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Abstract

and the regulatory network is stochastic.

simulations over the entire observation time period.

Background: Mathematical modeling is an important tool in systems biology to study the dynamic property of
complex biological systems. However, one of the major challenges in systems biology is how to infer unknown
parameters in mathematical models based on the experimental data sets, in particular, when the data are sparse

Results: To address this issue, this work proposed a new algorithm to estimate parameters in stochastic models
using simulated likelihood density in the framework of approximate Bayesian computation. Two stochastic models
were used to demonstrate the efficiency and effectiveness of the proposed method. In addition, we designed
another algorithm based on a novel objective function to measure the accuracy of stochastic simulations.

Conclusions: Simulation results suggest that the usage of simulated likelihood density improves the accuracy of
estimates substantially. When the error is measured at each observation time point individually, the estimated
parameters have better accuracy than those obtained by a published method in which the error is measured using

Background

In recent years, quantitative methods have become
increasingly important for studying complex biological
systems. To build a mathematical model of a complex
system, two main procedures are commonly conducted
[1]. The first step is to determine the elements of the net-
work and regulatory relationships between the elements.
In the second step, we need to infer the model para-
meters according to experimental data. Since biological
experiments are time-consuming and expensive, normally
experimental data are often scarce and incomplete com-
pared with the number of unknown model parameters.
In addition, the likelihood surfaces of large models are
complex. The calibration of these unknown parameters
within a model structure is one of the key issues in sys-
tems biology [2]. The analysis of such dynamical systems
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therefore requires new, effective and sophisticated infer-
ence methods.

During the last decade, several approaches have been
developed for estimating unknown parameters: namely,
optimization methods and Bayesian inference methods.
Aiming at minimizing an objective function, optimization
methods start with an initial guess, and then search in a
directed manner within the parameter space [3,4]. The
objective function is usually defined by the discrepancy
between the simulated outputs of the model and sets of
experimental data. Recently, the objective function has
been extended to a continuous approach by considering
simulation over the whole time period [5] and a multi-scale
approach by including multiple types of experimental infor-
mation [6]. Several types of optimization methods can be
found in the literature, among which two major types are
called gradient-based optimization methods and evolution-
ary-based optimization methods. Based on these two basic
approaches, various techniques such as simulated annealing
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[7]. linear and non-linear least-squares fitting [8], genetic
algorithms [9] and evolutionary computation [10,11] have
been attempted to build computational biology models.
Using optimization methods, the inferred set of parameters
produces the best fit between simulations and experimental
data [12,13]. which have been successfully applied for biolo-
gical systems, however, there are still some limitations with
these methods such as the problem of high computational
cost when significant noise exists in the system. To address
these issues, deterministic and stochastic global optimiza-
tion methods have been explored [14].

When modeling biological systems where molecular
species are present in low copy numbers, measurement
noise and intrinsic noise play a substantial role [15], which
is a major obstacle for modeling. Bayesian inference meth-
ods have been used to tackle such difficulties by extracting
useful information from noise data [16]. The main advan-
tage of Bayesian inference is that it is able to infer the
whole probability distributions of parameters by updating
probability estimates using Bayes’ Rule, rather than just a
point estimate from optimization methods. Also. Bayesian
methods are more robust than using other methods when
they are applied to estimate stochastic systems, which is
not that obvious for modeling of deterministic systems
[17]. Developments have taken place during the last 20
years and recent advances in Bayesian computation
including Markov chain Monte Carlo (MCMC) techniques
and sequential Monte Carlo (SMC) methods have been
successfully applied to biological systems [18,19].

For the case of parameter estimation when likelihoods
are analytically or computationally intractable, approxi-
mate Bayesian computation (ABC) methods have been
applied successfully [20,21]. ABC algorithms provide stable
parameter estimates and are also relatively computation-
ally efficient, therefore, they have been treated as substan-
tial techniques for solving inference problems of various
types of models that were intractable only a few years ago
[19]. In ABC. the evaluation of the likelihood is replaced
by a simulation-based procedure using the comparison
between the observed data and simulated data [22].
Recently, a semi-automatic method has been proposed to
construct the summary statistics for ABC [23]. These
methods have been applied in a diverse range of fields
such as molecular genetics, epidemiology and evolutionary
biology etc. [24-26].

Despite substantial progress in the application of ABC
to deterministic models, the development of inference
methods for stochastic models is still at the very early
stage. Compared with deterministic models, there are a
number of open problems in the inference of stochastic
models. For example, recent work proposed ABC to infer
unknown parameters in stochastic differential equation
models [27]. Our recent computational tests [28] showed
the advantages and disadvantages of a published ABC
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algorithm for stochastic chemical reaction systems in
[17]. In this work, we propose two novel algorithms to
improve the performance of ABC algorithms using the
simulated likelihood density.

Results and discussion

The first test system with four reactions

We first examine the accuracy of our proposed methods
using a simple model of four chemical reactions [29].
The first reaction is the decay of molecule S;. Then two
molecules S; form a dimer S, in the second reaction;
and this dimerization process is reversible, which is
represented by the third reaction. The last reaction in
the system is a conversion reaction from molecule S, to
its product S3. All these four reactions are given by

C1

¥

S1 0,
S1+85 3 Sy,

Sy 281 +8,

S, > Ss

We start with an initial condition with S = (10000,
0,0) and rate constants of ¢ = (0.1,0.002,0.5,0.04), which
is termed as the exact rate constants in this test. The
stochastic simulation algorithm (SSA) was used to simu-
late the stochastic system [30]. A single trajectory for
this model during a period of T = 30 in a step size of
At = 3 is presented in Figure 1.

When applying the algorithms in the Method section
to estimate model parameters, we assumed the prior dis-
tribution for each estimated parameter follows a uniform
distribution 1(6) ~ U(0, A). For rate constants ¢; ~ ¢y, the
values of A are (0.5, 0.005, 1, 0.1). Figure 2 shows prob-
abilistic distributions of the estimated rate constant of ¢;
over iterations (2 ~ 5). In this test, we have the step size
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Figure 1 Simulated experimental data for system dynamics in
a time length of 30 with step size At of 3. Blue star for S, green
circle for S5, and red cross for Ss.
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Figure 2 Probabilistic distributions of the estimated rate constant of c; over four iterations using algorithm 1. (A): Iteration 2; (B): 3; (C):
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At = 3 and simulation number By = 10. Figure 2 suggests
that the probabilistic distribution starts from nearly a
uniform distribution in the second iteration (Figure 2A)
and gradually converges to a normalized-like distribution
with a mean value that is close to the exact rate constant.

There are two tolerance values in the proposed algo-
rithms, namely o for the discrepancy in step 2.c and €;
for the fitness error in step 2.d. In the following tests,
we considered two strategies: the value of a is a constant
[31] or its value varies over iterations. To examine the
factors that influence the convergence rate of particles
over iterations, we calculated the mean count number
for each iteration, which is the averaged number of
counts for accepting all simulated estimation of para-
meter sets. The averaged error is defined by the sum of
relative errors of each rate constant for each iteration.
Table 1 displays the performances of the tests under

three schemes which used fixed discrepancy tolerance
o = 0.1, 0.05 or varying values of . In each case, we
used the same values of €, for the fitness tolerance.
The value of o in the varying a strategy equals the
value of €, namely oy = €.

In these performances, we used €; = (0.07, 0.06, 0.055,
0.05, 0.045) and (0.05, 0.045, 0.04, 0.035, 0.03) for algo-
rithm 1 with step sizes At = 3 and 5, respectively. For
algorithm 2, these values are €, = (0.095, 0.08, 065,
0.05, 0.04) and (0.059, 0.055, 0.05, 0.045, 0.04). An inter-
esting observation is that the values of mean count
number are very large in the first iteration, then
decrease sharply and stay within a value stably. We have
a detailed test of using different values of the fitness tol-
erance €; and found that when using step size of At =
3, mean count number stays at one if € > 0.1; but it
starts to increase sharply to a large number if €; < 0.1.
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Table 1 Comparison of averaged error and mean count

number for estimated rate constants over five iterations
using algorithms 1 and 2 with simulation number of 10
for system 1

At ok 1 2 3 4 5
Algorithm 1

3 0.1 MN 1541 7.21 7.36 821 10.05
AE 07668 07294 07073 07832 06173

0.05 MN 175.72 30.66 24.47 2822 26.5

AE 06120 05036  0.5521 0.7175 06132

vary  MN 46.46 25.07 22.76 30.09 88.56
AE 07669 05306 06780  0.5858 0.5945

5 0.1 MN 26.96 1047 9.07 11.18 13.19
AE 07107 05607 05366 04693 04853

0.05 MN 130.64 27.38 2542 35.36 35.79

AE 05826  0.6495 04260  0.7548 04139
vary  MN 141.97 30.28 5347 12716 291158

AE 05587 04793 05416 0.5960 0.5375

Algorithm 2

3005 MN 46761 5234 4108 6917 19569
AE 05834 06091 04867 04995 04402
vary MN 10026 3204 2478 8015  1793.64
AE 07132 06657 06305 06705 04833

5 005 MN 33317 2426 3285 2111 2184
AE 05962 05340 05761 04983 05518

vary  MN 24378 226 3129 346 7025
AE 06565 06035 05759 05488 04263

Tests are experimented under different strategies of discrepancy tolerance
such as o = 0.1, 0.05 or varies over iterations (AE:Averaged Error; MN: Mean
count Number).

The observation numbers using a step size of At = 3 is 10
and the maximum error that can incur calculated from
step 2.d is 0.1 with one hundred particles. Similarly, this
critical € value is 0.06 for a step size of At = 5.
Meanwhile all averaged errors have a decreasing trend
over iterations. Looking at different cases with various
values of discrepancy tolerance «, it is also observed that
using o = 0.1 results in more discrepancies of the esti-
mated parameters on average than the other two cases, in
particular, than the case o = 0.05. Thus in our following
tests, we just concentrate on the cases of & = 0.05 and
varying ¢. In addition, we observe that by taking o = 0.05
for the case with step size of At = 3, it leads to more accu-
rate approximation since ¢ = 0. 05 is less than most values
of « in the case of varying values of a. It is consistent with
the cases of a step size of At = 5 in which little differences
can be found comparing strategies using ¢ = 0.05 and & =
€ since the values of €, are quite close to 0.05. In the
case of varying values of a, a small value of ¢5 leads to a
small value of o5, which results in a substantial increase in
mean count number. However, this large mean count
number does not necessary bring more accurate estimated
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parameters. With these findings, we simulated results
using o = 0.05 and o = € only for algorithm 2. Consistent
results are obtained using algorithm 2. Moreover, results
obtained using algorithm 2 is more accurate than those
from algorithm 1.

The second test system with eight reactions

Although numerical results of the first test system are
promising regarding the accuracy, that system has only
four reactions. Thus the second test system, namely a
prokaryotic auto-regulatory gene network, includes
more reactions. This network involves both transcrip-
tional and translational processes of a particular gene. In
addition, dimers of the protein suppress its own gene
transcription by binding to a regulatory region upstream
of the gene [32-34]. This gene regulatory network con-
sists of eight chemical reactions which are given below:

R, : DNA + P, 5 DNA - P,,
R, : DNA-P, 2> DNA + Py,
R; : DNA 5 DNA + mRNA,
Ry : mRNA 5 p,

Rs:2P 5 P,,

Rs: Py % 2P,

R, : mRNA < mRNA + P,,
Rs:P 5 p.

This gene network includes five species, namely DNA,
messenger RNA, protein product, dimeric protein, and
the compound formed by dimeric protein binding to the
DNA promoter site, which are denoted by DNA,
mRNA, P, P, and DNA . P,, respectively. In this net-
work, the first two reactions R; and R, are reversible
reactions for dimeric protein binding to the DNA pro-
moter site. Reactions R3 and R; are transcriptional and
translation processes for producing mRNA and protein,
respectively. Reactions R5 and Rg represent the inter-
change between protein P and dimeric protein P, The
system ends up with a degradation process of protein
P [32].

To apply our algorithms, we start up with an initial
condition of molecular copy number

(DNA, mRNA, P, P, DNA-P;) = (10,100,100, 800,100).
In addition, the following reaction rate constants
(c1,..,¢c8) = (0.1, 0.7, 0.35, 0.01, 0.1, 0.9, 0.2, 0.01)

are used as the exact rate constants to generate a
simulation for each molecular species during a period of
T = 50 in a step size of At = 1 and results are presented
by Figure 3. This simulated dataset is used as observa-
tion data for inferring the rate constants.
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Figure 3 Simulated molecular numbers for system 2 in a time length of 50 with step size At of 1. (3): DNA numbers; (B): numbers of DNA
- Py (C): Red line for the numbers of mRNA black and cyan dash-dotted line for the numbers of P; (D): numbers of P,.

The prior distribution of each parameter follows a
uniform distribution 7(6) ~ U(0, B). For rate constants
¢, ~ cg, the values of B are (0.5,2,1,0.1,0.5, 5,1,0.1). The
proposed two algorithms were implemented over five
iterations and each iteration contains 100 particles.
We choose step sizes At = 2 or 5 and the number of
stochastic simulation By = 10.

Figure 4 gives the probabilistic distribution of the esti-
mated rate constant ¢, over 2nd ~ 5th iterations. The dis-
tribution of the first iteration is close to the uniform
distribution, and this is not presented. Since the second
iteration, the estimated rate constant begins to accumulate
around the exact value ¢; = 0.2. At the last iteration, the
probability in Figure 4D shows a normalized-like
distribution. Compared with the results of system 1 in
Figure 2, the convergence rate of the parameter distribu-
tion of system 2 is slower. Our numerical results suggested

that this convergence rate depends on the strategy of
choosing the values of discrepancy tolerance o.

To analyze the factors that influence the convergence
property of estimates, the mean count number as well as
the averaged error for each iteration k are obtained.
Results are presented in Table 2. Using algorithm 1 and
2, we tested for step sizes of At = 2 and A¢ = 5. Since the
errors of estimates obtained using a fixed value of o = 0.1
are always larger than those obtained by a = 0.05, we
only tested with the cases of a fixed value o = 0.05 and
varying values of ¢. For algorithm 1, we tested two cases
for the varying values of discrepancy tolerance o. In the
first test, the values are €; = (0.21,0.2,0.19,0.18,0.175) and
o = € for varying values of o, which is the case “Same
€x“ in Table 2. The values of € are also applied to the
case of a fixed value o = 0.05. In this case, the averaged
count number of varying ¢ is much smaller than that of
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a fixed value of a.. Thus we further decreased the value of
o to (0.15,0.125,0.1,0.075,0.07), which is the case “Diff.
€,“ in Table 2. In this case, the mean count numbers are
similar to those using a fixed . Numerical results sug-
gested that the strategy of using a fixed value of o gener-
ates estimates with better accuracy than the strategies of
using varying o values, even when the computing time of
the varying o strategy is larger than that of the fixed o
strategy.

For algorithm 2, we carried out similar tests. In the
first case, we set €, =(0.24,0.23,0.22,0.21,0.2), which is
applied to the strategy of fixing & = 0.05 and varying o
with a= € that is the case “Same €, in Table 2. Again,
the averaged count numbers of varying o strategy are
much smaller than those using a fixed . Thus we
decreased the value to (0.095,0.09,0.085,0.08, 0.075),
which is the case “Diff. €, in Table 2; However, the
averaged count numbers in the “Diff. € case are

similar to those of the previous two strategies, namely a
fixed a and “Same &,“. For algorithm 2, Table 2 suggests
that the varying o strategy generates estimates that are
more accurate than those obtained from the fixed «a
strategy. However, the best estimates in Table 2 are
obtained using algorithm 1 and fixed o strategy.

Conclusions

To uncover the information of biological systems, we pro-
posed two algorithms for the inference of unknown para-
meters in complex stochastic models for chemical reaction
systems. Algorithm 1 is in the framework of ABC SMC
and uses transitional density based on the simulations
over two consecutive observation time points. Algorithm 2
generates simulations of the whole time interval but differs
from the published method in the error finding steps by
comparing errors of simulated data to experimental data
at each time point. The proposed new algorithms impose
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Table 2 Comparison of averaged error and mean count
number for estimated rate constants of system 2 using
algorithms 1 and 2

At a\k 1 2 3 4 5
Algorithm 1
2 0.05 MN 18.29 753 9.8 127 14.23
AE 46211 44179 47138 42188 38119
Same ,  MN 269 2.07 2.16 1.93 1.93
AE 47006 49603 48841 46833 47298
Diff. MN 15.26 7.85 8.78 13.06 12.28
AE 48295 45322 50418 47346 46069
5 0.05 MN 9.69 348 3.12 58.2 74.07
AE 41076 43243 41868 35311 35194
Same x  MN 234 231 242 169 1138
AE 49862 47669 46716 38873  4.0017
Diff. x MN 25.72 8.14 1045 258 174.88
AE 40461 39583 37474 35655 36951
Algorithm 2
2 0.05 MN 89.7 19.75 17.8 4042 69.52
AE 40540 41339 41376 39696  3.9009
Same x  MN 252 3.85 355 3.82 3.84
AE 50456 46069 43666 45876  3.8958
Diff. x MN 19749 15.05 22.09 36.85 94.24
AE 38712 37934 43158 36485 3.5989
5 0.05 MN 13814 30.52 46.66 98.87 377.66
AE 40258 37218 38258 38445 39205
Same x  MN 2167 11.34 1117 26.65 59.64
AE 40545 35715 41910 37252 3.8667
Diff. « MN 18554 2839 33.81 89.81 846.61
AE 37810 36694 36939 39806 3.8515

Three strategies are used to choose the discrepancy tolerance a: a fixed value
of o= 0.05; varying avalues; and o= €,denoted as same €); varying avalues
that are smaller than €, (denoted as diff. €).(AE:Averaged Error; MN: Mean
count Number).

stricter criteria to measure the simulation error. Using two
chemical reaction systems as the test problems, we exam-
ined the accuracy and efficiency of proposed new algo-
rithms. Based on the results of two algorithms for system
1, we discovered that taking smaller values of discrepancy
tolerance o will result in more accurate estimates of
unknown model parameters. This conclusion is confirmed
by the second system that we tested under different condi-
tions. Numerical results suggested that the proposed new
algorithms are promising methods to infer parameters in
high-dimensional and complex biological system models
and have better accuracy compared with the results of the
published method [28]. The encouraging result is that new
algorithms do not need more computing time to achieve
such accuracy. Our computational tests showed that the
selection for the value of fitness tolerance is a key step in
the success of ABC algorithms. The advantage of the
population Monte-Carlo methods is the ability to reduce
the fitness tolerance gradually over populations. Generally,
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a smaller value of fitness tolerance will lead to a larger
number of iteration count and consequently larger com-
puting time. For deterministic inference problems, a smal-
ler value of fitness tolerance normally will generate
estimates with better accuracy. However, for stochastic
models, this conclusion is not always true. In addition to
the fitness tolerance, our numerical results suggested that
other factors, such as the simulation algorithm for chemi-
cal reaction systems and the strategy of discrepancy toler-
ance, also have influences on the accuracy of estimates.
Thus more skilled approaches, such as the adaptive selec-
tion process for the fitness tolerance, should be considered
to improve the performance of ABC algorithms.

In this work, we used the SSA to simulate chemical
reaction systems [30]. This approach may be appropriate
when the biological system is not large. In fact, for the two
biological systems discussed in this work, the computing
time of inference is still very large. To reduce the comput-
ing time, more effective methods should be used to simu-
late the biological systems, such as the z-leap methods [35]
and multi-scale simulation methods [36,37]. Another alter-
native approach is to use parallel computing to reduce the
heavy computing loads. All these issues are potential
topics for future research work.

Methods

ABC SMC algorithm

ABC algorithms bypass the requirement for evaluating
likelihood functions directly in order to obtain the pos-
terior distributions of unknown parameters. Instead,
ABC methods simulate the model with given parameters,
compare the observed and simulated data, and then
accept or reject the particular parameters based on the
error of simulation data. Thus there are three key steps
in the implementations of ABC algorithms. The first step
is the generation of a sample of parameters 6* from the
prior distribution of parameters or from other distribu-
tions that are determined in ABC algorithms. The second
step is to define distance function d(X, Y) between the
simulated data X and experimental observation data Y.
Finally, a tolerance value is needed as a selection criterion
to accept or reject the sampled parameter #* Based on
the generic form of ABC algorithm [17], a number of
methods have been developed including ABC rejection
sampler and ABC MCMC [38,39]. The ABC rejection
algorithm is one of the basic ABC algorithm that may
result in long computing time when a badly prior distri-
bution that is far away from posterior distribution is cho-
sen. ABC MCMC introduces a concept of acceptance
probability during the decision making step which saves
computing time. However, this may result in getting
stuck in the regions of low probability for the chain and
we may never be able to get a good approximation. To
tackle these challenges, the idea of particle filtering has
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been introduced. Instead of having one parameter vector
at a time, we sample from a pool of parameter sets simul-
taneously and treat each parameter vector as a particle.
The algorithm starts from sampling a pool of N particles
for parameter vector @ through prior distribution 7(6).
The sampled particle candidates (07,---,0%) will be
chosen randomly from the pool and we will assign each
particle a corresponding weight @ to be considered as the
sampling probability. A perturbation and filtering process
following through a transition kernel g(-|6¢*) finds the par-
ticles @**. Similarly with 6**, data Y can be simulated and
compared with experimental data X to further fulfil the
requirements for estimating posterior distribution.

The basic form of algorithm described above is as fol-
lows [19]:

Algorithm: ABC SMC

1. Define the threshold values €1, - -
iteration k = 1.

2. Set the particle indicator i = 1.

3. If k = 1, sample 6" from the proposed prior distribu-
tion 7z(6). Generate a candidate data set D(;)(6*) Bx
times and calculate the value of bi(6*), where D(,) ~ p
(D|0) for any fixed parameter 6,

-, €k, start with

By,

b (60*) = ) 1(d (Do, Deyy (6%)) < €x) 1

b=1

and D is the experimental data set.

If k > 1, sample 0 from the previous population {0,2_1}
with weights w;_; and perturb the particle to obtain
using a kernel function K.

If (6*) = 0 or br(6*) = 0O, return to the beginning of
step 3.

4. Set Q}i = 0" and determine the weight for each esti-
mated particles 6;,

b))
O R AT

N j i
Zj:l Kk (eiz—l' 912)

If i <N, update i = i + 1 and return to step 3.

5. Normalize the weights w,(:) If k <K, update k = k +1
and go back to step 2.

A number of algorithms have been developed using
the particle filtering technique, such as the partial rejec-
tion control, population Monte-Carlo and SMC. Each of
them differs in the formation of weight w and the tran-
sition kernels.

ifk=1;
ifk> 1.

ABC using simulated likelihood density

ABC SMC method uses the simulation over the entire
time period to measure the fitness to experimental data,
which is consistent to the approaches used for
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deterministic models [17]. For stochastic models, the
widely used approach is treating transitional density as the
likelihood function [40,41]. Based on a sequence of n + 1
observations X = [Xp, X3, - - -, X,,] at time points [to, £, - -
t,), for a given parameter set 6 the joint transitional den-
sity is defined as

fo[(to, Xo) 16] ﬁf [(ti, Xi) (tic1, Xic1) -+, (10, X0) ;6],(2)
i=1

where fo[-] is the density of initial state, and
f[(ti/Xi) | (ti—IIXi—l)/' o ,(tO,X());Q] (3)

is the transitional density starting from (¢;_; X; _;) and
evolving to (¢, X;). When the process X is Markov, the
density (3) is simplified as

X G, Xi) ;6] (4)

In the simulated likelihood density (SLD) methods,
this transitional density is approximated by that
obtained from a large number of simulations.

Based on the discrete nature of biochemical reactions
with low molecular numbers, it was proposed to use the
frequency distribution of simulated molecular numbers
to calculate the transitional density [31]. The frequency
distribution is evaluated by

1 B
FIX=X]= B, > 11 =8 Xi, X1
m=1

using By simulations with the simulated state X,,,;.
Here the function J(x) is defined by

0 ifdX,Xm) < aX;

8 (Xi, Xm1) = { 1 else

where d(x, y) is a distance measure between x and y.

Here we propose a new algorithm that uses the simu-
lated transitional density function as the objective func-
tion. Unlike ABC SMC algorithm [17], the new method
considers the transitional density function from ¢; _; to
t; only at each step. Based on the framework of ABC
SMC, the new algorithm using transitional density is
proposed as follows.

ABC SLD algorithm 1

1. Given data X and any assumed prior distribution
71(6), define a set of threshold values €, - -
2. For iteration k = 1,
(a) Set the particle indicator i = 1, sample 6* ~
77(0).
(b) For time step [ = 1,2, - - -, n, use initial condi-
tion X; _ ; and parameter 6 to generate data Y
at t; for By times.

5 €



Wu et al. BMC Bioinformatics 2014, 15(Suppl 12):53
http://www.biomedcentral.com/1471-2105/15/512/S3

(c) For m = 1, - -, By, calculate the value of dis-
crepancy and test for

dXi, Ym) < aXi, (5)

where « is a defined constant.
If it is true, let B,,; (6%) = 0, otherwise it is
one. Then determine

By
by (0%) = > B (0%). (6)
m=1
(d) Calculate

mo1
=), (Bi—bi®"). )
1=1 Dk

If € <€, update 0¥ = §* and move to the
next particle i = i +
(e) Assign weight ! for each particle.
3. Determine the varlancé\rfor the particles in the
first iteration

o1 = \/var (9{11:[\,})

4. For iteration k =2, - -, K
(a) Start with i = 1, Sample 6* ~ Qk ! using the
calculated weights w" N
(b) Perturb 6* through sampling 6** ~ g(0|6*>),
where g =N (0*,07,) or q = U(a, b). Here
values of a,b depend on 6" and o2 .
(c) Generate simulations and calculate the error
€ using the same steps as in 2(b) ~ (d).
(d) For each particle, assign weights

LI
(o)

(e) Determine the variance for the particles in
the k-th iteration

o, = \/var (Q{km}> .

An alternative approach is to generate simulations
over the observation time period but compare the error
to experimental data at each time point. The approach
locates somewhere between ABC SMC algorithm [17]
and the proposed Algorithm 1. which is presented
below. For simplicity we do not give a detailed algo-
rithm, but just provide the key steps 2.b) ~ 2.d) that are
different from those in Algorithm 1.

ABC SLD algorithm 2

2.b) Generate data Y By times using 6*.

Page 9 of 10

2.c)Form=1,--- Bgyand [ = 1,2, - - -, n, calculate the
value of discrepancy d(X,, Y,,;) and test for

X1 = Yl < X
If it is true, let b,,,(6*) = 0, otherwise it is one.
2.d) Calculate

n By,
Z Z 'ml (6*
1

k m=1
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