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Abstract

Background: MicroRNAs (miRNAs) are short (19-23 nucleotides) non-coding RNAs that bind to sites in the
3’untranslated regions (3’UTR) of a targeted messenger RNA (mRNA). Binding leads to degradation of the transcript or
blocked translation resulting in decreased expression of the targeted gene. Single nucleotide polymorphisms (SNPs)
have been found in 3’UTRs that disrupt normal miRNA binding or introduce new binding sites and some of these
have been associated with disease pathogenesis. This raises the importance of detecting miRNA targets and
predicting the possible effects of SNPs on binding sites. In the last decade a number of studies have been conducted
to predict the location of miRNA binding sites. However, there have been fewer algorithms published to analyze the
effects of SNPs on miRNA binding. Moreover, the existing software has some shortcomings including the requirement
for significant manual labor when working with huge lists of SNPs and that algorithms work only for SNPs present in
databases such as dbSNP. These limitations become problematic as next-generation sequencing is leading to large
numbers of novel variants in 3’UTRs.

Result: In order to overcome these issues, we developed a web-server named mrSNP which predicts the impact of a
SNP in a 3’UTR on miRNA binding. The proposed tool reduces the manual labor requirements and allows users to
input any SNP that has been identified by any SNP-calling program. In testing the performance of mrSNP on SNPs
experimentally validated to affect miRNA binding, mrSNP correctly identified 69% (11/16) of the SNPs disrupting
binding.

Conclusions: mrSNP is a highly adaptable and performing tool for predicting the effect a 3’UTR SNP will have on
miRNA binding. This tool has advantages over existing algorithms because it can assess the effect of novel SNPs on
miRNA binding without requiring significant hands on time.
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Background
MicroRNAs (miRNAs) are predicted to regulate over 60%
of all genes and as such have a significant impact on cell
function and biology [1]. MiRNAs bind to the 3’UTR of an
mRNA which results in decreased expression of the tar-
geted gene. Thus, miRNA binding analysis is essential for
any biological workflow that examines gene expression.
Processing of miRNAs is a multi-step process. First the

miRNA transcript folds into a hairpin loop which is called
the pri-miRNA. The hairpin loop is processed further into
a pre-miRNA and is exported to the nucleus where it
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binds with dicer and is processed into a mature miRNA of
roughly 19-23 nucleotides in length. The mature miRNA
together with the protein-silencing complex (RISC) seeks
and binds to mRNA at target sites. Binding can cause
mRNA destabilization leading to translational repres-
sion or direct degradation of the mRNA target. Initially,
miRNA targets were detected through classical genetic
techniques. Due to the painstaking nature of these exper-
iments and the lack of high-throughput protocols, there
is a great need to develop computational techniques to
determine miRNA targets. After it was shown that 3’UTR
regions contain binding sites for miRNAs that have some
degree of complementarity, various methods of computa-
tional predictions were developed.
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Generally, plant miRNAs have perfect base-pairing with
their target, causing its degradation. In animals, miRNAs
can also form limited base-pairing, primarily between
the 2nd and 7th bp from the 5’ end of miRNA (seed
of miRNA), which leads to translational repression. This
imprecise sequence matching makes it more difficult to
predict miRNA targets in animals with high accuracy.
Different techniques have been proposed to predict mam-
malianmiRNA-mRNA binding. These include the pattern
of base pairing, thermodynamic stability of the miRNA-
mRNA hybrid, comparative sequence analysis for conser-
vation, and examination of multiple target sites [2].
Several software programs have been developed that

utilize one or more of these methods to identify miRNA
binding sites in the genome. TargetScan checks ther-
modynamic stability and conservation of the target sites
in related species [3]. Miranda combines the pattern of
base pairing, the thermodynamic stability of the miRNA-
mRNA hybrid and comparative sequence analysis for
conservation [4]. RNAhybrid determines the optimal and
subobtimal binding energies between a given miRNA and
its mRNA target [5]. MicroInspector detects binding sites
according to complementarity using two sliding windows
of 6 nucleotides in length [6] . Pictar requires base-pair
matches in the seed region of miRNA, applies filtering by
calculating thermodynamic binding energy, and assigns a
likelihood score using a Hidden Markov Model for each
binding [7]. Diana-microT considers principles of binding
energy and conservation [8,9]. It also integrates biological
pathways and analysis of interactions between predicted
target genes.
Disease-associated functional SNPs may alter gene

expression. Therefore, the relationship between SNPs and
miRNAs becomes important for understanding the role of
SNPs on disease [10]. Although there are many miRNA
binding prediction tools that have been studied in the last
decade, fewer studies to assess SNP effects on miRNA
binding have been published [11-15]. Recently, the
databases microSNiPer, Patrocles, Mirsnpscore, miRd-
SNP, MirSNP, PolymiRTS have been released [16-21].
These databases follow similar algorithms as those uti-
lized by the miRNA prediction tools in order to detect
the effects of the SNPs on miRNA binding. These algo-
rithms are run on the whole genome for all SNPs present
in a genomic database like dbSNP, then results are stored.
Users can query the results using SNP, gene or miRNA
IDs. One of the deficiencies of these databases is that they
only work for SNPs that already exist in databases and
do not work for novel or unreported SNPs. Moreover, if
the list of SNPs is large, the web interface of the tools
may require an infeasible amount of manual labor. With
the advent of next-generation sequencing technologies
such as RNA-Seq, exome and whole genome sequencing,
thousands of novel SNPs in 3’UTRs are being identified.

RNA-Seq, which sequences all expressed genes in a sam-
ple, provides concordant gene expression and SNP data.
Since a substantial number of the detected SNPs are pre-
viously undocumented, use of algorithms that require a
SNP to be present in dbSNP may not meet the needs
of researchers using RNA-Seq or other next-generation
sequencing methods. Currently, when a novel SNP is
encountered, a user can compare the location of the SNP
against the predicted and validated miRNA target sites
using the current prediction tools which is fairly labor
intensive. The probability of the SNP disturbing a binding
site can be considered to be proportional to the distance
of the SNP to the seed of the target site. However, a SNP
may not affect binding even when it is very close to the
miRNA target seed region. Moreover, a SNP may intro-
duce a totally new binding with a new miRNA, which is
impossible to capture with the current databases. Thus,
next-generation sequencing data demands new computa-
tional tools to relate the SNP and gene expression, which
motivated us to develop a web-based tool, named mrSNP,
to overcome the shortcomings of existing tools.

Implementation
The implementation of the mrSNP is presented in
Figure 1. All the 3’ UTR sequences and phastCons
scores of the each nucleotides are downloaded from
the UCSC Database using the Genome Table Browser
[22]. Each chromosome is stored in a single file, where
each sequence has information including gene name and
3’UTR sequence coordinates. All available miRNAs are
downloaded from the mirBase database and clustered
according to their conservation across species using the
information obtained from the TargetScan prediction
tool [3,23]. The software accepts input SNPs with the
related information containing the organism, the assem-
bly according to which the mapping is done, the chro-
mosome on which the SNP is located, the position of the
SNP in the given chromosome, and the SNP alleles. Once
this information is provided, the software searches for the
sequence where it is located. If SNP is not located in a
denoted 3’ UTR sequence, no further calculation is done
and the software reports the SNP as, “not in 3’UTR”. If
the SNP is found in a 3’UTR, the 79 basepairs (bp) of
sequence that contains the SNP at the center is returned
at this step. This length (79bp) was chosen based on the
observation that the typical maximum size of an miRNA
is 25 bp and a maximum 15 bp loop is allowed in the
binding. Therefore, we allow a miRNA binding site to
have a maximum length of 40 bp. If a SNP is to affect
miRNA binding, it will be located in the miRNA’s bind-
ing site whose start/end nucleotide can be at most 39 bp
apart from the SNP. Therefore, a 79 bp sequence (40 bp +
39 bp) is the minimal sequence to use for calculating
potential miRNA binding differences. Once this sequence
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Figure 1 The workflow of mrSNP software.

is obtained, it is duplicated and each SNP allele is sub-
stituted in the correct position. After this point, for each
miRNA stored we check the existence of a minimum of 6
consecutive Watson-Crick (W-C) matches starting from
second position of the miRNA seed region.
The remainder of the approach is adapted from [9]. A

sequence with 6 (7, 8, or 9) consecutive matches is called
a 6mer (7mer etc.). We allow a single G:U wobble for
7, 8 and 9mer sequences. If no instances satisfy match-
ing criteria, the miRNA and the sequence couple are not
investigated further, and we conclude that the miRNA
does not bind to this region. Moreover, if the sequence
has at least 7 Watson-Crick matches in the seed region,
it is considered as a miRNA binding site immediately.
For weaker bindings such as the 6mers, or 7, 8 and 9mer
sequences containing a single G-U wobble, we calculate
the binding energy with RNAhybrid [5]. RNAhybrid runs
a dynamic programming algorithm that finds the subop-
timal binding energy between 2 sequences. For 6mers and
7mers (8mers and 9mers), we say that microRNA binds to
a sequence if its binding energy is higher than 74% (60%)
of the maximum binding energy. The numbers and meth-
ods used are adapted from [9]. For a given SNP-miRNA
couple, the steps explained above are followed for both of
the SNP sequences. If one of the them satisfies the bind-
ing criteria, while the other does not, we report this as a
binding difference.
In the literature, many of the prediction tools apply a

post-processing step to reduce the false positive rate of
the binding predictions. This is performed using the con-
servation of the target site across different species. If the
target site is conserved over different species, the bind-
ing possibility is considered to be higher. AlthoughmrSNP
does not filter out the results with this post-processing
method, it calculates the conservation score (CS) of the
seed region using the phastCons scores provided byUCSC

database. For each prediction, CS is obtained as the
average phastCons score of the nucleotides in the seed
region. Then, it reports the probabilistic CS of the seed
region as well as the conservation of the miRNA over the
species.

Usage
mrSNP software is publicly available from http://mrsnp.
osu.edu. First, the user selects the organism and the
assembly used in the analysis. mrSNP currently supports
11 organisms with the available assemblies.
Once organism and assembly are chosen, the user inputs

the list of SNPs by either typing in the textbox or upload-
ing a file. Each line should contain a single SNP with
chromosome number, SNP position, and first and sec-
ond allele. Each entry is separated by a space. An e-mail
address can be provided for obtaining results. Also, the
cut-off ratios to apply 6, 7, 8 and 9mers are parametrized
for the option of using different ratios for different organ-
isms. When a job is submitted, the user is directed to
another page summarizing inputs and a link to the results
page. Once the result is ready, it is displayed in a table
containing the fields: chromosome, SNP position, target
gene, the binding miRNA, the binding energy difference,
the binding energies of each SNP, the cut-offs applied to
each sequence, and the alignment of the bindings. If a SNP
is not located in any 3’UTR region, or if it does not affect
any miRNA bindings, the related information is reported
at target gene field. A downloadable file is also provided. If
there are any errors found, a link to the error page is given
at the bottom of the page.

Results and discussion
Although mrSNP does not require its input to be vali-
dated SNPs, in order to evaluate the accuracy of mrSNP,
we ran a series of experiments on multiple sets of experi-

http://mrsnp.osu.edu
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mentally validated SNP-miRNA couples for human hg19
assembly.
In the first set of validation experiments, we ran exper-

imentally validated disease associated SNPs used in the
experiments of [20] in order to compare mrSNP with
different databases. 16 SNPs
which are both associated with disease and experimen-

tally validated to disrupt miRNA binding were chosen.
Table 1 gives the results of this experiment. For each

SNP-miRNA pair, the table reports the SNP’s rsID, the
name of the miRNA, the location of the SNP, SNP alle-
les, the success/failure of mrSNP, and the explanation of
the behavior. In this experiment, mrSNP is able to recover
11 disease associated SNPs out of 16. Among the 5 SNPs
which are predicted not to affect miRNA bindings, the
effect of rs13212041 on hsa-miR-96 is not captured as
the SNP is not located in the 3’UTR. The effects of 3
SNPs (rs2735383, rs34764978, rs9341070) are

Table 1 Results of mrSNP on 16 experimentally validated disease-associated SNPs described in [20]

SNP miRNA Chr Position Alleles Success Explanation

rs1063320 hsa-miR-152 6 29798749 C G � Binds one of the sequences with 7 consecutive matches.
SNP breaks the match on the 7th position, min. match
critera is not satisfied.

rs1063320 hsa-miR-148a 6 29798749 C G � Binds one of the sequences with 8 consecutive matches.
SNP breaks the match on the 7th position, min. match
critera is not satisfied.

rs1063320 hsa-miR-148b 6 29798749 C G � Binds one of the sequences with 7 consecutive matches.
SNP breaks the match on the 7th position, min. match
critera is not satisfied.

rs3134615 hsa-miR-1827 1 40362066 A C � Binds one of the sequences with 8 consecutive matches.
SNP breaks the match on the 6th position, min. match
critera is not satisfied.

rs4245739 hsa-miR-191 1 204518842 A C � Binds one of the sequences with 8 consecutive matches.
SNP breaks the match on the 5th position, min. match
critera is not satisfied.

rs56109847 hsa-miR-510 3 183824557 A G � Binds one of the sequences with 8 consecutive matches.
SNP breaks the match on 5th position, min. match critera
is not satisfied.

rs5186 has-miR-155 3 148459988 A C � Binds one of the sequences with 7 consecutive matches.
SNP breaks the match on 4th position, min. match critera
is not satisfied.

rs1434536 hsa-miR-125b 4 96075965 T C � Binds one of the sequences with 8 consecutive matches.
SNP introduces a GU wobble on 8th position (7th of seed),
the binding energy is below the cut off.

rs193302862 hsa-miR-24 13 84452863 C T � Binds one of the sequences with 9 consecutive matches.
SNP introduces a GU wobble on 8th position (7th of the
seed), the binding energy is lower than cut off.

rs8126 hsa-miR-184 14 103603569 C T � Binds one of the sequences with 7 consecutive matches.
SNP introduces a GU wobble on 6th position (7mer with a
GU wobble), the binding energy is below the cut off.

rs12720208 has-miR-433 8 16850399 G A � Binds one of the sequences with 7 consecutive matches.
SNP introduces a GU wobble on 6th position, the binding
energy is lower than cut off.

rs13212041 hsa-miR-96 6 78171124 C T × SNP is not in 3’UTR

rs2735383 hsa-miR-629 8 90947269 C G × miRNA is predicted not to bind either of the sequences.
There exists a mistmatch on the 4th position regardless of
the SNP. SNP further breaks the match on 3rd position.

rs34764978 has-miR-24 5 79924683 A G × miRNA is predicted not to bind either of the sequences.
Both have only 6 matches with GU wobble.

rs9341070 has-miR-206 6 152420197 C T × miRNA is predicted not to bind either of the sequences.
min. match criteria cannot be satisfied in both

rs67384697 hsa-miR-148a 6 31236683 C - × miRNA is predicted to bind both of the sequences. SNP
reduces 11 consecutive match to 9.

mrSNP captures 11 disease-associated SNPs out of 16 SNPs (69%).
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not recovered as the sequences for both of the alleles do
not satisfy the minimum matching criteria. On the other
hand, although mrSNP recognizes the binding energy
change of hsa-miR-148a for rs67384697; both of the
sequences satisfy the matching criteria, and no effect on
miRNA binding is detected. Among the 11 SNP-miRNA
pairs that are successfully detected by mrSNP, 7 of them
are captured because the SNPs break a matching in the
seed region which causes the sequence not to meet the
minimum matching criteria. The other 4 SNPs introduce
GUwobbles in the seed region. The binding of these SNPs
are predicted to be disrupted since the binding energies
are calculated to be lower than the required threshold.
In comparing the results of mrSNP to other databases
and algorithms described in [20], MirSNP, PolymiRTS,
Mirsnpscore, and Patrocles are able to capture 12, 7, 7,
and 5 of the disease-associated SNPs respectively.
Thus, mrSNP outperforms all tools except MirSNP.
MirSNP detected similar binding differences as mrSNP
with the exception of capturing the rs67384697 -
hsa-miR-148a-3p pair. MirSNP reports this pair as
“Enhance/Decrease” which means a binding energy dif-
ference between two sequences for each the allele of the
SNP was measured, rather than a break in the bind-
ing. As explained in Table 1, a binding energy difference
between the alleles is also captured by mrSNP, however, it
is not reported because both of them satisfy the matching
criteria.
In the next set of validation experiments, we tested

mrSNP on SNPs obtained from the miRdSNP database
[19]. We chose the SNPs that map to the miRNA tar-
gets predicted by TargetScan for the miRNAs and genes
which are experimentally validated to bind. Note that the
effects of these SNPs on binding itself was not specifi-
cally evaluated experimentally for all cases. There are 108
SNP-miRNA pairs reported in this database for which
the SNP lies in the miRNA target. We filtered out the
duplicated pairs and polymorphisms longer than a single
nucleotide. After filtering, we obtained 64 SNP-miRNA
pairs for study. The results of evaluating the 64 pairs are
given in Tables 2, 3, and 4.
As Table 2 shows, mrSNP reports the binding effects

of 43 SNPs out of 64 (67%) couples. For these miRNA-
mRNA couples, the SNPs either disrupt a match in the
seed region or introduce a newGUwobble. For 19 of these
pairs given in Table 2(a), the SNPs break a matching in
the seed region, therefore, the minimum matching crite-
ria cannot be satisfied. On the other hand, 4 of SNPs given
at the top of Table 2(b) break a matching at the end of
the seed region, resulting a 6mer, for which the binding
energies become lower than the threshold. Similarly, the
other 20 SNPs in Table 2(b) introduce GU wobbles in the
seed region, resulting to disturb the binding due to the
minimum binding energy criteria.

Table 3 lists the 8 pairs for which mrSNP does not
report a binding difference as the sequences for both alle-
les are predicted to bind the miRNAs at similar levels.
Note that for the first two pairs in the Table 3, mrSNP cap-
tures the disruption in binding. However, mrSNP does not
report these SNPs to affect binding, as it identifies another
seed region for the miRNA in a location very close the
original target. mrSNP identifies changes in the binding
energies of the pairs in Table 3, which are ignored as the
sequences for both alleles satisfy the minimum matching
criteria. Table 4 lists another category of pairs that were
not predicted by mrSNP. For these 13 pairs, the sequences
for neither allele were calculated to bind the given miR-
NAs. The binding of these miRNAs are not predicted
because the minimummatching criteria is not satisfied, as
explained in more detail in the table.
We queried the 64 SNPs (Tables 2, 3, and 4) on mirSNP,

PolymiRTS, and mirsnpscore. MirSNP reports 44 of these
pairs as binding difference, and the results of MirSNP are
very consistent with mrSNP. 57 of the 64 pairs queried
are present in the PolymiRTS database, which includes
miRNA-mRNA pairs identified through methods that
include experimental data such as gene expression profiles
and cross-linked immunoprecipitation sequencing data as
well as pairs identified from the literature (rather than
purely prediction methods). Because of the inclusion of
experimental data and results from the literature, it is
difficult to compare the results of PolymiRTS to mrSNP.
Only 9 of the validated miRNA-mRNA pairs are found
using mirsnpscore. Note that although the miRNAs-gene
bindings are experimentally validated in this experiment,
(Tables 2, 3, and 4), the actual effects of the SNPs on
miRNA bindings are unknown. Therefore, it is not possi-
ble to determine the biological accuracy of the tools in this
experiment. However, one result we can conclude from
this experiment is that, mrSNP captures 51 (43 + 8) of the
64 (80%) experimentally validated miRNA bindings.
When comparing mirSNP to mrSNP across both exper-

iments, 56 of 80 SNPs (70%) were predicted by mirSNP
to disrupt miRNA binding. mrSNP compares favorably by
predicting that SNPs will disrupt the binding 54 of the 80
(68%) miRNA target sites across these two experiments.

Conclusion
We developed a new tool, mrSNP, that predicts the effects
of SNPs on miRNA binding. There are several advan-
tages to this tool over existing tools. The proposed tool
not only works on existing SNPs in databases such as
dbSNP but also on novel SNPs which will be of great
utility for researchers identifying new SNPs or somatic
mutations in their samples. Secondly, our tool decreases
the manual labor currently required for running predic-
tion algorithms for novel SNPs. We present the results of
mrSNP for various 3’UTR SNPs that were experimentally
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Table 2 SNP-miRNA pairs reported to disturbmiRNA bindings bymrSNP for SNPs - miRNA couples obtained from
miRdSNPs

(a) Pairs captured with the minimummatching criteria

SNP miRNA Chr Position Alleles Success Explanation

rs8829 hsa-miR-101 7 148504618 C A � Binds one of the sequences with 8 consecutive matches.
SNP breaks the match on 2nd position, min. match critera
is not satisfied.

rs28635788 hsa-miR-124 2 47301624 C T � Binds one of the sequences with 7 consecutive matches.
SNP breaks the match on 2nd position, min. match critera
is not satisfied.

rs28381252 hsa-miR-224 19 45976504 C T � Binds one of the sequences with 7 consecutive matches.
SNP breaks the match on 2nd position, min. match critera
is not satisfied.

rs11782817 hsa-miR-144 8 57074233 A C � Binds one of the sequences with 10 consecutive matches.
SNP breaks the match on 2nd position, min. match critera
is not satisfied.

rs11550076 hsa-miR-25 9 110247352 A G � Binds one of the sequences with 7 consecutive matches.
SNP breaks the match on 2nd position, min. match critera
is not satisfied.

rs10196117 hsa-miR-124 2 47301624 C T � Binds one of the sequences with 7 consecutive matches.
SNP breaks the match on 2nd position, min. match critera
is not satisfied.

rs1143552 hsa-miR-181b 22 33256174 A G � Binds one of the sequences with 8 consecutive matches.
SNP breaks the match on the 3rd position, min. match
critera is not satisfied.

rs3733067 hsa-miR-30a 3 52290594 A G � Binds one of the sequences with 7 consecutive matches.
SNP breaks the match on 4th position, min. match critera
is not satisfied.

rs35180728 hsa-miR-1 11 118473587 - T � Binds one of the sequences with 7 consecutive matches.
SNP breaks (deletes) the match on 4th position, min.
match critera is not satisfied.

rs11557771 hsa-miR-218 14 69341243 A C � Binds one of the sequences with 8 consecutive matches.
SNP breaks the match on 6th position, min. match critera
is not satisfied.

rs10055 hsa-miR-30a 16 24835876 T C � Binds one of the sequences with 8 consecutive matches.
SNP breaks the match on 6th position, min. match critera
is not satisfied.

rs12635 hsa-miR-197 19 14072442 C T � Binds one of the sequences with 8 consecutive matches.
SNP breaks the match on 6th position, min. match critera
is not satisfied.

rs3208684 hsa-let-7g 20 30252805 T G � Binds one of the sequences with 7 consecutive matches.
SNP breaks the match on the 6th position, min. match
critera is not satisfied.

rs3208684 hsa-let-7c 20 30252805 T G � Binds one of the sequences with 7 consecutive matches.
SNP breaks the match on the 6th position, min. match
critera is not satisfied.

rs5031032 hsa-miR-1 12 102796132 - T � Binds one of the sequences with 7 consecutive matches.
SNP breaks (deletes) the match on 6th position, min.
match critera is not satisfied.

rs1063320 hsa-miR-148a 6 29798749 C G � Binds one of the sequences with 8 consecutive matches.
SNP breaks the match on the 7th position, min. match
critera is not satisfied.

rs1063320 hsa-miR-148b 6 29798749 C G � Binds one of the sequences with 7 consecutive matches.
SNP breaks the match on the 7th position, min. match
critera is not satisfied.

rs1063320 hsa-miR-152 6 29798749 C G � Binds one of the sequences with 7 consecutive matches.
SNP breaks the match on the 7th position, min. match
critera is not satisfied.
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Table 2 SNP-miRNA pairs reported to disturbmiRNA bindings bymrSNP for SNPs - miRNA couples obtained from
miRdSNPs (Continued)

rs12831 hsa-miR-122 16 30081561 A C � Binds one of the sequences with 8 consecutive matches.
SNP breaks the match on 7th position, min. match critera
is not satisfied.

(b)Pairs captured with the minimum energy threshold

SNP miRNA Chr Position Alleles Success Explanation

rs9266 hsa-miR-181c 12 25362217 G A � Binds one of the sequences with 7 consecutive matches.
SNP breaks the match on the 8th position (7th of seed),
the binding energy (of 6mer) is lower than cut off.

1434536 hsa-miR-125b 4 96075965 T C � Binds one of the sequences with 8 consecutive matches.
SNP breaks the match on the 8th position (7th of seed),
the binding energy (of 6mer) is lower than cut off.

rs17026326 hsa-miR-19b 3 30733356 A T � Binds one of the sequences with 8 consecutive matches.
SNP breaks the match on the 8th position (7th of seed),
the binding energy (of 6mer) is lower than cut off.

rs17026326 hsa-miR-19a 3 30733356 A T � Binds one of the sequences with 8 consecutive matches.
SNP breaks the match on the 8th position (7th of seed),
the binding energy (of 6mer) is lower than cut off.

rs3731562 hsa-let-7d 3 48199877 G A � Binds one of the sequences with 8 consecutive matches.
SNP introduces a GU wobble on 2nd position, the binding
energy is lower than cut off.

rs3731562 hsa-let-7g 3 48199877 G A � Binds one of the sequences with 8 consecutive matches.
SNP introduces a GU wobble on 2nd position, the binding
energy is lower than cut off.

rs3731562 hsa-let-7c 3 48199877 G A � Binds one of the sequences with 8 consecutive matches.
SNP introduces a GU wobble on 2nd position, the binding
energy is lower than cut off.

rs3731562 hsa-let-7b 3 48199877 G A � Binds one of the sequences with 8 consecutive matches.
SNP introduces a GU wobble on 2nd position, the binding
energy is lower than cut off.

rs3731562 hsa-let-7a 3 48199877 G A � Binds one of the sequences with 8 consecutive matches.
SNP introduces a GU wobble on 2nd position, the binding
energy is lower than cut off.

rs1051780 hsa-miR-34a 17 8063056 C T � Binds one of the sequences with 7 consecutive matches.
SNP introduces a GU wobble on 2nd position, the binding
energy is lower than cut off.

rs59564714 hsa-miR-15a 11 73686038 A G � Binds one of the sequences with 7 consecutive matches.
SNP introduces a GU wobble on 3rd position, the binding
energy is lower than cut off.

rs16952445/rs1138624 hsa-miR-122 16 30081565 C T � Binds one of the sequences with 7 consecutive matches.
SNP introduces a GU wobble on 3rd position, the binding
energy is lower than cut off.

rs1801938 hsa-miR-1 19 2101071 T G � Binds one of the sequences with 7 consecutive matches.
SNP introduces a GU wobble on 3rd position, the binding
energy is lower than cut off.

rs6875894 hsa-miR-135b 5 112179965 C T � Binds one of the sequences with 9 consecutive matches.
SNP introduces a GU wobble on 4th position, the binding
energy is lower than cut off.

rs6875894 hsa-miR-135a 5 112179965 C T � Binds one of the sequences with 9 consecutive matches.
SNP introduces a GU wobble on 4th position, the binding
energy is lower than cut off.

rs73306851 hsa-miR-125b 17 38327577 A G � Binds one of the sequences with 7 consecutive matches.
SNP introduces a GU wobble on 5th position, the binding
energy is lower than cut off.

rs11552766 hsa-miR-185 3 49396652 A G � Binds one of the sequences with 8 consecutive matches.
SNP introduces a GU wobble on 5th position, the binding
energy is lower than cut off.
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Table 2 SNP-miRNA pairs reported to disturbmiRNA bindings bymrSNP for SNPs - miRNA couples obtained from
miRdSNPs (Continued)

rs2664575 hsa-miR-17 20 47862478 G T � Binds one of the sequences with 7 consecutive matches.
SNP breaks the match on the 6th position.

rs10187 hsa-miR-210 12 108962804 C T � Binds one of the sequences with 7 consecutive matches.
SNP introduces a GU wobble on 7th position, the binding
energy is lower than cut off.

midrule rs70965446 hsa-miR-141 4 56301355 A G � Binds one of the sequences with 9 consecutive matches.
SNP introduces a GU wobble on 7th position, the binding
energy is lower than cut off.

rs8226 hsa-miR-124 22 36677414 G A � Binds one of the sequences with 7 consecutive matches.
SNP introduces a GU wobble on 7th position, the binding
energy is lower than cut off.

rs35122558 hsa-miR-155 7 32908099 C T � Binds one of the sequences with 7 consecutive matches.
SNP introduces a GU wobble on 8th position, the binding
energy is lower than cut off.

rs55774542 hsa-miR-125b 12 48238167 A G � Binds one of the sequences with 7 consecutive matches.
SNP introduces a GU wobble on 8th position, the binding
energy is lower than cut off.

rs59628511 hsa-miR-124 9 140509654 C G � Binds one of the sequences with 8 consecutive matches.
SNP introduces a GU wobble on 8th position, the binding
energy is lower than cut off.

validated to disturb miRNA binding. We also compare the
performance of mrSNP with other miRNA binding pre-
diction tools, for which mrSNP performed better than all
but one other platform, MirSNP, that had a success rate of
75% (Table 1). mrSNP correctly predicted 11 of 16 (69%)

disease-associated and/or experimentally validated SNPs
that are reported in the literature or other databases. We
observed that the recovery rate of mrSNP can be adjusted
by using different set of parameters, but this may alter
the false-positive rate. The major limitation of mrSNP is

Table 3 SNP-miRNA pairs predicted not to disturb themiRNA bindings bymrSNP on the SNPs - miRNA couples obtained
frommiRdSNP because both SNP alleles are predicted to bind themiRNAs

SNP miRNA Chr Position Alleles Success Explanation

rs11556953 hsa-miR-133a 1 159888369 A T × Binds one of the sequences with 7 consecutive matches.
SNP breaks the match on 2nd position. Binding difference
is not reported because miRNA still have another target
with 8 consecutive matches near the SNP location.

rs13203 hsa-miR-373 1 145442387 A C × Binds one of the sequences with 7 consecutive matches.
SNP breaks the match on 4th position. Binding difference
is not reported because miRNA still have another target
with 7 consecutive matches near the SNP location.

rs3218074 hsa-miR-424 19 30315176 A G × miRNA is predicted to bind both of the sequences. SNP
is on the 1st position, there are 7 consecutive matches in
both.

rs36076633 hsa-miR-1 1 159888513 - G × miRNA is predicted to bind both of the sequences. SNP
is on the 1st position, there are 7 consecutive matches in
both.

rs1059479 hsa-miR-138 1 113243892 A C × miRNA is predicted to bind both of the sequences. SNP
is on the 1st position, there are 8 consecutive matches in
both.

rs3218074 hsa-miR-15b 19 30315176 A G × miRNA is predicted to bind both of the sequences. SNP
introduces a GU wobble on 1st position, there are 8
consecutive matches in both.

rs3218074 hsa-miR-15a 19 30315176 A G × miRNA is predicted to bind both of the sequences. SNP
introduces a GU wobble on 1st position, there are 8
consecutive matches in both.

rs3218074 hsa-miR-16 19 30315176 A G × miRNA is predicted to bind both of the sequences. SNP
introduces a GU wobble on 1st position, there are 8
consecutive matches in both.
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Table 4 SNP-miRNA pairs not predicted to disturb themiRNA bindings bymrSNP on the SNPs - miRNA couples obtained
frommiRdSNP because neither SNP allele is predicted to bind themiRNAs

SNP miRNA Chr Position Alleles Success Explanation

rs16952475 hsa-miR-185 15 69018917 C T × miRNA is predicted not to bind neither of the sequences.
There are 6 consecutive matches, the binding energy is
lower than cut off. The SNP further introduces GU wobble
on 5th position.

rs17168525 hsa-let-7b 7 135613262 A G × miRNA is predicted not to bind neither of the sequences.
There are 6 consecutive matches, the binding energy is
lower than cut off. The SNP further introduces GU wobble
on 5th position.

rs1802677 hsa-miR-181b 22 33258866 A T × miRNA is predicted not to bind neither of the sequences.
There are 6 consecutive matches, the binding energy is
lower than cut off. The SNP further breaks the match on
4th position.

rs56165498 hsa-miR-29a 15 68595075 A C × miRNA is predicted not to bind neither of the sequences.
There are 6 consecutive matches, the binding energy is
lower than cut off. The SNP further breaks the match on
5th position.

rs57321187 hsa-miR-192 10 79550563 C T × miRNA is predicted not to bind neither of the sequences.
There are 6 consecutive matches, the binding energy is
lower than cut off. The SNP further breaks the match on
6th position.

rs62062994 hsa-miR-29b 17 48261978 G T × miRNA is predicted not to bind neither of the sequences.
There are 6 consecutive matches, the binding energy is
lower than cut off. The SNP further breaks the match on
3rd position.

rs62062994 hsa-miR-29c 17 48261978 G T × miRNA is predicted not to bind neither of the sequences.
There are 6 consecutive matches, the binding energy is
lower than cut off. The SNP further breaks the match on
3rd position.

rs7233791 hsa-miR-124 18 47309884 C G × miRNA is predicted not to bind neither of the sequences.
There are 6 consecutive matches, the binding energy is
lower than cut off. The SNP further breaks the match on
5th position.

rs73954984 hsa-miR-17 2 111925932 C T × miRNA is predicted not to bind neither of the sequences.
There are 6 consecutive matches, the binding energy is
lower than cut off. The SNP further breaks the match on
7th position.

rs1804734 hsa-miR-21 1 203278606 A G × miRNA is predicted not to bind neither of the sequences.
There are 7 consecutive matches with a GU wobble, the
binding energy is lower than cut off. The SNP further
breaks the match on 6th position.

rs3802782 hsa-let-7b 11 69468919 T C × miRNA is predicted not to bind neither of the sequences.
There are 7 consecutive matches with a GU wobble, the
binding energy is lower than cut off in both. The SNP is on
11th position, it further reduces the binding energy.

rs3218074 hsa-miR-503 19 30315176 A G × miRNA is predicted not to bind neither of the sequences.
There are 7 consecutive matches with a GU wobble, the
binding energy is lower than cut off. The SNP further
introduces GU wobble on 1st position.

rs1803045 hsa-miR-1 12 49330252 C T × miRNA is predicted not to bind neither of the sequences.
There are 6 consecutive matches with a GU wobble, min.
match criteria cannot be satisfied in both. The SNP is on
12th position, it further reduces the binding energy.

that it did not capture all of the SNPs experimentally pre-
dicted to disrupt miRNA binding. In future experiments,
we will study additional larger sets of experimentally val-
idated SNPs to improve the sensitivity and specificity of

our binding predictions. As the literature is beginning to
note miRNA binding to other regions of mRNAs and the
potential for an influence on the 3’UTR location on bind-
ing, we will strive to incorporate these into our algorithms.
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In summary, mrSNP is a highly adaptable and performing
tool for predicting the effect a SNP will have on miRNA
binding.
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