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Abstract

Deciphering three dimensional structure of a protein sequence is a challenging task in biological science. Protein
fold recognition and protein secondary structure prediction are transitional steps in identifying the three
dimensional structure of a protein. For protein fold recognition, evolutionary-based information of amino acid
sequences from the position specific scoring matrix (PSSM) has been recently applied with improved results. On
the other hand, the SPINE-X predictor has been developed and applied for protein secondary structure prediction.
Several reported methods for protein fold recognition have only limited accuracy. In this paper, we have
developed a strategy of combining evolutionary-based information (from PSSM) and predicted secondary structure
using SPINE-X to improve protein fold recognition. The strategy is based on finding the probabilities of amino acid
pairs (AAP). The proposed method has been tested on several protein benchmark datasets and an improvement of
8.9% recognition accuracy has been achieved. We have achieved, for the first time over 90% and 75% prediction
accuracies for sequence similarity values below 40% and 25%, respectively. We also obtain 90.6% and 77.0%
prediction accuracies, respectively, for the Extended Ding and Dubchak and Taguchi and Gromiha benchmark
protein fold recognition datasets widely used for in the literature.

Introduction
Recognition of protein folds is an essential step in iden-
tifying the tertiary structure of proteins. The identifica-
tion of protein tertiary structures helps in analysing and
understanding function, heterogeneity and protein-pro-
tein and protein-peptide interactions. The protein fold
recognition problem can be tackled by first extracting
useful and informative features from protein sequences
followed by the identification of the fold of a novel pro-
tein sequence using an appropriate classifier. A range of
techniques have been developed addressing both the fea-
ture extraction and classification areas. Protein fold
recognition comprises two major steps: feature extrac-
tion and classification.

For feature extraction, several techniques, based on
structural, physicochemical and evolutionary informa-
tion, are available. Dubchak et al. [1] have shown impor-
tance of syntactical and physicochemical features in
protein fold recognition using amino acid composition
(AAC), in conjunction with five physicochemical attri-
butes of amino acids: hydrophobicity (H), polarity (P),
van der Waals volume (V), predicted secondary struc-
ture based on normalized frequency of α-helix (X) and
polarizability (Z). Their 120-dimensional feature set is
composed of 20 AAC together with 105 physicochem-
ical features. Their features have been extensively used
in protein fold recognition [2-13]. There are other attri-
butes used to extract features after [1]. These are size of
the amino acid side chain [9], solvent accessibility [14],
flexibility [15], bulkiness [16], first and second order
entropy [17]. As the selection of these attributes was
done arbitrarily, we have proposed a more systematic
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approach to attribute selection has been proposed
[18,19]. Further, a profile-profile alignment method is
proposed by Ohlson et al., [20] to improve protein fold
recognition. The syntactical-based features using amino
acid occurrence are proposed by [21] and by using
amino acid residues along with residue pairs are pro-
posed in [22]. In [23], authors have proposed pairwise
frequencies in two ways: PF1 for amino acids separated
by one residue and PF2 for adjacent amino acid resi-
dues, where PF1 and PF2 are 400-dimensional each.
These features are further concatenated in [24] resulting
in 800 features. In some cases, the dimensionality of fea-
tures could be large which increases computational
complexity of the classifier used. In this case, feature
selection methods can be used as a preprocessing step
to reduce the number of feature [25-27]. To present
protein sequence in an effective manner, authors in [28]
proposed pseudo-amino acid composition (A) features.
In [29], authors proposed autocross-covariance (ACC)
transformation and the work in [30-32] has shown pro-
tein sequence autocorrelation. In [9], authors derived
additional features from physicochemical properties.
The bi-gram features [19] using evolutionary based
information (PSSM) have also shown effective recogni-
tion results. For more feature extraction or selection
methods please see [33-40].
For the classification step, a variety of algorithms, such

as linear discriminant analysis [41], Bayesian classifiers
[2], Bayesian decision rule [42], k-nearest neighbor [30],
Hidden Markov model [43,44], artificial neural network
[45,46], support vector machine (SVM) [5,22,23] and
ensemble classifiers [6,24,47,48], have been adopted.
Among the various protein fold recognition classifiers
reported in the literature, SVM (or SVM-based) classi-
fiers demonstrate excellent performance [23,31,32].
Since the feature extraction is crucial in protein struc-

ture recognition, our approach is focussed on developing
an appropriate feature extraction method. There can be
four distinct types of features, extracted from protein
sequence: sequential-based, physicochemical-based,
structural-based and evolutionary-based features. In this
work, we have investigated evolutionary-based and
structural-based features perform as done by other
authors [24,29].
The evolutionary information is extracted from PSSM

matrices (a publically available tool to retrieve the PSSM
matrix is PSI-BLAST) [49]. PSSM matrix estimates the
relative probability of amino acid substitution. If a pro-
tein sequence is of length L then PSSM matrix would
have L rows and 20 columns (since there are maximum
of 20 distinct amino acids in a protein sequence). The
structural information is extracted from predicted sec-
ondary structure of the proteins using predictors such
as SPINE-X and PSIPRED [50,51]. Protein secondary

structures are classified into three states namely, alpha-
helix, beta-strands and coils. Since SPINE-X outper-
formed PSIPRED for protein secondary structure predic-
tion [50], we use SPINE-X in this study. For a protein
sequence of length L, SPINE-X provides a matrix of
probabilities of size L × 3 (where 3 refers to the number
of secondary structure states). This matrix contains use-
ful information for secondary structure class prediction.
In this paper, we combine the information from the

PSSM matrix and secondary structure prediction matrix
(SSPM) from SPINE-X to extract relevant and useful
knowledge for protein fold recognition. The motivation
of combining these two categories comes from the fact
that they produce high performance in fold recognition
and secondary structure prediction, respectively. There-
fore, they have extracted relevant information for the
respective tasks and if their impact can be utilized as a
whole then the performance of fold recognition can be
appreciated. Considering this, we developed k-amino
acid pair (AAP) feature extraction method based on
PSSM and SSPM, and show its usefulness on several
protein benchmark datasets. Compared to the best
results reported in the literature, we have enhanced the
recognition accuracy by 8.9% and 4.7% for sequence
similarity values of less than 25% and 40%, respectively.
The next section covers materials and methods.

Materials and Methods
The k-AAP feature extraction method
In this section, we describe k-AAP method using PSSM
linear probabilities and SSPM (from SPINE X). PSSM is
calculated by applying PSIBLAST [49] in which its cut
off value (E) is set to 0.001 on our explored benchmarks
(using NCBI’s non redundant protein database). Here,
we represent a protein sequence by its PSSM and SSPM
and compute ordered pair features of amino acids using
the probability information from PSSM and SSPM. Let
P be the matrix of PSSM linear probabilities and S be
the matrix for SSPM values. For an L length protein
sequence, the size of P would be L × 20 and the size of
S would be L×6. If we denote matrix Q as Q = [P, S]
then its size would be L × 23. The matrix Q contains
probability information of amino acids and secondary
structure component corresponding to each amino acid
in a protein sequence. The ith-row and jth-column ele-
ment, qi,j of Q is the probability of an amino acid or sec-
ondary structure. The information in Q is shown to be
useful by gathering amino acid pairs in the following
manner:

Rk(m,n) =
∑L−k

i=1 qi,mqi+k,n, where 1 ≤ m ≤ 23 and1 ≤ n ≤ 23 (1)

Equation 1 will give 23 × 23 pairwise probabilities of
Rk(m,n). It can be interpreted in the form of feature
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vector of dimension 529 as:

f (Rk) = [Rk (1, 1) , Rk (1, 2) , . . . , Rk (1, 23) , Rk (2, 1) , . . . , Rk (23, 1) , . . . , Rk (23, 23)] (2)

In this work, we used k = 1, 2, 3 and 4. We observed
that by using higher values of k, the performance does
not improve further. This is because as we increase k
the correlation between the two amino acids decreases
which do not provide relevant information for fold
recognition. By using the representation of the above
feature vector f (Rk) for all values of k, we can denote
feature vector F as F =

[
f (R1) , f (R2) , f (R3) , f (R4)

]T,
where superscript T is the transpose of the vector. The
dimensionality of this feature vector would be 2116.
From the feature vector computation, we note that all
PSSM and SSPM probability information have been uti-
lized. From a biological perspective, proteins with the
same fold also share similar general secondary structure
information. In other words, proteins with the same fold
often have highly conserved amino acid sub-sequences
and can translate to a specific secondary structure resi-
due. In these conserved regions, k -AAP probability
values effectively characterize the amino acid sub-
sequences. For each sub-sequence conserved in a fold
and/or related to a particular residue, all proteins with
that fold will contain amino acid pairs characterizing
that conserved region and/or set of residues. This infor-
mation can therefore filter out folds that do not share
the same amino acid sub-sequences. Therefore, intui-
tively F contains more useful information for fold recog-
nition. This has been demonstrated in the
experimentation part of the paper.
For classification of the feature vectors, we used the

support vector machine (SVM) classifier as it has shown
promising results in protein fold recognition. We
employed SVM from libsvm with RBF kernel [52]. The
parameters of SVM are optimized by using grid search.
In order to present an overview of the proposed strat-

egy, we show a flow diagram of the proposed method in
Figure 1. The input (in the figure) is a protein sequence
and the output is recognized protein fold.

Support Vector Machine as a classifier
SVM [53] is used as a classifier in this experiment. It is
one of the leading classification technique and has also
been applied in regression areas. The goal of SVM is to
discover maximum margin hyper plane (MMH) in order

to reduce misclassification error. Data in SVM is trans-
formed through a kernel K function (e.g. linear or RBF)
[54,55].
The SVM classifier attempts to find separation

between two classes. If the class label of an input space
vector xi is yi, where yi is either −1 or +1. Then any
unknown vector x′ would have class label

y′ = sign
(∑n

i=1
αiyiK(xi, x′) + b

)
(3)

where y′ denotes the predicted class label of x′; K(., .)
is kernel function; number of support vectors is defined
by n; bias is defined by b and adjustable weights are
defined by αi. In this work, LibSVM [52] has been used
to conduct training and testing of data. The kernel func-
tion utilized is radial basis function (RBF) which is
defined by K(zi, zj) = exp(−g ∗ ||zi − zj||2), where g is
gamma parameter. The gamma and complexity para-
meter (C) parameters are optimized using LibSVM. The
data is not normalized before processing to the SVM
classifier.

Dataset
We have used three protein sequence datasets in this
study: 1) Ding and Dubchak (DD) [5], 2) Taguchi and
Gromiha (TG) [21] and 3) Extended DD (EDD) [29].
The DD-dataset utilizes protein sequences from 27
Structural Classification of Proteins (SCOP) folds com-
prehensively, comprehensively covering α, , α/ and
α + structural classes [5]. The training set contains
311 protein sequences with no two proteins having
more than 35% of sequence identity for alignments
longer than 80 residues. The test set comprises 383 pro-
tein sequences of less than 40% sequence identity. The
training and test sets were merged for analysis.
TG-dataset has 30 folds of globular proteins from

SCOP. It has a total of 1612 protein sequences with
sequence similarity no more than 25%. The dataset has
been described in detail in Taguchi and Gromiha [21].
EDD-dataset comprises 27 folds which are also pre-

sent in the DD-dataset. This dataset has 3418 proteins
with sequence similarity less than 40%. In this study, we
have used the approach described by Dong et al. [29] to
extract the EDD-dataset from SCOP.
We perform n-fold cross-validation process, where n =

5, 6, 7, 8, 9 and 10 for analysis and observation. The next
section describes the experimental part of the work.

Figure 1 An overview of k-AAP feature extraction scheme.
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Results and Discussion
The proposed k-AAP features have been compared with
PF1, PF2 [23], PF [24], Occurrence [21], AAC and AAC
+HXPZV [5] feature extraction methods. Moreover, we
have updated the protein sequences to get the consen-
sus sequence by using their corresponding PSSMs; i.e.,
each amino acid of a protein sequence is replaced by
the amino acid that has the highest probability in PSSM.
After this updating procedure, we have used the same
feature extraction techniques (PF1, PF2, PF, O, AAC
and AAC+HXPZV) again to obtain the recognition per-
formance. In Tables 1, 2, 3, we have placed the results
for PSSM updated protein sequences (or the consensus
sequence) in the columns 2-7 of the row of PSSM +
FET, where FET is any feature extraction technique. We
have also used PSSM based mono-gram and bi-gram
feature extraction methods [19] and ACC [29] for com-
parison and the highest recognition accuracy of each
n-fold cross-validation is highlighted in bold face.
Table 1 shows that the highest accuracy obtained by

k-AAP is 76.1% on DD-dataset which is at least 2%
higher than the other techniques. On TG-dataset (Table
2), k-AAP achieved 77.0% accuracy which is around
10.6% better than Dong et al., [29] results and 8.9%
better than the best results achieved for this benchmark
[19]. It is important to highlight that this enhancement
is achieved by using 2116 (4 × 529) features compared
to 4000 features used in Dong et al., [29] study. For
EDD-dataset (Table 3), k -AAP achieved 90.6% accuracy
which is around 4.7% higher than the other techniques.
This enhancement in prediction accuracy is obtained at
low sequence similarity of proteins (less than 25%
sequence similarity for TG dataset and less than 40%

sequence similarity for EDD dataset). This shows that
the extracted features are able to maintain their discri-
minatory information when the sequence similarity is
reduced. Therefore, it can be deduced that k-AAP is
performing quite well in recognizing protein folds.
To analyse the statistical significance of the prediction

accuracy obtained for protein fold recognition, we carried
out paired t-test on our results obtained from the experi-
ments and the highest accuracies reported in the literature.
Our results indicate an associated probability value of
p = 0.0015 from the paired t-test. This value confirms that
the reported improvement in this work compared to the
results found in the literature is significant
We have also carried out experiments to find out

which terms either PSSM or SSPM contribute the most
in protein fold recognition. In order to do this, we used
k = 4 and conducted 10-fold cross-validation using
PSSM separately and SSPM separately. The results are
shown in Table 4 indicating that accuracy is much
higher using PSSM based features compared to SSPM
based features, and that the accuracy achieved by their
combination is the highest. Therefore, we can say that
PSSM based features are more contributing towards the
overall performance of k -AAP method. Nonetheless,
SSPM is also playing important role in improving the
performance further.
Moreover, we have shown our feature extraction

method with other classifiers in order to demonstrate
the significance of evolutionary and structural informa-
tion. Table 5 depicts protein fold recognition accuracy
on all the three datasets using 10-fold cross-validation.
It can be seen that the results obtained by other classi-
fiers are encouraging. This shows that evolutionary and

Table 1 Recognition accuracy by n-fold cross validation procedure for different feature extraction techniques for SVM
classification for the DD-dataset.

Feature sets n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

PF1 [23] 48.6 49.1 49.5 50.1 50.5 50.6

PF2 [23] 46.3 47.0 47.5 47.7 47.9 48.2

PF [24] 51.2 52.2 52.6 52.9 53.4 53.4

O [21] 49.7 50.4 50.8 50.8 51.1 51.0

AAC [5] 43.6 43.9 44.2 44.8 44.6 45.1

AAC+HXPZV [5] 45.1 46.2 46.5 46.8 46.9 47.2

ACC [29] 65.7 66.6 66.8 67.5 67.7 68.0

PSSM+PF1 [55] 62.5 63.2 63.7 64.2 64.5 64.6

PSSM+PF2 [55] 62.7 63.3 64.1 64.2 64.6 64.7

PSSM+PF [55] 65.5 66.2 66.5 66.9 67.1 67.5

PSSM+O [55] 62.5 62.1 62.5 62.9 63.4 63.5

PSSM+AAC [55] 57.5 58.1 58.4 58.7 59.1 59.2

PSSM+AAC+HXPZV [55] 55.9 56.9 57.1 57.7 58.0 58.2

Mono-gram [19] 67.7 68.4 68.6 69.1 69.4 69.6

Bi-gram [19] 72.6 73.1 73.7 73.7 74.1 74.1

k-AAP (this paper) 74.3 75.2 75.2 75.7 76.1 76.1
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structural information play a crucial role in extrac-
tion important discriminant information for protein
fold recognition. At the same time, the accuracies
obtained by other classifiers are slightly lower than
the SVM classifier used. This confirms our selection
of using SVM classifier for various feature extraction
methods.
Furthermore, to assess the statistical significance, we

have carried out sensitivity, specificity and precision
analysis of all features used in this study, as conducted
in [55]. Sensitivity is given by

Sensitivity =
TP

TP + FN
× 100,

where TP represents true positive and FN represents
false negative samples. This evaluates correctly classified
test samples for each class. Specificity is given by

Specificity =
TN

TN + FP
× 100,

where TN represents true negative and FP represents
false positive. This measures correctly rejected test

Table 2 Recognition accuracy by n-fold cross validation procedure for different feature extraction techniques for SVM
classification for the TG dataset.

Feature sets n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

PF1 [23] 38.1 38.4 38.6 38.7 38.8 38.8

PF2 [23] 38.0 38.4 38.5 38.6 38.7 38.8

PF [24] 42.3 42.6 42.7 43.0 43.0 43.1

O [21] 35.8 36.1 36.2 36.1 36.3 36.3

AAC [5] 31.5 31.5 31.7 31.8 31.9 32.0

AAC+HXPZV [5] 35.7 36.0 36.1 36.2 36.3 36.3

ACC [29] 64.9 65.4 65.9 66.2 66.4 66.4

PSSM+PF1 [55] 51.1 51.5 52.0 52.3 52.4 52.7

PSSM+PF2 [55] 50.2 50.4 50.7 50.8 51.0 51.1

PSSM+PF [55] 57.2 57.8 58.0 58.3 58.5 58.8

PSSM+O [55] 46.0 46.3 46.5 46.5 46.7 46.7

PSSM+AAC [55] 43.2 43.5 43.6 43.8 43.8 44.0

PSSM+AAC+HXPZV [55] 45.6 45.9 46.0 46.2 46.3 46.6

Mono-gram [19] 57.2 57.3 58.2 58.4 58.8 58.8

Bi-gram [19] 67.1 67.5 67.6 67.8 68.1 68.1

k -AAP (this paper) 75.9 76.2 76.6 76.7 76.9 77.0

Table 3 Recognition accuracy by n-fold cross validation procedure for different feature extraction techniques for SVM
classification for the EDD dataset.

Feature sets n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

PF1 [23] 50.2 50.5 50.5 50.7 50.8 50.8

PF2 [23] 49.3 49.5 49.7 49.8 49.8 49.9

PF [24] 54.7 55.0 55.2 55.4 55.5 55.6

O [21] 46.4 46.6 46.6 46.7 46.7 46.9

AAC [5] 40.3 40.6 40.7 40.7 40.9 40.9

AAC+HXPZV [5] 40.2 40.4 40.6 40.7 40.9 40.9

ACC [29] 84.9 85.2 85.4 85.6 85.8 85.9

PSSM+PF1 [55] 74.1 74.5 74.7 75.0 75.1 75.2

PSSM+PF2 [55] 73.7 74.1 74.5 74.6 74.7 74.9

PSSM+PF [55] 78.2 78.6 78.8 79.0 79.1 79.3

PSSM+O [55] 67.6 68.0 68.1 68.3 68.3 68.5

PSSM+AAC [55] 60.9 61.3 61.5 61.6 61.7 61.9

PSSM+AAC+HXPZV [55] 66.7 67.2 67.4 67.7 67.8 67.9

Mono-gram [19] 76.2 76.3 76.6 76.8 77.0 76.9

Bi-gram [19] 83.6 84.0 84.1 84.3 84.3 84.5

k -AAP (this paper) 90.1 90.2 90.4 90.5 90.6 90.6
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samples. The sensitivity and specificity values are first
computed for each class, then averaged over all the
classes with the results depicted in Figures 2, 3 and 4.
Furthermore, sensitivity and specificity values for all

the features used here have been computed for the
three datasets. Figure 2, depicts this analysis on DD
dataset, Figure 3 on TG dataset and Figure 4 on EDD
dataset. It can be observed from Figures 2, 3, 4 that
although specificity values are is high for all the feature
sets, sensitivity values are variable. This indicates that
false positive is very small in comparison with true
negative. Thus true negative dominates the results. This
usually happens for difficult problems. It can be seen

from the results that by incorporating evolutionary-
based features, the sensitivity increased. This highlights
the impact of evolutionary-based features in improving
protein fold recognition accuracy. For all the datasets,
sensitivity is highest for k-AAP method.

Conclusion
In this paper, we have proposed the k-amino acid pair
feature extraction method. This method utilizes PSSM
linear probabilities and SSPM probabilities. The accu-
racy of fold recognition of the proposed method was
consistently better than that obtained from other similar
methods.

Table 4 Recognition accuracy (in percentage) for 10-fold cross validation procedure for PSSM and SSPM using SVM
classifier on the DD, TG and EDD datasets.

Feature sets DD TG EDD

Using PSSM only 74.5 73.8 88.8

Using SSPM only 59.8 55.2 71.7

Using PSSM+SSPM (i.e., k -AAP) 76.1 77.0 90.6

Table 5 Recognition accuracy (in percentage) for 10-fold cross validation procedure using different classifiers on k
-AAP.

Classifiers DD TG EDD

Naïve Bayes 62.3 48.5 58.2

SVM (SMO with linear polynomial of degree P = 1) 75.4 76.1 88.8

SVM (SMO with P = 3) 69.1 69.2 86.2

Random Forest (10 base learners) 62.9 52.1 73.0

Adaboost.M1 (10 base learners) 68.1 59.3 79.2

kNN (for k = 1) 70.8 65.6 84.3

Figure 2 Sensitivity and specificity of all feature sets for the DD dataset.
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To the best of our knowledge, we achieved over 90%
and 75% prediction accuracies with sequence similarity
rates less than 40% and 25%, respectively. For the EDD
and TG benchmark datasets, we attained 90.6% and
77.0% prediction accuracies, which are 4.7% and 8.9%,
respectively, better than the best results reported in the
literature. We also observed 76.1% for the DD bench-
mark which is 1.9% better than other methods.
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