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Abstract

Background: Cophylogeny mapping is used to uncover deep coevolutionary associations between two or more
phylogenetic histories at a macro coevolutionary scale. As cophylogeny mapping is NP-Hard, this technique relies
heavily on heuristics to solve all but the most trivial cases. One notable approach utilises a metaheuristic to search
only a subset of the exponential number of fixed node orderings possible for the phylogenetic histories in
question. This is of particular interest as it is the only known heuristic that guarantees biologically feasible solutions.
This has enabled research to focus on larger coevolutionary systems, such as coevolutionary associations between
figs and their pollinator wasps, including over 200 taxa. Although able to converge on solutions for problem
instances of this size, a reduction from the current cubic running time is required to handle larger systems, such as
Wolbachia and their insect hosts.

Results: Rather than solving this underlying problem optimally this work presents a greedy algorithm called
TreeCollapse, which uses common topological patterns to recover an approximation of the coevolutionary history
where the internal node ordering is fixed. This approach offers a significant speed-up compared to previous
methods, running in linear time. This algorithm has been applied to over 100 well-known coevolutionary systems
converging on Pareto optimal solutions in over 68% of test cases, even where in some cases the Pareto optimal
solution has not previously been recoverable. Further, while TreeCollapse applies a local search technique, it can
guarantee solutions are biologically feasible, making this the fastest method that can provide such a guarantee.

Conclusion: As a result, we argue that the newly proposed algorithm is a valuable addition to the field of
coevolutionary research. Not only does it offer a significantly faster method to estimate the cost of cophylogeny
mappings but by using this approach, in conjunction with existing heuristics, it can assist in recovering a larger
subset of the Pareto front than has previously been possible.

Background
Ecologically linked groups of organisms often place
selective pressures on one another driving the evolution-
ary process [1]. These selective pressures give rise to
tightly coupled coevolutionary systems. Coevolution
occurs in a wide variety of biological systems including

host-parasite relationships [2], mimicry between species
[3], biogeography [4], insect-plant interactions [5], host-
pathogen networks [6], and predator-prey systems [7].
The study of the macro scale coevolutionary associa-

tions (�) formed between the host and parasite phyloge-
nies is encompassed by the field of cophylogenetics [8].
Analysis of these systems can be applied to tackle some
of the most pressing global health issues facing society
today [9]. Coevolutionary analysis of systems such as
primates and malaria-causing Plasmodium [6] offer the
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potential to provide further insights into this deadly dis-
ease. Although encompassing a large number of biologi-
cal scenarios each coevolutionary system consists of an
independent evolutionary history often refered to as the
host phylogeny and its corresponding dependent evolu-
tionary history known as the parasite phylogeny [10].
Cophylogenetics aims to provide such insights by eval-

uating the significance of the observed associations (�)
between the host (H) and parasite (P) phylogenies and
the branching patterns between H and P to identify if
these ecologically linked organisms have formed deep
coevolutionary bonds or if their evolutionary histories are
independent [10]. The host and parasite phylogenies con-
sidered herein are bifurcating trees where the total num-
ber of nodes for both trees is bound by O(n). Therefore,
cophylogenetics aims to analyse and understand the
tuple (H, P, �), often visualised as a tanglegram [11] as
seen in Figure 1. As a result, the complexity of this pro-
blem is bound in terms of n, the size of H and P .
A common method for evaluating the tuple (H, P, �)

is cophylogeny mapping where the parasite tree is
mapped into the host tree such that the associations (�)
are conserved. A cophylogeny mapping (F(P)) estimates
the parasite’s evolutionary history with respect to its
host using the four recoverable coevolutionary events of
codivergence, duplication, host switch and loss.
A Codivergence event is a concurrent divergence of

both a host and parasite species [8]. A Duplication
event, by contrast, is an independent divergence of a
parasite species. Following this divergence event both
new parasite species continue to track their initial host
[10]. A Host Switch, similar to a duplication event, is an
independent divergence of a parasite species. In contrast
to a duplication event, however, one of the new parasite
species switches to a new host while the remaining
parasite species continues to inhabit the initial host [12].
A Loss event represents one of three possibilities: failure
to diverge by the parasite species following a divergence
event by its host, an extinction event of a parasite spe-
cies or sampling error in the phylogenetic reconstruc-
tion of the parasite phylogeny [13]. These four events
when applied together are capable of recovering the full

set of mappings possible where each parasite may only
inhabit a single host. This is the permutation of the
cophylogeny reconstruction problem which is considered
herein. An example of all four recoverable events applied
to solve a simple tanglegram can be seen in Figure 1. The
aim when recovering a cophylogeny mapping is to
retrieve a solution where the resultant cost is minimised.
The set of all mappings with a minimum cost are con-
tained within the Pareto set [14]. The cophylogeny recon-
struction problem is defined as the problem of
reconstructing a map from the Pareto set where the map-
ping cost is minimised, which has been established as
NP-Hard [14,15], which has in turn given rise to a num-
ber of heuristic approaches. Currently there are two
classes of heuristics, pattern and event-based methods.
Event-based algorithms have been shown to be the only
approach that can guarantee recovered solutions are opti-
mal [8]. Ronquist [16], however, has argued that pattern-
based algorithms can produce robust approximations
that can be as good as event-based methods which
impose constraints upon the solution space. Imposing
constraints is required due to the computational intract-
ability of this problem, and therefore pattern-based
methods have the potential to offer comparable precision
to event-based methods. An existing pattern-based
approach is Page’s Reconciled Tree Analysis [17], which
solves this problem optimally with the condition that
host switches are not permitted. This algorithm recovers
a Pareto optimal solution in O(n). This approach, while
recovering an optimal solution, is unable to recover solu-
tions which accurately represent coevolutionary interac-
tions where host switch events are prevalent, such as
host-pathogen systems or where closely related parasites
infect distantly related hosts. Another well known pat-
tern-based method is Brooks Parsimony Analysis (BPA)
[18,19]. This method uses a binary coding representation
of the parasite phylogeny and uses this binary coding to
map the parasite into the host. This method has been
shown to produce good solutions [20] but has not yet
been implemented due to inconsistencies in the selection
of events and the ordering of nodes in the host phylogeny.
Due to the limitations faced by both these approaches,

pattern-based algorithms are not often applied to this
problem, with the majority of recent cophylogenetic
analyses using event-based methods [21-25]. Approxi-
mating this problem using event-based methods aims to
recover cophylogeny mappings where the global score is
minimised. This approach is based on Ronquist’s gener-
alised definition of the cophylogeny reconstruction pro-
blem, which states that only by minimising the total
cost of all events can an algorithm recover a Pareto
optimal reconstruction [26]. Two recent algorithmic
approaches that have leveraged this generalised definition
apply dynamic programming to modified instances of the

Figure 1 Tanglegram and Cophylogeny Mapping. A simple
tanglegram where the optimal mapping contains all four
recoverable events.
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cophylogeny reconstruction problem. The first approach
ignores the relative ordering of the internal nodes of the
host tree and the second approach fixes the relative order
of the internal nodes of the host tree.
By ignoring the relative order of the internal nodes of

the host tree the cophylogeny reconstruction problem
can be solved in polynomial time. This approach is
derived from a heuristic used to approximate the Feed-
back Arcs Set Problem which is also NP-Hard [27,28].
Tarzan [27] and CoRe-PA [29] apply this technique to
recover cophylogeny mappings in polynomial time. This
approach is currently the fastest known approach for
recovering solutions where all four recoverable events
are permitted with the fastest proposed algorithm run-
ning in O(n2) [30].
An unfortunate consequence of ignoring the relative

order of the internal nodes of the host tree is that recov-
ered mappings may be time-inconsistent [31]. A time-
inconsistent solution is the case where the order of the
parasite divergence events contradicts the order of the
internal nodes in the parasite’s phylogeny and as a result
the coevolutionary history of the parasite contradicts its
phylogenetic history. A mapping that is time-inconsistent
is biologically infeasible [32]. Such a mapping can be
seen in Figure 2.
To overcome the limitation of potentially reporting

time-inconsistent solutions Libeskind-Hadas and Char-
leston [14] proposed an algorithm where the relative
ordering of the host phylogeny’s internal nodes is fixed
and each internal node is assigned a unique distance
from the root. Under these conditions the cophylogeny
reconstruction problem can be solved in polynomial time
and the solutions recovered are guaranteed to be biologi-
cally feasible. The initial algorithm proposed required O
(n7) running time [32], which significantly limited its
applicability as it was unable to converge on good solu-
tions for large problem instances. Subsequent solutions
significantly reduced this running time with Edge Map-
ping [30], Improved Node Mapping [33], and Slicing
[31,34], all running in O(n3).
Although polynomial time algorithms exist for solving

the case where the internal nodes are fixed, the number of
internal node orderings increases exponentially for every
internal node added to a bifurcating tree. Therefore, such
algorithms rely on a metaheuristic to iterate through the
exponential number of internal node orderings. This
approach has been shown to be successful, with software
tools such as Jane [32] converging on solutions for coevo-
lutionary systems with up to 200 taxa [35].
Cruaud et al’s analysis [35] demonstrated the value of

coevolutionary analysis of larger phylogenetic histories and
also highlighted the need for further research of large scale
coevolutionary analysis. The use of algorithms such as
those implemented in Jane, however, are not feasible in all

cases. Consider the coevolving system of Wolbachia and
their insect hosts. It is currently estimated that 20% of all
insect species are inhabited by Wolbachia [36], and that
the estimated number of insects is approximately 6 million
[37]. Such a problem instance represents a 6000 times
increase in the number of taxa compared to the largest
system successfully analysed using Jane. This is a signifi-
cant increase in the complexity of the problem, especially
when considering the exponential increase in complexity
for every additional node added. This example demon-
strates the need to develop further algorithms for the
cophylogeny reconstruction problem, which while recover-
ing biologically feasible reconstructions, are able to do so
in sub O(n3) time.
This paper introduces a new greedy approach for solving

the cophylogeny reconstruction problem where the inter-
nal node ordering is fixed. This algorithm is able to guar-
antee that all reported solutions are biologically feasible.
Further, this approach is tested on a combination of

Figure 2 Time Inconsistent Mapping. This cophylogeny mapping
is biologically infeasible.

Drinkwater and Charleston BMC Bioinformatics 2014, 15(Suppl 16):S14
http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S16/S14

Page 3 of 15



synthetic and real data sets and is shown to recover com-
parable solutions to existing O(n3) algorithms but with a
significantly reduced running time of O(n).

Methods
The algorithm proposed incorporates a number of tech-
niques which have been successful in their own right for
solving the cophylogeny reconstruction problem and uti-
lises them in a novel manner to tackle the problem of
recovering biologically feasible reconstructions for large
coevolutionary systems. The algorithm referred to here
as TreeCollapse applies a combination of both pattern
and event-based reconstruction techniques, with the aim
of producing a fast and scalable method for solving the
cophylogeny reconstruction problem for the case where
the internal node order is fixed.
This algorithm is then applied to a metaheuristuc fra-

mework similar to the dynamic programming algorithm
leveraged by Jane [32]. This research does not focus on
improving the search strategies applied by the metaheurs-
tic for traversing the exponential search space, but rather
aims to minimise the time spent evaluating each instance.
Unlike the dynamic programming algorithm used by Jane
2 and subsequent releases which requires an O(n3) [30]
evaluation step for each instance processed by the meta-
heuristic, TreeCollapse recovers a cophylogeny mapping
in O(n). This allows TreeCollapse to evaluate O(n2)
instances for each case evaluated by Jane.
TreeCollapse is an extension of the pattern detection

methodology first proposed by Ronquist [16]. A significant
change to Ronquist’s pattern detection framework is the
leveraging of local pattern detection rather than Ronquist’s
history classification technique [16,38]. The proposed pat-
tern detection framework bounds the search space of each
pattern to a constant size by considering only a constant
number of cherries at each step. A cherry (C) is defined by
McKenzie and Steel [39] as:
Definition 1 In a bifurcating tree a cherry (Ci) is a

pair of leaf nodes (ileft, iright) each of which is adjacent to
a common ancestor (iparent).
The proposed framework constrains all pattern detec-

tion to both O(1) running time and search space, to maxi-
mise the number of unique internal host tree node
orderings which can be explored in a fixed period of time.
The result of the O(1) bound on the pattern detection is
the ability of this algorithm to construct cophylogeny
mappings in O(n) time and space, where all reported solu-
tions are time-consistent; using the trade off that not all
solutions recovered are from the Pareto front.

Local pattern detection
The proposed algorithm reconstructs a cophylogeny map-
ping based on patterns formed by cherries in both the
host and parasite trees. The eight patterns used consist of

four base patterns, as can be seen in Figure 3, which are
used to recover the four recoverable events that can occur
in a coevolutionary system. These patterns are derived
from the history classification framework proposed by
Ronquist [16]. An additional four patterns have been
included to improve this framework’s performance at
handling the complexity of host switch events. These
hybrid patterns extend the initial base patterns to allow
each hybrid pattern to detect two consecutive events. The
hybrid pattern set consists of codivergence-switch, duplica-
tion-switch, loss-switch and double switch, all of which can
be seen in Figure 4. By including these hybrid patterns this
approach is able to more accurately recover host switch
events, which results in a reduction in the total parsimony
score. This is achieved by only considering an additional
two cherries which is clearly still bounded by O(1). A
further in-depth analysis on the accuracy improvements
achieved by the proposed hybrid patterns is discussed as
part of the Results.
The patterns are detected for each cherry in the host

tree by executing a depth first search. This algorithm is
designed to traverse the tanglegram instance (H, P, �),
starting at the leaves of the host cherry and terminating
once a path is found back to a leaf in the host tree. To
ensure that this algorithm runs in O(1), the number of
levels which the depth first search algorithm may traverse
through the parasite tree is fixed to a constant factor.
Once the algorithm has terminated, the resultant path
found by the depth first search algorithm is compared to
the permitted pattern set. This search algorithm is bound
to O(1) as there is a constant number of levels searched
and the branching rate of a bifurcating tree is also con-
stant. It is important to note that this is only one approach
to implementing this pattern detection algorithm in con-
stant time.

Figure 3 Basic Patterns. The basic four patterns which can be
detected by TreeCollapse and their resultant mappings.
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Each pattern recovered by the local pattern detection
algorithm gives rise to one or more cherries from the host
or parasite trees to collapse, hence the algorithm’s name
TreeCollapse. This operation is based on a bottom up
iteration technique, where the cherries in the host tree are
sequentially processed based on their distance from the
root. As a result, this algorithm continues until both trees
consist of only a single node (the root of both the host and
parasite tree).
The TreeCollapse local pattern detection framework

allows for three different collapse functions. The first
case is where both a host and parasite cherry are col-
lapsed, which indicates a codivergence event. The sec-
ond case is where a cherry from the parasite tree is
collapsed, indicating either a duplication or host switch
event. Finally, if no pattern is formed with the parasite
tree, then a loss event is inferred and the host cherry is
collapsed.
There are three possible final states when this process

is performed to completion. First, the host tree and
parasite tree are both collapsed up to their respective
root nodes. In this case there is a codivergence event at
the root of the host tree. The second case is where the
host tree still has more than one node remaining after
the parasite tree is completely collapsed. In this case we
can ignore all remaining nodes in the host tree. Finally,
the case where the host tree is completely collapsed
before the parasite tree results in the remaining nodes
in the parasite tree being appended before the root of
the host tree as duplication events. As TreeCollapse
handles all three scenarios, it is capable of recovering
solutions for all instances of the cophylogeny recon-
struction problem.

Guarantee that TreeCollapse recovers time-consistent
solutions
TreeCollapse requires that each cherry in the host tree
be processed in decreasing order based on the node’s
depth. Depth is defined in this context as the distance
to the root as the sum of the branch lengths. We will
refer to the depth of a node a as d(a). To prevent tim-
ing inconsistencies, TreeCollapse requires that the edge
weights in the host tree are set in such a way that each
internal node’s depth is unique and bound between 0
and (n − 2), where the total number of the internal and
leaf nodes in the tree is (2n − 1). This approach has
been previously applied by dynamic programming
approaches to ensure that recovered solutions are biolo-
gically feasible [32,33]. The n leaf nodes are then
assigned to a common depth of (n − 1). Under such a
construction we claim that:
Theorem 1 The TreeCollapse local pattern detection

and collapse framework ensures that no host switch
event gives rise to time-inconsistent solutions.
Proof By contradiction we show that all cophylogeny

mappings reported by TreeCollapse are time consistent.
Let us assume TreeCollapse returns cophylogeny map-
pings that are time-inconsistent. For this to occur
requires that there exists a cherry in the host tree Ca

which forms a switch pattern with another node in the
host tree b where d(b) < d(aparent) as seen in Figure 5.
There are two cases to consider, where b is an internal

node in the initial host tree and where b is a leaf in the
initial host tree. The case that b is an internal node in
the host tree requires the cherry for which b was pre-
viously a parent (Cb) to be collapsed before Ca. This vio-
lates the condition that TreeCollapse must process the
cherries in decreasing order based on the distance from
the root, which is clearly not true if Cb is processed
before Ca. Alternatively, where b is a leaf node from the
initial host tree is also invalid as the initial depths of all
leaf nodes must be greater than the depth of all internal
nodes, which is not true if d(b) < d(aparent). Therefore,

Figure 4 Hybrid Patterns. The four hybrid patterns which aim to
combat the complexity of host switch events.

Figure 5 State which induces time-inconsistent solutions. The
state where the leaves of cherry b are closer to the root than the
parent of cherry a.
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as d(b) ≮ d(aparent) for all valid constructions of the
host, we have proved Theorem 1.
This result can be extended to all hybrid patterns as

they are each derived from the switch pattern and in all
cases require that the cherry whose parent has the maxi-
mum depth is the next selected. Enforcing this restric-
tion, however, results in an approach that potentially
over-counts the number of loss events. In the next sec-
tion we introduce an O(n) post processing algorithm
that aims to counterbalance this result by minimising
the number of loss events in the final reconstruction.

Increasing accuracy further
While the TreeCollapse algorithm guarantees that all
histories reported are time-consistent, it does not give
such a guarantee that reported solutions have a mini-
mum cost, as no algorithm to date has been able to
achieve this in sub O(n3) time.
To further minimise the cost of the resultant solution,

we propose a postprocessing algorithm called Right
Push which follows after the TreeCollapse algorithm.
This post-processing step aims to find the optimum
switch placement for a cophylogeny mapping for a spe-
cific event order where the node ordering is also fixed.
This is achieved by minimising the number of loss
events without introducing time-inconsistencies. The
aim of this post-processing step is to reduce the number
of overcounted loss events which result from ensuring
that time-inconsistent switch events do not arise during
the pattern detection and collapse phase.

Right Push is a greedy algorithm which runs bottom
up through the cophylogeny mapping (F(P)), shifting
the host switch take-off and landing edges to the opti-
mum position. The algorithm was named Right Push as
traditionally host trees are drawn with their root on the
left and their leaves on the right, as seen in Figure 1,
and therefore this algorithm aims to pull host switch
events towards the leaves, that is, towards the “Right”. A
case where Right Push minimises the number of loss
events can be seen in Figure 6. This algorithm selects
the optimal take-off and landing edges, while ensuring
the resultant solution is time-consistent by maintaining
the the properties set out in Definition 2.
Definition 2 Suppose p ∈ F(P) has children pleft and

pright, with F(pleft) = s and F(pright) = t. Then the opti-
mal host switch location is a pair of edges ei and ej ∈ E
(H) where the total number of loss events between (ei, s)
and between (ej , t) is minimal, and where ei and ej lie
in the same time interval.
This definition, based on prior work by Drinkwater and

Charleston [33], allows for the optimal take-off and landing
edge for the host switch event to be recovered using the
level ancestor problem [40]. Consider the children s and t
where d(s) < d(t). Under this definition, we use d(s) as the
search candidate using the level ancestor query function to
find both ei and ej, which allows for the optimal host switch
event to be recovered in O(1) [33].
The Right Push algorithm is therefore designed to

iterate through a cophylogeny mapping (F(P)) consisting
of O(n) parasite nodes. For each parasite node mapped

Figure 6 Right Push. An example of a cophylogeny mapping before and after right push is applied.
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into the host corresponding to a host switch event, the
take-off and landing sites are evaluated using the Level
Ancestor Problem to identify if a lower cost switch loca-
tion exists. This evaluation check along with the host
switch repositioning both run in constant time [33].
By shifting the host switch to the optimal position

within the current cophylogeny mapping the Right Push
algorithm minimises the number of loss events while
maintaining the order of the current set of codivergence,
duplication and host switch events, which in turn
ensures that the current mapping remains time-consistent.
Analysis of Right Push’s impact on the accuracy of the
TreeCollapse framework is discussed in detail as part of
the Results.

Complexity analysis of TreeCollapse
The previous sections describe two algorithms which have
been applied together to provide a novel greedy algorithm
to solve the cophylogeny reconstruction problem. In this
section we prove that the running time complexity of both
these algorithms is in fact O(n). To assist with the com-
plexity analysis, we define the number of nodes in the host
tree to be O(m) and the number of nodes in the parasite
tree to be O(k), with the total number of nodes in both
trees being O(n), which is consistent with existing com-
plexity analyses in this field [14,15,31-34].
To compute the complexity of TreeCollapse’s local

pattern detection algorithm, we will break the process
into three stages: firstly, setting and storing the order of
cherries to process, secondly, processing each cherry,
and finally, the iteration over all current and future
cherries in the host tree.
The first step in the TreeCollapse algorithm requires

the generation of a list of current and future cherries in
the host tree, which are sorted in descending order based
on their distance from the root. Generally sorting such
an unordered list requires a running time of O(m log m).
In this case, however, we can use certain properties of
the fixed node orderings to show the following:
Lemma 1 A list of current and future cherries in the

order they will be processed can be constructed in O(m),
where the number of nodes in the host tree is O(m).
Proof The input to this algorithm is a host tree where

each of the internal nodes have a set of unique indices (0,.
. ., m − 2). Therefore, this step reduces to creating a list of
current and future cherries. Our first step is to recursively
set the distance to the root for each node which is well
established to take O(m). Using this result we can then
construct an ordered list using a bucket sort where the
number of buckets required is bounded by the number of
unique depths in the host tree, O(m). Therefore, as the
number of the buckets is bounded by O(m) the running
time of the bucket sort also runs in O(m) [41].

The second stage requires the uncovering of all patterns
for each cherry Ci, of which there are up to O(k), as there
is a pattern for each node in the parasite tree. We consider
two possible approaches to process these patterns. The
first, a brute force approach, is to uncover all possible pat-
terns for each event processed. This method requires O
(k2) time to process all the events for the cherry Ci. An
alternative approach is that for each cherry Ci, all patterns
recovered are stored as a list of patterns to be processed. If
Ci is collapsed before this list of patterns is processed then
this list is allocated to its parent for subsequent processing.
This approach, unlike the previous brute force method,
requires that each pattern only be uncovered once for
each node, and that the list of O(k) patterns is sequentially
processed. If the second approach is applied we can prove
the following:
Lemma 2 The number of patterns formed at each

node in the host tree is O
(

k
m

)

Proof By only recovering each pattern once the running
time to detect all possible patterns for each node is
reduced to O(k) to process each cherry Ci. This running

time can in fact be reduced further to O
(

k
m

)
as the aver-

age running time for each internal node. This can be veri-
fied by considering the number of nodes in the parasite
tree. Each pattern formed by a parasite tree cherry
requires at least three nodes. Of these three nodes only
one of these will be reused once the cherry is collapsed.
As each cherry can only apply one pattern, then the total
number of patterns which can be formed by the parasite
tree is O(k). Therefore, the average number of patterns

formed for each internal node on average isO
(

k
m

)
, even if

it is possible for a single cherry in the host tree to have up
to O(k) patterns.
Lemma 1 and Lemma 2 give rise to the following

result:
Lemma 3 The running time of the TreeCollapse Algo-

rithm is O(k + m)
Lemma 2 establishes the running time required to

process each cherry Ci in the host tree. From Lemma 2
the time required to construct a cophylogeny mapping
of the initial problem instance can be derived as

O
(
m× k

m +m
)
= O(k +m), where k is the running time

required to map the parasite tree into the host tree and
m is the time taken to collapse any sections of the host
that do not share a common coevolutionary history with
the parasite tree.
The running time of TreeCollapse is also dependent

on the running time of any post processing algorithms.
As a result the running time of Right Push is required
to establish the overall computational complexity of the
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TreeCollapse algorithm. We claim that the running time
of Right Push is as follows:
Lemma 4 The running time of the Right Push algo-

rithm is O(k + m).
Proof The Right Push algorithm is designed to iterate

over the cophylogeny mapping (F(P)). This requires
iterating over a list of size O(k). At each step the map-
ping instance is evaluated using the query function of
the level ancestor problem. The result of this query is
used to update the mapping, minimising the number of
loss events in the current reconstruction ordering. The
running time of a query made to the level ancestor pro-
blem is known to run in O(1), when pre-processing has
been applied to the query tree [40]; in this context, the
host tree and updating the new location is an O(1)
assignment operation.
Therefore, the Right Push algorithm runs in O(pre-

processing) + O(k). The preprocessing step for Right
Push is the complexity of the pre-processing step of the
level ancestor problem. This has previously been shown
to be bounded by the size of the query tree [40], which
in this context is the size of the host tree O(m).
Therefore, based on Lemma 3 and 4 the running time

of both TreeCollapse and Right Push is bounded by O(k
+ m). As n = k + m we immediately get:
Theorem 2 The running time of the TreeCollapse’s

Local Pattern Detection framework and the post-processing
algorithm Right Push is bounded by O(n).
Corollary 1 Therefore, as the space complexity of any

algorithm is bounded by its time complexity, the space com-
plexity of TreeCollapse’s Local Pattern Detection framework
and the post-processing algorithm Right Push is also
bounded by O(n).

Applying an approximation algorithm
TreeCollapse and Right Push are algorithms designed to
solve the special case of the cophylogeny reconstruction
problem where the internal node order in the host tree is
fixed. Therefore, TreeCollapse, similar to previous algo-
rithms leveraging this technique, is embedded in a meta-
heuristic framework as a means to recover the minimum
cost reconstruction.
We apply a genetic algorithm to iterate over the expo-

nential number of node orderings. This approach was
selected over other metaheuristics, such as particle
swarm optimisation [42] or ant colony optimisation
[43], due to genetic algorithms’ proven success for this
particular problem [32].
The chromosomes of the genetic algorithm represent

each internal node within the host tree, with the exception
of the root which always has a depth of 0 (the distance to
itself). The depth range [i, j] allocated for each internal
node is bounded by the number of ancestor nodes
between the current node and the root (i), and the total

number of internal nodes minus the number of descen-
dants between the current node and its leaves (j). There-
fore, i and j are constant values for all instances processed
by the genetic algorithm.
Following the allocation of depths for these chromo-

somes, an O(n) validation step defined by Conow et al.
[32], is run to ensure that the numerical ordering does
not violate the topological ordering. This ensures that
all internal nodes are assigned unique node depths
between 0 and (n − 2), and that all leaves are assigned a
timing of (n − 1).
The genetic algorithm’s fitness function promotes

minimum cost reconstructions based on the Jungle event
cost scheme [16]. Under this cost scheme codivergence
events are assigned a cost of 0, while duplication and loss
events are assigned a cost of 1, and host switch events are
assigned a cost of 2, representing that a host switch is
made up of a duplication followed by a switch. This fit-
ness function was selected as it best represents the
default cost functions of existing tools such as CoRe-PA
[29], Jane [32], and Improved Node Mapping [33]. We
note, however, that any cost scheme may be used.

Results and discussion
We evaluate the TreeCollapse algorithm in three stages.
The first stage evaluates the improvements offered by the
newly proposed hybrid patterns compared to the four base
patterns derived from Ronquist’s previous work along with
the improvement in accuracy provided by the post-proces-
sing algorithm Right Push. The second stage aims to
establish a baseline measurement of TreeCollapse’s perfor-
mance by comparing its accuracy with two polynomial
approximation algorithms for this problem. In the third
stage TreeCollapse is compared to well established
dynamic programming algorithms for approximating the
cophylogeny reconstruction problem to identify the accu-
racy trade off required to produce a linear time algorithm
for the fixed node ordering permutation of the cophylo-
geny reconstruction problem. In each of these stages a
combination of synthetic and real data sets are used to
evaluate TreeCollapse’s performance.
The synthetic data applied for this analysis was con-

structed under a Yule process [44] for a previous study
using CoRe-Gen (Cophylogeny Generation Model) [45].
Of the 1000 synthetic coevolutionary systems, 47 were
removed as they included at least one tree with only a
single node, which cannot be processed correctly by
some of the software tools included in this analysis, e.g.
Jane. As a result, the synthetic data applied in this study
consisted of 953 instances.
The real data sets used for this analysis consist of 102

previously published data sets. These test cases cover
the full spectrum of coevolutionary instances including
pathogens and their hosts [46], mutualistic coevolution
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[47], plant-insect interactions [48], mimicry between species
[49], plant-fungi relationships [50], biogeography [51], and
host-parasite systems [52]. Further information on each of
these data sets is provided in Additional File 1 (Table S1).
This evaluation compared cophylogeny mappings

based on their resultant parsimony score. This score
was derived using the Jungle cost scheme [16], consis-
tent with previous algorithmic evaluations in this field
[27,32,33]. For the pattern-based methods, this required
a post processing step to evaluate the total cost. For
event-based methods the Jungle cost scheme was
applied to the algorithm itself.
As a further evaluation step the topology of TreeCol-

lapse’s reported mappings were compared with the results
of the existing algorithms to identify the similarity of the
mappings produced by each method. This evaluation acts
as a further benchmark to evaluate how closely the newly
proposed algorithm converges on the mappings recovered
by these well-established algorithms. This includes an in-
depth analysis of a coevolutionary system which is of parti-
cular importance to human health, i.e. primate-malaria [6];
where CoRe-PA, Jane and TreeCollapse each recover a
unique topological mapping.

Evaluating TreeCollapse’s patterns
This research builds on Ronquist’s original hypothesis,
that pattern-based algorithms provide an effective
approximation for the cophylogeny reconstruction pro-
blem. To evaluate each pattern’s additional contribution,
TreeCollapse was run where the pattern detection frame-
work consisted of the initial four base patterns plus a sin-
gle additional hybrid pattern, with the aim of identifying
the benefit provided by each new pattern in isolation.
The results for this analysis over both the synthetic and

real data sets can be seen in Table 1. The synthetic data
highlights that all additional patterns in isolation decrease
the total parsimony score and that the four hybrid patterns
combined provide a significant decrease to the overall par-
simony score of 7.8% on average. Of note, however, is that
the individual contribution is not directly proportional to
the reduction achieved when they are all applied. The
results for the real data set show a similar trend with the
exception of the duplication-switch pattern, which indi-
cates a slight increase in the total parsimony score. While
this increase exists, the parsimony score when all four
hybrid patterns are combined is reduced 11.7% on average,
even further than the results achieved over the synthetic
data set.
Based on the prior result and the inconsistent results sur-

rounding the duplication-switch pattern, a more in-depth
analysis was undertaken. This led to an individual analysis
of each coevolutionary instance to identify whether any
benefits were provided by the duplication-switch pattern to
test whether if it should be removed from the TreeCollapse

framework. To achieve this result each real data set
instance was evaluated in terms of their distance to the
Pareto front. It was confirmed that while removing duplica-
tion-switch improves the total resultant parsimony score
(particularly of outliers), the number of solutions that lie
on the Pareto front was reduced from 69 out of 102
(67.6%) to 67 of 102 (65.7%). As recovering Pareto optimal
solutions is key, the duplication-switch pattern was
retained as a default pattern within the pattern detection
framework. This result, however, highlights that further
work can be undertaken in both detecting other effective
patterns to apply in this framework and also that pattern
classification based on the particular coevolutionary
instance may provide an even more robust method.
Overall, this analysis demonstrates a significant

decrease in the parsimony score recovered by TreeCol-
lapse compared to those only using the base patterns.
When the results of both the synthetic and real data
sets are averaged such that each group is weighted
equally, it can be seen that the four hybrid patterns pro-
vide a decrease in the parsimony score of 9.7%. This is a
significant result considering this is achieved without
any increase in the computational complexity of the
algorithm.

Improvements provided by Right Push
To evaluate the impact of Right Push, TreeCollapse was
run with and without Right Push enabled. We show that
across both data sets Right Push offers an average
decrease to the parsimony score of 6%, without any
additional increase in the computational complexity.
When comparing the total parsimony scores for syn-

thetic and real data sets (Table 2), it can be seen that there
is a 6.6% and 5.4% decrease in the total parsimony score
respectively when Right Push is enabled. This result pro-
vides strong evidence of Right Push’s ability to minimise
the total parsimony score. This result also demonstrates
the potential that the Right Push algorithm may offer to
other greedy algorithms which apply pattern-based meth-
ods to recover cophylogeny mappings. Further, while the
reduction of 9.7% using patterns was achieved using all
four possible events, the 6% improvement offered by Right
Push is achieved by only reducing loss events.
Table 2 also provides the total improvement offered by

combining both the hybrid patterns and the Right Push
algorithms. Over the synthetic data set it can be seen that
by applying both the hybrid patterns and Right Push a
decrease in the parsimony score of 9.8% is achieved. This
trend continues when evaluating the performance of
both the hybrid patterns and Right Push over the real
data set which show a decrease of 16.1%. As a result, by
applying both the hybrid patterns and the post processing
algorithm Right Push, proposed in this paper an addi-
tional 12.9% decrease in the parsimony score is gained
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compared to the original framework proposed by Ron-
quist. This result is particularly significant considering
that it is achieved without any increase in the computa-
tional complexity.

Establishing a baseline
Before comparing TreeCollapse against the current
methods for cophylogenetic reconstruction, we compare
TreeCollapse to two polynomial time approximation
algorithms which provide a baseline for TreeCollapse’s
performance. These algorithms include Page’s Recon-
ciled Tree Analysis and Edge Only Mapping.
Page’s Reconciled Tree Analysis recovers a Pareto opti-

mal solution which can also be found by TreeCollapse in
the case where host switch patterns are ignored. Page’s
Reconciled Tree Analysis recovers this mapping in linear
time as the order of internal nodes does not impact on the
final solution as host switch events are not considered.
The second method allow for only host switch and

duplication events (Edge Only Mapping) and is able to
achieve a cubic running time by avoiding the computa-
tional complexity of internal node orderings. This is
achieved by reconstructing a cophylogeny mapping
bounded by the final timing interval (the edge set adja-
cent to the leaf nodes) of the host tree. A mapping
bounded within this edge set can be recovered using an
existing fixed node ordering algorithm such as Improved
Node Mapping [33] where the values for codivergence
and loss are set to infinity and any random selected
fixed node ordering is applied. This method is of inter-
est as a dynamic programming algorithm that allows for
all four recoverable events will never reconstruct a
cophylogeny mapping that is more expensive than the
mapping recovered by this method, and, therefore, it

provides an excellent baseline for new algorithms, parti-
cularly greedy algorithms that may not offer any accu-
racy guarantees.
These two methods both recover Pareto optimal solu-

tions, which are generally considered excessively expensive
when applying cost schemes that assign approximately the
same cost to each event, such as the Jungle cost scheme
[16]. Although known to often report solutions with a
high global cost, these algorithms do offer a strong preli-
minary baseline for the performance of TreeCollapse,
which is designed to recover solutions which better
approximate this problem using all four recoverable
events.
The results for this analysis can be seen in Table 3.

These results show that for both synthetic and real data
sets, TreeCollapse’s performance is significantly better
than both algorithms as the aim here is to minimise the
total parsimony cost. If we consider the distance from
the best solution recovered i.e. the assumed Pareto
Front then it can be seen that over the synthetic data
set, TreeCollapse is 11% more expensive compared to
31% additional expense for Page’s Reconciled Tree Ana-
lysis and 50% for Edge Only Mapping. This is compared
to the real data set where TreeCollapse is 6% more
expensive compared to 54% for Page’s Reconciled Tree
Analysis and 45% for Edge Only Mapping. As an aver-
age, this shows that TreeCollapse is 8% more expensive
than the optimal compared to 42% and 48% for these
two baseline algorithms clearly demonstrating that Tree-
Collapse outperforms both these baseline algorithms.
An interesting result from this analysis, that does not

directly relate to this study but does offer an avenue for
further research, is the contrasting results of Page’s
Reconciled Tree Analysis and Edge Only Mapping over

Table 1 The improvement offered by the four hybrid patterns shown in incremental stages.

Patterns Applied Total Parsimony Score (Synthetic Data Sets) Total Parsimony Score (Real Data Sets)

Basic Four 15658 1783

Basic Four + Codivergence Switch 14800 1671

Basic Four + Duplication Switch 15564 1815

Basic Four + Loss Switch 15275 1740

Basic Four + Double Switch 15440 1610

Basic Four + Hybrid Four 14443 1574

Table 2 Accuracy improvement provided when the Right Push post-processing algorithm is enabled in the
TreeCollapse pattern detection framework.

Total Parsimony Score (Synthetic Data Sets) Total Parsimony Score (Real Data Sets)

Right Push disabled (no hybrid patterns) 16006 1876

Right Push disabled 15460 1664

Right Push enabled 14443 1574

The evaluation is run on both Synthetic and Real Data Sets.
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the real and synthetic data sets. These results, along
with the contrasting results as part of the Right Push
algorithm analysis and the analysis of the duplication-
switch pattern, suggest that the CoRe-Gen may not be
successfully modelling existing biological coevolutionary
systems, compared to the 102 real data sets used in this
analysis.

Comparing against dynamic programming algorithms
Finally, we compare TreeCollapse to CoRe-PA and Jane,
the cutting edge approximation algorithms for solving the
cophylogeny reconstruction problem. These two methods
are responsible for the majority of recent coevolutionary
analyses using cophylogeny mapping [53-58].
CoRe-PA was selected as it is the most recent algo-

rithmic implementation that ignores the relative order
of the internal nodes in the host tree. Although known
to produce time-inconsistent solutions in the worst case,
CoRe-PA was included to evaluate its overall perfor-
mance compared to TreeCollapse.
Jane was selected, as the metaheuristic framework lever-

aged by TreeCollapse is derived from Jane’s genetic algo-
rithm [32]. It is, therefore, expected that the optimal node
ordering arrangement will be converged upon by both
algorithms at approximately the same rate, if the number
of iterations and population size are consistent. Therefore,
the genetic algorithms for both methods were configured
to run for 100 iterations with a population size of 100; the
default configuration for the current version of Jane.
Table 4 records the parsimony score for these three

algorithms. These results show that CoRe-PA is able to
recover the cheapest global parsimony score with Jane
performing almost as well, on both the synthetic and
real data sets. TreeCollapse performed the worst out of
these three algorithms in both sets. This result was
expected, as a quadratic time reduction in the computa-
tional complexity of Jane’s algorithm must come with a

minor reduction in the resultant accuracy, in this case, a
reduction of 8%.
Table 4 presents CoRe-PA as the best performing algo-

rithm. To determine whether this was due to CoRe-PA
recovering time-inconsistent solutions, it was necessary to
individually review each case where Jane and CoRe-PA
reported a cophylogeny mapping with a different parsi-
mony score, which included 28 cases from the synthetic
data set and 6 cases from the real data set. To determine
whether a time-inconsistent host switch event existed,
each mapping was analysed using the CoRe-PA recon-
struction viewer. In all cases, a time-inconsistency was the
cause for CoRe-PA recovering a reconstruction with a par-
simony score less than the mapping recovered by Jane.
As a result, CoRe-PA generated time-inconsistent

solutions in 2.9% of cases over the synthetic data and
5.9% of cases over the real data set. This demonstrates
that CoRe-PA is often reasonably accurate at estimating
cophylogeny reconstructions especially considering that
it runs in polynomial time, though the result also indi-
cates that the resultant mapping may be time-
inconsistent.
Although Jane outperforms TreeCollapse, a further

analysis was run to explore how often TreeCollapse was
able to find a solution close to that recovered by Jane.
The result of this analysis is presented in Table 5, where
the number of instances where the parsimony score is
equal to Jane is computed, along with the number of
cases where the solution is within 1, 2, 3, or 4 or more
away from Jane’s reported solution.
These results demonstrate that while the total parsi-

mony score is 8% (on average) away from the total
reported by Jane, TreeCollapse is able to converge on
Pareto optimal solutions in 65% of cases (68% for real
data), and that 83% of solutions (84% for real data) are
within a score of 2 from the Pareto front. This is a sig-
nificant result as it demonstrates TreeCollapse’s ability,

Table 3 Performance of the TreeCollapse Pattern Detection Framework compared to Edge Only Mapping and Page’s
Reconciled Tree Analysis on both Synthetic and Real Data sets

Algorithm Total Parsimony Score (Synthetic Data Sets) Total Parsimony Score (Real Data Sets)

Best known score (Reported by Jane) 12869 1481

TreeCollapse 14443 1574

Page’s Reconciled Tree Analysis 18603 3198

Edge Only Mapping 25825 2686

Table 4 Performance of the TreeCollapse Pattern Detection Framework compared to Jane and CoRe-PA on both
Synthetic and Real Data sets

Algorithm Total Parsimony Score (Synthetic Data Sets) Total Parsimony Score (Real Data Sets)

TreeCollapse 14443 1574

Jane 12869 1481

CoRe-PA 12839 1473
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with a high frequency, to recover solutions which are
approximately equal to those recovered by Jane.
It is important to note, however, that while TreeCol-

lapse and Jane may recover mappings with an equivalent
cost in 65% of cases, that the actual configuration of the
mapping may not always be identical. In a number of
examples, TreeCollapse and Jane reported unique map-
pings, which are both Pareto optimal. An example of
such a case is the primate-malaria coevolutionary system
(See Figure 7), which we will consider in further detail.
The mappings recovered for the primate-malaria tan-

glegram for TreeCollapse, Jane and CoRe-PA can be

seen in Figures 8, 9 and 10. The respective parsimony
scores for each of these mappings were 24 for both
TreeCollapse and Jane and 23 for CoRe-PA. Figure 10
highlights that CoRe-PA’s reduced parsimony score
compared to Jane and TreeCollapse is due to the time-
inconsistent switch (coloured in red), which gives rise to
three additional codivergence events. Jane and TreeColl-
pase, however, both reported solutions which are time-
consistent but portray contrasting views of the origin of
the parasite divergence within the host phylogeny, with
TreeCollapse suggesting a longer evolutionary history
between primates and malaria. This mapping further

Table 5 Examining the distance for each reported solution from Jane in terms of a parsimony score

Distance of reported solution from Jane Synthetic Data Sets (953) Real Data Sets (102)

Equal to Jane’s solution 593 69

Score is one away from Jane’s solution 122 13

Score is two away from Jane’s solution 68 4

Score is three away from Jane’s solution 55 9

Score is four away from Jane’s solution 48 4

Score is five or more away from Jane’s solution 67 3

Figure 7 Primate / Malaria The primate / malaria tanglegram used for this evaluation.

Figure 8 TreeCollapse’s Mapping The mapping produced by TreeCollapse for the primate / malaria tanglegram.
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indicates a higher number of codivergence events,
resulting in a more congruent reconstruction.
The unique mapping recovered for this coevolutionary

system by TreeCollapse demonstrates its value as a com-
plementary mapping algorithm for coevolutionary ana-
lyses. In this instance, by using both TreeCollapse and
Jane, a larger sub-set of the Pareto front could be recov-
ered, compared to what was achieved by using either
method alone. This result affirms the value of TreeCol-
lapse, not only as a faster way in which to approximate
the cophylogeny reconstruction problem compared to
approaches such as Jane, but may potentially provide
further insight into coevolutionary instances.

Conclusion
By building on the work of Ronquist, Libeskind-Hadas and
Charleston, and Conow et al, this work presents a novel

greedy algorithm for solving the cophylogeny reconstruc-
tion problem where the internal node ordering is fixed, in
linear time. The reported solutions, while on average 8%
more expensive than those reported by Jane, are produced
by an algorithm with a quadratic running time reduction.
The reported results, while produced by a linear time algo-
rithm guarantee, all reported solutions are biologically fea-
sible, as opposed to existing quadratic time algorithms
such as CoRe-PA. Further, while Jane may recover cheaper
mappings than TreeCollapse in some cases, the newly pro-
posed framework is able to uncover optimal solutions
from the Pareto front that are not reported by Jane. We
therefore assert that TreeCollapse is an algorithm that
complements the set of existing tools for cevolutionary
analysis. Finally, we have set a baseline for algorithms
which solve the fixed node ordering problem in linear
time, of 67.6% accuracy over 102 biological data sets. This

Figure 9 Jane’s Mapping The mapping produced by Jane for the primate / malaria tanglegram.

Figure 10 CoRe-PA’s Mapping The mapping produced by CoRe-PA for the primate / malaria tanglegram.
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baseline affirms Ronquist’s earlier hypothesis that pattern
based reconstruction frameworks offer the potential to
recover accurate approximations for host-parasite systems.
Furthermore, this suggests that further work in this field
using pattern based methodologies, may result in even
more efficient linear time algorithms for solving cophylo-
geny reconstruction problem, where the internal node
ordering is fixed.

Availability and requirements
TreeCollapse, along with the real data set supplementary
material, is available at http://sydney.edu.au/engineering/
it/~mcharles/. TreeCollapse runs on any machine running
Java 1.6 or higher.

Additional material

Additional file 1: This file contains the references and brief
description of the 102 real data sets used for validation of
TreeCollapse.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
BD is responsible for the creation and implementation of the TreeCollapse
algorithm and framework along with contributing to this manuscript. MC is
responsible for the original problem definition and contributed to this
manuscript.

Acknowledgements
This work was supported by an Australian Postgraduate Award to BD and an
Australian Research Council Grant (grant number DP1094891) to MC.

Declarations
The publication of this article was paid for by the University of Sydney.
This article has been published as part of BMC Bioinformatics Volume 15
Supplement 16, 2014: Thirteenth International Conference on Bioinformatics
(InCoB2014): Bioinformatics. The full contents of the supplement are
available online at http://www.biomedcentral.com/bmcbioinformatics/
supplements/15/S16.

Published: 8 December 2014

References
1. Anderson R, May R: Coevolution of hosts and parasites. Parasitology 1982,

85(02):411-426.
2. Hafner MS, Nadler SA: Phylogenetic trees support the coevolution of

parasites and their hosts. Nature 1988.
3. Sorenson MD, Balakrishnan CN, Payne RB: Clade-limited colonization in

brood parasitic finches (vidua spp.). Systematic Biology 2004,
53(1):140-153.

4. Ronquist F: Phylogenetic approaches in coevolution and biogeography.
Zoologica scripta 1997, 26(4):313-322.

5. Bennett GM, O’Grady PM: Host-plants shape insect diversity: Phylogeny,
origin, and species diversity of native hawaiian leafhoppers
(Cicadellidae: Nesophrosyne). Molecular Biology and Evolution 2012,
65(2):705-717.

6. Mu J, Joy DA, Duan J, Huang Y, Carlton J, Walker J, Barnwell J, Beerli P,
Charleston M, Pybus O, et al: Host switch leads to emergence of
plasmodium vivax malaria in humans. Molecular biology and evolution
2005, 22(8):1686-1693.

7. Brodie ED, Ridenhour B, Brodie E: The evolutionary response of predators
to dangerous prey: hotspots and coldspots in the geographic mosaic of
coevolution between garter snakes and newts. Evolution 2002,
56(10):2067-2082.

8. Charleston M, Jungles : A new solution to the Host/Parasite Phylogeny
Reconciliation Problem. Mathematical Biosciences 1998, 149(2):191-223.

9. Charleston M, Galvani A: A cophylogenetic perspective on host-
pathogen evolution. DIMACS Series in Discrete Mathematics and
Theoretical Computer Science 2006, 71:145.

10. Charleston MA: Recent results in cophylogeny mapping. Advances in
Parasitology 330, 54:303-330.

11. Nöllenburg M, Völker M, Wolff A, Holten D: Drawing binary tanglegrams:
An experimental evaluation. ALENEX 2009, 106-119, SIAM.

12. Charleston MA: Principles of cophylogenetic maps. Biological Evolution and
Statistical Physics Springer, New York City; 2002, 122-147.

13. Paterson AM, Palma RL, Gray RD: Drowning on arrival, missing the boat,
and x-events: How likely are sorting events. Tangled Trees: Phylogeny,
Cospeciation, and Coevolution 2002, 287-309.

14. Libeskind-Hadas R, Charleston MA: On the computational complexity of
the reticulate cophylogeny reconstruction problem. Journal of
Computational Biology 2009, 16(1):105-117.

15. Ovadia Y, Fielder D, Conow C, Libeskind-Hadas R: The cophylogeny
reconstruction problem is np-complete. Journal of Computational Biology
2011, 18(1):59-65.

16. Ronquist F: Parsimony analysis of coevolving species associations.
Tangled Trees: Phylogeny, Cospeciation, and Coevolution 2002, 22-64.

17. Page RDM: Parallel Phylogenies: Reconstructing the History of Host-
Parasite Assemblages. Cladistics 1994, 10(2):155-173.

18. Brooks DR: Hennig’s parasitological method: a proposed solution.
Systematic Biology 1981, 30(3):229-249.

19. Brooks DR: Parsimony analysis in historical biogeography and coevolution:
methodological and theoretical update. Systematic Biology 1990, 39(1):14-30.

20. Dowling AP: Testing the accuracy of TreeMap and brooks parsimony
analyses of coevolutionary patterns using artificial associations. Cladistics
2002, 18(4):416-435.

21. Althoff DM, Segraves KA, Smith CI, Leebens-Mack J, Pellmyr O:
Geographic isolation trumps coevolution as a driver of yucca and
yucca moth diversification. Molecular Phylogenetics and Evolution 2012,
62(3):898-906.

22. Mendlová M, Desdevises Y, Civáňová K, Pariselle A, Šimková A:
Monogeneans of west african cichlid fish: evolution and cophylogenetic
interactions. PLoS One 2012, 7(5):37268.

23. Dilcher M, Hasib L, Lechner M, Wieseke N, Middendorf M, Marz M, Koch A,
Spiegel M, Dobler G, Hufert FT, et al: Genetic characterization of tribeč
virus and kemerovo virus, two tick-transmitted human-pathogenic
orbiviruses. Virology 2012, 423(1):68-76.

24. Fernández-Mendoza F, Domaschke S, García M, Jordan P, Martín MP,
Printzen C: Population structure of mycobionts and photobionts of the
widespread lichen cetraria aculeata. Molecular Ecology 2011,
20(6):1208-1232.

25. Coulibaly-N’Golo D, Allali B, Kouassi SK, Fichet-Calvet E, Becker-Ziaja B, Rieger T,
ölschläger S, Dosso H, Denys C, Ter Meulen J, et al: Novel Arenavirus
Sequences in Hylomyscus sp. and Mus (Nannomys) setulosus from Côte
d’Ivoire: Implications for Evolution of Arenaviruses in Africa. PLoS One 2011,
6(6):20893.

26. Ronquist F: Reconstructing the history of host-parasite associations using
generalised parsimony. Cladistics 1995, 11(1):73-89.

27. Merkle D, Middendorf M: Reconstruction of the cophylogenetic history of
related phylogenetic trees with divergence timing information. Theory in
Biosciences 2005, 123(4):277-299.

28. Garey MR, Johnson DS: Computers and Intractability. Freeman, San
Francisco; 1979174.

29. Merkle D, Middendorf M, Wieseke N: A parameter-adaptive dynamic
programming approach for inferring cophylogenies. BMC Bioinformatics
2010, 11(Suppl 1):60.

30. Yodpinyanee A, Cousins B, Peebles J, Schramm T, Libeskind-Hadas R: Faster
Dynamic Programming Algorithms for the Cophylogeny Reconstruction
Problem. HMC CS Technical Report 2011.

31. Doyon J.-P, Ranwez V, Daubin V, Berry V: Models, algorithms and
programs for phylogeny reconciliation. Briefings in Bioinformatics 2011,
12(5):392-400.

Drinkwater and Charleston BMC Bioinformatics 2014, 15(Suppl 16):S14
http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S16/S14

Page 14 of 15

http://sydney.edu.au/engineering/it/~mcharles/
http://sydney.edu.au/engineering/it/~mcharles/
http://www.biomedcentral.com/content/supplementary/1471-2105-15-S16-S14-S1.pdf
http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S16
http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S16


32. Conow C, Fielder D, Ovadia Y, Libeskind-Hadas R: Jane: a new tool for the
cophylogeny reconstruction problem. Algorithms for Molecular Biology
2010, 5(1):16.

33. Drinkwater B, Charleston MA: An Improved Node Mapping Algorithm for
the Cophylogeny Reconstruction Problem. Coevolution 2014, 2(1):1-17.

34. Doyon J.-P, Scornavacca C, Gorbunov KY, Szöllösi GJ, Ranwez V, Berry V: An
efficient algorithm for gene/species trees parsimonious reconciliation
with losses, duplications and transfers. In Proceedings from the 14th
International Conference on Research in Computational Molecular Biology
(RECOMB-CG). Volume 6398 of LNCS. Springer, New York City; 2011:93-108.

35. Cruaud A, Rønsted N, Chantarasuwan B, Chou LS, Clement WL, Couloux A,
Cousins B, Genson G, Harrison RD, Hanson PE, et al: An extreme case of
plant-insect codiversification: figs and fig-pollinating wasps. Systematic
Biology 2012, 61(6):1029-1047.

36. Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH:
How many species are infected with wolbachia?-a statistical analysis of
current data. FEMS Microbiology Letters 2008, 281(2):215-220.

37. Novotny V, Basset Y, Miller SE, Weiblen GD, Bremer B, Cizek L, Drozd P: Low
host specificity of herbivorous insects in a tropical forest. Nature 2002,
416(6883):841-844.

38. Ronquist F: Dispersal-vicariance analysis: a new approach to the
quantification of historical biogeography. Systematic Biology 1997,
46(1):195-203.

39. McKenzie A, Steel M: Distributions of cherries for two models of trees.
Mathematical Biosciences 2000, 164(1):81-92.

40. Bender MA, Farach-Colton M: The level ancestor problem simplified.
Theoretical Computer Science 2004, 321(1):5-12.

41. Cormen TH, Leiserson CE, Rivest RL, Stein C, et al: Introduction to
Algorithms. MIT press, Cambridge; 20012.

42. Kennedy J, Eberhart R, et al: Particle swarm optimization. In Proceedings of
IEEE International Conference on Neural Networks. Volume 4. Perth, Australia;
1995:1942-1948.

43. Dorigo M, Birattari M: Ant colony optimization. Encyclopedia of Machine
Learning Springer, New York City; 2010, 36-39.

44. Steel M, McKenzie A: Properties of phylogenetic trees generated by
Yule-type speciation models. Mathematical Biosciences 2001, 170(1):91-112.

45. Keller-Schmidt S, Wieseke N, Klemm K, Middendorf M: Evaluation of host
parasite reconciliation methods using a new approach for cophylogeny
generation. Technical report, Bioinformatics Leipzig 2011.

46. Jackson AP: The effect of paralogous lineages on the application of
reconciliation analysis by cophylogeny mapping. Systematic Biology 2005,
54(1):127-145.

47. Jackson AP, Machado CA, Robbins N, Herre EA, et al: Multi-locus
phylogenetic analysis of neotropical figs does not support co-speciation
with the pollinators: the importance of systematic scale in fig/wasp
cophylogenetic studies. Symbiosis (Rehovot) 2008, 45(1):57.

48. McLeish M, Crespi B, Chapman T, Schwarz M: Parallel diversification of
Australian gall-thrips on Acacia. Molecular Phylogenetics and Evolution
2007, 43(3):714-725.

49. Cuthill JH, Charleston M: Phylogenetic Codivergence Supports
Coevolution of Mimetic Heliconius Butterflies. PloS One 2012, 7(5):36464.

50. Refrégier G, Le Gac M, Jabbour F, Widmer A, Shykoff JA, Yockteng R,
Hood ME, Giraud T: Cophylogeny of the anther smut fungi and their
caryophyllaceous hosts: prevalence of host shifts and importance of
delimiting parasite species for inferring cospeciation. BMC Evolutionary
Biology 2008, 8(1):100.

51. Badets M, Whittington I, Lalubin F, Allienne J, Maspimby J, Bentz S, Du
Preez LH, Barton D, Hasegawa H, Tandon V, et al: Correlating early
evolution of parasitic platyhelminths to gondwana breakup. Systematic
Biology 2011, 60(6):762-781.

52. Paterson AM, Wallis GP, Wallis LJ, Gray RD: Seabird and louse coevolution:
Complex histories revealed by 12s rrna sequences and reconciliation
analyses. Systematic Biology 2000, 49(3):383-399.

53. Susoy V, Herrmann M: Preferential host switching and codivergence
shaped radiation of bark beetle symbionts, nematodes of micoletzkya
(nematoda: Diplogastridae). Journal of Evolutionary Biology 2014,
27(5):889-898.

54. Bellec L, Clerissi C, Edern R, Foulon E, Simon N, Grimsley N, Desdevises Y:
Cophylogenetic interactions between marine viruses and eukaryotic
picophytoplankton. BMC Evolutionary Biology 2014, 14(1):59.

55. Toit N, Vuuren B, Matthee S, Matthee C: Biogeography and host-related
factors trump parasite life history: limited congruence among the
genetic structures of specific ectoparasitic lice and their rodent hosts.
Molecular Ecology 2013, 22(20):5185-5204.

56. Kvičerová J, Hypša V: Host-parasite incongruences in rodent eimeria
suggest significant role of adaptation rather than cophylogeny in
maintenance of host specificity. PLoS One 2013, 8(7):63601.

57. Rosenblueth M, Sayavedra L, Sámano-Sánchez H, Roth A, Martínez-
Romero E: Evolutionary relationships of flavobacterial and
enterobacterial endosymbionts with their scale insect hosts (hemiptera:
Coccoidea). Journal of Evolutionary Biology 2012, 25(11):2357-2368.

58. Forister ML, Feldman CR: Phylogenetic cascades and the origins of
tropical diversity. Biotropica 2011, 43(3):270-278.

doi:10.1186/1471-2105-15-S16-S14
Cite this article as: Drinkwater and Charleston: Introducing TreeCollapse:
a novel greedy algorithm to solve the cophylogeny reconstruction
problem. BMC Bioinformatics 2014 15(Suppl 16):S14.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Drinkwater and Charleston BMC Bioinformatics 2014, 15(Suppl 16):S14
http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S16/S14

Page 15 of 15


	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Local pattern detection
	Guarantee that TreeCollapse recovers time-consistent solutions
	Increasing accuracy further
	Complexity analysis of TreeCollapse
	Applying an approximation algorithm

	Results and discussion
	Evaluating TreeCollapse’s patterns
	Improvements provided by Right Push
	Establishing a baseline
	Comparing against dynamic programming algorithms

	Conclusion
	Availability and requirements
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	References

