document was mapped into to a set of UMLS (release
version: 2009AA) concepts/terms. UMLS is a metathe-
saurus comprising various vocabularies (58 sources in
version 2009AA) including MeSH, ICD9CM, and GO.
In addition, the UMLS defines 135 semantic types,

https://djfextranet.agrsci.dk/sites/txtphenome/public/Pages/front.aspx
https://djfextranet.agrsci.dk/sites/txtphenome/public/Pages/front.aspx
ftp://ftp.ncbi.nih.gov/gene/DATA/
ftp://ftp.ncbi.nih.gov/gene/DATA/
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which provide a consistent categorization of all con-
cepts represented in the UMLS metathesaurus. The set
of UMLS concepts obtained from each document was
filtered in one of two ways: (1) by a specific vocabulary;
or (2) by a group of semantic types. In (1), three UMLS
vocabularies (MeSH, ICD9CM, and GO) were applied
independently to the concept vector for each docu-
ment. In (2), the concepts that belonged to a group of
semantic types (see Additional file 1) were retained in
the phenotypic vectors. The removed concepts were
those that belong to semantic types (e.g., “governmen-
tal or regulatory activity”) that were clearly not rele-
vant to biological phenotype. The concept volumes of
different vocabulary filters are given in Additional file 1:
Table S13. The frequencies of concepts within the docu-
ment and the occurrences of concepts across documents
were calculated. Finally the term frequency-inverse docu-
ment frequency [52] was used to weight all the terms in
each document.
The semantic similarity used in this study was the

correlation between two documents. One was the
disease-associated phenotype (an OMIM record) and
the other was the gene-associated phenotype (an OMIM
record, a PubMed abstract, or a GeneRIF record). The
semantic similarity was computed as the cosine coeffi-
cient between the weighted term occurrences in a
disease-associated phenotype and a gene-associated
phenotype according to the Vector Space Model [53,54].
The biomedical records from the three gene-associated
phenotype sources and the four vocabulary filters
defined 12 sets of phenotypic profiles. The number of
associations between human genes and biomedical
records was highest for the PubMed database with
~473,000 PubMed abstracts linked to more than
28,000 genes (Additional file 1: Table S11). The vo-
cabulary volume within each of the vocabulary filters
varied from tens of thousands (for GO or ICD9CM) to
hundreds of thousands (for MeSH), to nearly one and a
half million (for STY) (Additional file 1: Table S13).
Because of the length of the records and vocabulary
volumes, the concept size derived from the phenotypes
varied considerably (Additional file 1: Table S12).

Candidate complexes
The candidate complex for each gene was determined
from PPI data obtained from the STRING database
(version 8.1). STRING is a database and web resource
dedicated to PPIs, which contains both physical and
functional interactions [12,15]. The Ensembl protein
encoded by the candidate gene was used to retrieve
first-order protein interaction partners in the network
that associate directly with that protein. Each pair of
protein associations from STRING was annotated with
an interaction confidence score ranging from 150 (low
credibility) to 999 (high credibility). Additional file 1
shows the counts of PPI pairs ordered by their credibility
scores. We examined the random-set scoring model with
candidate complexes defined by different confidence score
thresholds (500–990), corresponding to various levels of
association likelihoods (0.75–0.99).

Disease relevance score of a candidate gene complex
To prioritize the disease candidate genes, a disease rele-
vance score that quantifies the association strength between
a candidate gene complex and the disease was proposed.
This score was based on a random-set scoring model [8],
which was originally applied to study gene set enrichment
analysis. Analog to the expression profile, in the context of
this study, the semantic similarities (the cosine coefficient)
between the documents are regarded as the phenotype
profile. The random-set scoring model measures the en-
richment signal of the set of semantic similarities between
the disease phenotype (narrative description) and the set
of gene-associated phenotypes (narrative descriptions)
linked to the candidate gene complex. The semantic simi-
larity between the disease phenotype and a gene-associated
phenotype is defined as Se. The overall association between
a disease and a candidate gene complex is represented by a
set of semantic similarities that contains m elements, where
m is the number of biomedical records linked to the genes
in the candidate complex. The unstandardized enrichment
signal is defined as the mean of the semantic similarities

in set C [8] �X ¼ 1
m

X
e∈C

Se , where C is the set of m

biomedical records that linked to a specific gene candidate
complex, and is a random set of m documents drawn from
the entire cohort of E documents. Under the random-set
scoring model [8], and thus conditional on element-level
scores {Se} of semantic similarities between disease pheno-
type and all documents:
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A standardized enrichment score [9] is then calculated
as Z ¼ �X−μ̂ð Þ=σ̂ , representing the disease relevance score.
Under the null hypothesis that says “no association
between the gene-associated phenotypes and the disease
phenotype”, the disease relevance scores have a normal
distribution with zero mean and unit variance [8]. A large
positive disease relevance score (z-score) favors the positive
enrichment hypothesis: that the candidate gene (or candi-
date complex) is strongly associated with the disease.
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Validation of the approach
We validated our network-based gene-prioritization ap-
proach using the known disease and gene relationships in
the OMIM database. We used 3395 test cases, each
corresponding to a known relationship between a disease
phenotype and a disease-“causing” gene in the OMIM data-
base. The test cases were identified from the morbid map
downloaded from the NCBI (ftp://ftp.ncbi.nih.gov/gene/
DATA/). Each relationship between an OMIM descriptive
entry and a human Entrez gene labeled with “phenotype”
was referred to as a test case in which the OMIM record
represented the disease phenotype and the linked Entrez
gene was the true “causal” gene. The 3395 test cases
represented 2525 known human disorders and 2135 unique
human genes. The intention was to mimic a situation in
which we have identified a genomic region where one or
several genetic variants are known to be associated with a
specific disease phenotype. The challenge was to identify
which of the genes located in that genomic region was the
most likely candidate gene harboring a causal mutation. For
each test case, a set of candidate genes, referred to as the
test set, was identified by choosing 50 genes upstream and
50 genes downstream of the true “causal” gene. If the true
“causal” gene was located close to the telomere then the test
set would include more genes in the opposite direction to
ensure a set of 100 candidate genes for each test case.
Although the genomic regions were relatively large

compared with the resolution power of GWAS, they allowed
us to compare the performance of our approach directly with
that of two alternative complex-based prioritization ap-
proaches: the Bayesian prioritization model [4] and the re-
gression prioritization model [6]. Both of these approaches
have been previously validated on the OMIM data. To en-
sure fair comparisons, we applied the same vocabulary
filters (either STY or MeSH) and used the same test sets
as in the original studies. We estimated the recall and pre-
cision of our approach using two groups of test sets. One
group consisted of 1177 test cases used for the Bayesian
approach and the other group consisted of 1193 test cases
used for the regression approach. The protein complexes
were defined with credibility scores above 900. The pro-
tein complexes used in the alternative approaches were re-
stricted to PPI data that did not include the co-occurrence
of genes in the biomedical literature. Our approach was
based on protein complexes retrieved from the STRING
database, which integrates both physical interactions and
predictive protein associations based on different informa-
tion sources, including text-mining of PubMed records
for the co-occurrence of two genes. To assess the influ-
ence of the text-mining evidence on the prioritizations,
we recalculated the confidence scores leaving out this
specific channel of PPI data (see Additional file 1).
We investigated the influence of the PPI confidence

score threshold using GeneRIF as the gene-associated
phenotype and STY as the vocabulary control. We
assessed the influence of different sources of gene-
associated phenotypes and phenotype vocabulary filters
using a minimal PPI confidence score of 900.
We measured the performance of our approach in two

ways: 1) for each test set, we ranked the candidate genes
according to the standardized z-score. We determined
the rank of the true causal gene and counted the number
of times that the true “causal” gene ranked at the top or
was among the five highest-ranking genes across all
test sets; 2) we selected z-scores derived from the null
hypothesis distribution (see Additional file 1) at cumu-
lative quantiles (from 0.1% to 100%) as discriminators
(cut-offs) to classify whether a gene from a test-set was
associated with the disease phenotype. True positives
(tp) and false negatives (fn) were identified when the
z-score of a true causal gene from a test-set was above
or below the discriminator, respectively. True negatives (tn)
and false positives (fp) were identified when the z-score of a
candidate gene was below or above the discriminator, re-
spectively. The prioritization performance of the approach
was examined by recall: tp

tpþfnð Þ ; precision:
tp

tpþfpð Þ ; MCC:

MCC ¼ tp�tn−fp�fnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tpþfpð Þ tpþfnð Þ tnþfpð Þ tnþfnð Þ

p ; the ROC curve (sensi-

tivity vs. 1–specificity) [55] and the AUC.

Application of our approach
We used our approach to conduct a global ranking of all
human genes for their relevance to human diseases repre-
sented in the OMIM database. The complete set of hu-
man genes was retrieved using an R package (org.Hs.eg.
db) that is based on the Entrez gene database. The protein
complexes for human genes were collected from the
STRING database, and the threshold for PPIs was re-
stricted to 0.95 or higher, which corresponds to a confi-
dence score of 900. The phenotypic profile of each gene
complex was generated from PubMed articles (titles and
abstracts). The remaining phenotypic concepts were
specifically limited to MeSH terms. According to the
approach described above, we ranked all the human genes
and scored them for their relevance to a large number of
disease phenotypes from the OMIM database, which com-
prised either a descriptive entry, usually of a phenotype,
and did not represent a unique locus (3053 OMIM identi-
fiers marked by “#”), or a description of a phenotype for
which the Mendelian basis, although suspected, has not
been clearly established or the separateness of this pheno-
type from that in another entry is unclear (1921 OMIM
identifiers without a label).

Additional file

Additional file 1: Methods and results in details.

ftp://ftp.ncbi.nih.gov/gene/DATA/
ftp://ftp.ncbi.nih.gov/gene/DATA/
http://www.biomedcentral.com/content/supplementary/1471-2105-15-315-S1.pdf
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