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Abstract

Background: The advent of human genome sequencing project has led to a spurt in the number of protein
sequences in the databanks. Success of structure based drug discovery severely hinges on the availability of
structures. Despite significant progresses in the area of experimental protein structure determination, the sequence-
structure gap is continually widening. Data driven homology based computational methods have proved successful
in predicting tertiary structures for sequences sharing medium to high sequence similarities. With dwindling
similarities of query sequences, advanced homology/ ab initio hybrid approaches are being explored to solve
structure prediction problem. Here we describe Bhageerath-H, a homology/ ab initio hybrid software/server for
predicting protein tertiary structures with advancing drug design attempts as one of the goals.

Results: Bhageerath-H web-server was validated on 75 CASP10 targets which showed TM-scores ≥0.5 in 91% of the
cases and Ca RMSDs ≤5Å from the native in 58% of the targets, which is well above the CASP10 water mark.
Comparison with some leading servers demonstrated the uniqueness of the hybrid methodology in effectively
sampling conformational space, scoring best decoys and refining low resolution models to high and medium
resolution.

Conclusion: Bhageerath-H methodology is web enabled for the scientific community as a freely accessible web
server. The methodology is fielded in the on-going CASP11 experiment.

Background
“The native conformation of a protein is determined by the
totality of interatomic interactions and hence, by the
amino acid sequence, in a given environment” (Nobel Lec-
ture, Christian B. Anfinsen, December 11, 1972). Accord-
ing to Anfinsen’s protein folding hypothesis, a protein’s
native structure is determined by its amino acid sequence
which drives protein into its minimum Gibbs energy state
[1]. This hypothesis evolved as a basic tenet for protein
structure prediction algorithms (PSPAs). However limited

understanding of net balance of forces involved in protein
folding creates deficiencies in various proposed PSPAs.
One of the early efforts in solving protein folding problem
was driven by thermodynamic calculations, which incorpo-
rate searching algorithms to investigate a conformation
that corresponds to minimum free energy [2]. Here the
large number of degrees of freedom of a protein gives rise
to innumerable conformations, an enumeration of which is
practically impossible. This despite, proteins fold rapidly
into their native structure in milliseconds to seconds time
scales implying that a brute force enumeration of all possi-
ble conformations may not be required as implicit in
Levinthal’s Paradox [3]. The fact that sequence introduces
local structural bias, narrows down the accessible
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conformational space and introduces local as well as long
range interactions, suggesting a halfway solution to the
paradox [4-7]. As a result, PSPAs need two key compo-
nents: (a) a rapid computational algorithm for protein con-
formational search and (b) an accurate scoring function to
capture the best available conformation. The first compo-
nent involves use of different physics based as well as
knowledge based approaches for extensive sampling of the
vast conformational space [8,9]. Physics based sampling
methods include use of Monte Carlo (MC) methods
[10-15], Genetic algorithms [16], molecular dynamics
simulations (MD) [17,18], simulated annealing [19,20],
replica-exchange MC or MD and local enhanced sampling
[21-23]. Knowledge based methods use information from
the solved protein structures and knowledge based poten-
tials for sampling protein conformational space [24].
Homology modeling [25-30] and fold recognition/

threading methods [31-35] are knowledge based
approaches, which are routinely used to generate reliable
models for proteins with overall fold topology similar to
an available template in the protein databases. Query
protein with no sequence and structural similarity are
modeled from scratch using physics based/ ab initio
approaches. The success of ab initio or physics-based
sampling methods is limited by lack of accurate energy
functions [36,37], heavy computational requirements,
force field errors [38-40] and protein size, while knowl-
edge based approaches are limited by sequence similar-
ity and evolutionary relationships [41-43]. A popular
trend in protein conformational sampling is the frag-
ment assembly method, which uses parts of known pro-
tein or protein fragments to generate a structure of the
target. After conformational sampling, the next immedi-
ate concern is to capture the best available structure by
means of a scoring function [44-56]. These functions
combine chemical, physical, geometrical and energetic
constraints to capture native or near native models
[57,58].
A thorough literature survey reveals that the available

protein structure prediction algorithms are based on
methods such as (a) homology modeling, (b) fold recog-
nition, (c) ab initio and (d) hybrid [59,60]. Different
software/tools are available in the public domain based
on these computational approaches and are evaluated
every two years during the Critical Assessment of tech-
niques for protein structure prediction (CASP experi-
ments) [61]. Recent CASP experiments have shown
significant progress by hybrid approaches, which com-
bine homology, ab initio along with atomic level model
refinements for protein structure prediction [62]. This
article describes Bhageerath-H, a homology/ ab initio
hybrid software for predicting tertiary structure of
monomeric proteins. Bhageerath-H makes use of Bha-
geerath-H Strgen algorithm [63] for extensive sampling

of the protein fold space and generates a large basket of
decoys containing near-native protein conformations,
which are further supplemented by a chemical logic
based alignment scheme and then clustered to eliminate
non-unique redundant structures. These are then
screened by a physico-chemical scoring metric (pcSM)
and assessed for their quality. The selected models are
refined via a unique and effective quantum mechanics
based loop bond angle optimization method, which
drives the selected models further close to the native
topology. Bhageerath-H automated pipeline is freely
available to the scientific community across the world
via http://www.scfbio-iitd.res.in/bhageerath/bhageer-
ath_h.jsp.

Methodology
Bhageerath-H software suite for protein tertiary struc-
ture prediction narrows down the conformational search
space and predicts five probable near native candidate
structures for an input amino acid sequence. The soft-
ware comprises seven computational modules which
work in conduit and together form an automated pipe-
line. Figure 1 shows a diagrammatic representation of
Bhageerath-H software suite. Following sections discuss
each module of the automated pipeline.

(A) Bhageerath-H Strgen for candidate structures
The first step in the pipeline involves generation of a
large pool of full length decoys. In the proposed protein
structure prediction pipeline, Bhageerath-H Strgen algo-
rithm for protein conformational sampling [63] is the
first module. The module takes as input protein amino
acid sequence and provides as output a large pool of
decoys. A revised and improved version of structure
generation algorithm is incorporated in the Bhageerath-
H software suite. Bhageerath-H Strgen makes use of the
current sequence and structural database knowledge

Figure 1 Diagrammatic representation of Bhageerath-H
protocol.
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along with Bhageerath ab initio folding [64,65] in order
to effectively search the fold space for an input protein
sequence. It starts with amino acid sequence, followed
by secondary structure prediction and BLAST [66]
search for sequence based homologs. In addition, it also
searches for distant analogs and structural homologs
using tools such as pGenthreader [67,68], ffas [69,70],
spark-x [71] and HHSearch [72]. A new addition to this
methodology is a chemical logic based [73] procedure
for template selection followed by alignment generation.
It utilizes amino acid chemical properties such as hydro-
gen bond donor, conformational flexibility, shape and
size of side chains for generating an amino acid substi-
tution scoring matrix. This scoring matrix is used for
template selection as well as template-target alignment
generation. The matrix helps in selecting distant homo-
logs, which are generally missed during a normal data-
base search. The templates and template-target
alignments are used for modeling fragments of varying
length via Modeller [74,75]. Modeled fragments are then
screened for missing links with no available templates.
These missing stretches are generated using Bhageerath
ab initio modeling method [65,76,77]. All the incom-
plete protein fragments are patched in order to generate
full-length models, which are energy scored and top 5
lowest energy decoys are sent for Bhageerath abintio
loop sampling. The newly sampled structures are added
to the growing pool of full length protein decoys. The
output of the first step is a large pool of protein decoys.
The average size of the decoy pool is on the order of
104-105 structures.
Bhageerath-H Strgen module includes locally installed

copies of Psipred, BLAST, PFAM [78], SCOP [79,80], nr
[81], pdb database [82] http://www.pdb.org/pdb/home/
home.do, HHSearch, Spark-X, pGenthreader, ffas and
modeller. The scalable Bhageerath-H Strgen algorithm
is currently configured to utilize 64 processors of Linux
Cluster. Programs are written in C++, MPI language
and involve use of linux shell scripting. Average time
taken for Bhageerath-H Strgen run is 1-2hrs. This first
module of the Bhageerath-H pipeline generates a large
pool of decoys which needs to be further filtered, pro-
cessed and refined. We would like to note that Bhageer-
ath-H software is not just limited to Bhageerath-H
Strgen an already published algorithm. Bhageerath-H
Strgen is a protein decoy generation program which is
the first module here. After protein decoy generation,
protein decoy selection and refinement are the other
two very important steps in protein structure prediction
pipeline. In Bhageerath-H software modules 2-5 are
dedicated for decoy clustering, selection and refinement,
which are not included in Bhageerath-H Strgen. Output
from this module is submitted for clustering in the next
step.

(B) Clustering
Recurring structural models sampled in the previous step
are clustered using K-means clustering algorithm. The
main aim of this step is to retain a single representative
structure of each unique topology. MMTSB [83] toolkit’s
k-clust is used to perform clustering. The tool requires
list of protein decoys to cluster. Following command was
executed:

kclust - modermsd - cdist - heavy - lsqfit - radius 1.0 - maxerr 1 pdblist > cluster file

This command gives as an output a cluster file, which
contains the centroid in the pdb format along with the
members of each centroid and the root mean square
deviation (rmsd) distance of each member from the cen-
troid. The centroids themselves are mathematical con-
structs and convey no information, but utilizing rmsd
information one lowest rmsd member from each cluster is
picked [83]. To overcome the time limitation, clustering is
performed in a parallel mode. The output of K-mean clus-
tering is a set of decoys, which are unique, non-recurring
and contain near-native structural models. This set of
decoys containing near-native models is submitted for
physico-chemical scoring in the third step.

(C) Scoring based on a physico-chemical metric
The third step in the Bhageerath-H pathway involves the
use of a robust metric that combines chemical, physical,
geometrical and energetic constraints known to show uni-
versalities among native protein structures. The physico-
chemical scoring metric (pcSM) consists of different para-
meters, which include (a) P: Secondary structure penalty,
(b) M: Euclidean distance, (c) A1-A4: Surface areas and
(d) E: Empirical potential energy functions. The scoring
function calculates a final cumulative score (CS), which
comprises each of these parameters.

CS = cA1A1 + cA2A2 + cA3A3 + cA4A4 + cpmax(PH,PS) + cM1M1

where A1 is the fractional area of exposed non-polar
residues, A2 is the fractional area of exposed non polar
part of residues, A3 is the weighted exposed area, A4 is
the total surface area, PH and Ps are secondary structure
penalties for helix and sheet respectively, M1 is Euclidean
distance. The prefix “c” for each parameter in the above
equation refers to its optimized coefficient. cA1 = 10, cA2
= 0.1, cA3 = 0.00001, cA4 = 0.001, cM1 = 0.001, cp = 0.15
(PH) and 0.21(PS).
In order to get the top 10 structures, each of the

seven parameters are evaluated for all the clustered
decoys and a short energy minimization is performed to
remove steric clashes. For the given input decoy pool,
pcSM gives as an output top 10 ranked native-like can-
didates structures. pcSM algorithm runs in parallel
mode and utilizes 64 processors. On an average, time
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taken for scoring varies from 2 to 3 hours. The top 10
pcSM ranked models are submitted for protein structure
analysis and validation in the next step.

(D) Protein Structure Analysis and Validation (PROTSAV)
based ranking
PROTSAV is a protein structure quality assessment
meta-server (manuscript under preparation). Currently,
it comprises six tools namely Procheck [84], Verify-3D
[85], ERRAT [86], Naccess [87], PROSA [88] and
dDFIRE [89], for quality assessment of protein struc-
tures. PROTSAV generates an overall protein quality
score, which is a summation of scores predicted by indi-
vidual modules. High PROTSAV values reflect poor
structure quality of query protein and low values close
to zero represent good quality of query protein struc-
ture. Run time for this module is 40-45 seconds. In this
step, pcSM selected top 10 protein models are analysed
and ranked. The top ranked model is submitted for QM
based loop bond angle refinement in the next step.

(E) Quantum mechanics (PM6) based loop bond angle
optimization
Quantum mechanics (PM6) based loop bond angle opti-
mization (manuscript in preparation) takes topmost
PROTSAV selected model as an input, optimizes loop
bond angles and performs ab initio loop sampling [66].
The small pool of decoys generated in the process is
side chain optimized using Scwrl4. Scwrl4 is a program
for prediction of protein side chain conformation [90].
Scwrl4 uses latest backbone-dependent library to pro-
vide rotamer frequency, dihedral angles and variances.
The side chain optimized decoys are further energy
minimized (SD = 500, CG = 500) using sander module
of AMBER10 software [91].
These optimized and energy minimized refinement

generated decoys are scored using pcSM and the top 10
ranked QM refined models are passed to next step.

(F) Final ranking
Input to this step is top 10 pcSM ranked QM refined
models from step (E) and top 5 PROTSAV ranked mod-
els from the step (D). PROTSAV ranked models are side
chain optimized and energy minimized before final
ranking. The selected 15 models are re-ranked using
pcSM and the top 5 are given to the user as an output.
The Bhageerath-H protocol is a careful combination of

different algorithms which are configured to work in con-
duit. Starting from Bhageerath-H Strgen followed by clus-
tering, pcSM scoring, PROTSAV and QM refinement
each module has its own importance and role in providing
the user, near-native candidate structures as final output.
The software takes protein amino acid sequence as input
and provides a user as output five native-like candidate

structures. Figure 2 shows the flow chart of Bhageerath-H
software suite.

Results and Discussion
Validation of Bhageerath-H software suite
Bhageerath-H automated pipeline was thoroughly tested
and validated on the benchmark CASP10 dataset. Each
CASP experiment reveals the state of the art in the field
of protein structure prediction. About75 CASP10 targets
of varying size and complexity were considered here for
the analysis. To begin with the assessment, CASP-like
conditions were mimicked, which means the native and
near-native homologs were excluded during structure
prediction. Any template released later than the first
CASP10 server target i.e. fifth May of 2012 was not con-
sidered. For structure assessment an automated pipeline
was developed. For each CASP10 target, sequence was
extracted from the native structure. Then predicted
structure sequence and the native sequence were aligned
using ClustalW [92]. Residues with missing coordinates
were removed from the predictions in order to make
the sequence of the two structures match exactly. The
native and the Bhageerath-H generated final five models
were compared based on the widely used criteria of Ca
root mean square deviation (Ca RMSD) and Template
modeling score (TM-score). Ca RMSD is a global indi-
cator of structural identity, while TM-score identifies
local substructures and evaluates local identity. TM-
score refers to template modeling score. TM-score is
considered as a quantitative measure for classification of

Figure 2 Flowchart of Bhageerath-H software.
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protein topology. A TM-score > 0.5 signifies that pro-
tein pairs share same fold whereas a TM-score < 0.5 are
mostly not of the same fold and a TM-score of 0.17
indicates random prediction [93,94].
(A) Bhageerath-H performance on 75 CASP10 targets
Bhageerath-H was validated on 75 CASP10 targets. Ca
RMSDs and TM-scores of final five Bhageerath-H pre-
dictions from the native were calculated. In 68 out of 75
systems i.e. in 91% of the cases Bhageerath-H predicted
model has a TM-score ≥0.5, while in 44 targets i.e. in
59% of the cases Bhageerath-H was able to predict a
model in top 5 having a Ca RMSD from the native
≤5.0Å (Additional File 1). Figure 3 shows the TM-score
distribution and Figure 4 shows the Ca RMSD distribu-
tion of all the75 targets.
Comparison of Bhageerath-H performance with
BAKER-ROSETTA, Quark and MULTICOM-CLUS-
TER For comparative analyses, we considered three
state-of-the-art servers for protein tertiary structure pre-
diction. Predictions submitted by BAKER-ROSETTA
[95], Quark [96] and MULTICOM-CLUSTER [97] dur-
ing CASP10 [62] experiment were used. Their submitted
five predictions were downloaded from the CASP10
website http://www.predictioncenter.org/casp10/index.
cgi and analyzed using the automated evaluation pipe-
line described above. The minimum RMSD obtained
among the five submitted models was considered. In 36
cases, BAKER-ROSETTA server submitted a model
among five predictions having Ca RMSD from the
native ≤5.0Å. Quark submitted 40 predictions among 75
under the Ca RMSD cutoff of 5.0Å, whereas MULTI-
COM-CLUSTER succeeded in 33 cases. In comparison
to these three servers, Bhageerath-H server was success-
ful in 44 cases i.e. in 59% of the cases, this server was
able to propose a model in top 5 having a Ca RMSD
from the native ≤5.0Å (Figure 5).

CASP organizers assign a unique target id to each
protein fielded in the CASP experiment. While validat-
ing and comparing performance of Bhageerath-H soft-
ware on 75 CASP10 targets, we have closely analyzed
some of the CASP10 target proteins in which Bhageer-
ath-H outperformed other three servers under consid-
eration. A brief description of the biological role of the
targets T0655, T0672, T0675, T0700, T0716, T0736,
T0747, T0755, T0669, T0713, T0686, T0724 is given in
Additional File 2.
For targets T0655, T0672, T0675, T0700, T0716, T0736,

T0747, T0755 Bhageerath-H outperformed BAKER-
ROSETTA server. It predicted a structure in top 5 within
the defined Ca RMSD cutoff (≤5.0 Å). In case of Quark,
Bhageerath-H exceeded in 6 cases T0669, T0672, T0675,
T0685, T0716, T0747, while Bhageerath-H was successful
in 11 cases when compared with MULTICOM-CLUSTER.
For targets T0655, T0672, T0675, T0716, T0747, Bhageer-
ath-H achieved high prediction accuracy than all the three
servers (Figure 6).
A close inspection of the reason for better perfor-

mance of Bhageerath-H revealed that for targets such as

Figure 3 TM-score distribution of 75 CASP10 targets.

Figure 4 Ca RMSD distribution of 75 CASP10 targets.

Figure 5 A comparative study of 75 CASP 10 target predictions
under RMSD cut-off of 5 Å by Bhageerath-H, BAKER-ROSETTA,
Quark and MULTICOM-CLUSTER server.
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T0675, T0672, T0669, T0716, T0736, T0700 it was Bha-
geerath-H Strgen patching module as well as ab initio
loop sampling which generated a low RMSD near-native
structure. In systems T0655, T0747, the low RMSD
sampled structure is due to the amino acid chemical
logic based scoring matrix. The amino acid substitution
scoring matrix is a new addition to Bhageerath-H Strgen
methodology and performs a very thorough search of
the database for homologs based on amino acids chemi-
cal properties. This matrix helped in template search
and alignment generation especially in targets T0655
and T0747, where most other servers failed to predict a
low RMSD structure. It identified correct templates and
generated better target-template alignments, which
resulted in high quality near-native structural models
for proteins with low sequence similarity. In cases where
a full length template is unavailable, the matrix helped
in generating high quality alignments for short sequence
fragments. Other than amino acid chemical logic based
scoring matrix the major contributor for better perfor-
mance of Bhageerath-H software is abinitio loop sam-
pling. Loops are the most flexible parts of a protein
structure involved in molecular recognition. Correct
modeling of loops has always been a challenge. Ab initio
loop sampling module helped in systematic and thor-
ough sampling of the loop conformation space and gen-
erated low RMSD models. CASP 10 targets where
Bhageerath-H outperformed other participating servers
were mainly modeled through chemical logic and ab-
initio loop sampling.
Other than above specified targets, Bhageerath-H’s

performance is noteworthy for targets T0713, T0686
and T0724 when compared to the other three servers
under consideration. Though high quality Bhageerath-H

models were not predicted, these targets need special
attention and discussion. These three targets are
described below as case studies for illustration of Bha-
geerath-H performance.
(i) Target T0713: This target is a hypothetical protein

from Eubacterium ventriosum having PDB: 4H09 and
739 amino acid residues. It has four leucine rich repeats
domains which take solenoid shape in protein structure.
These domains help protein to interact with its comple-
mentary protein partner. Bhageerath-H sampled a low-
est RMSD structure of 8.91Å in pool of trial structures.
After clustering and pcSM decoy selection the lowest
RMSD model in top 10 was 9.80Å. The topmost PROT-
SAV selected model was given to QM based structure
refinement. QM refined the input model and generated
a decoy in the small pool having 6.61Å Ca RMSD from
the native. It is due to the bond angle optimization
which assisted in a better conformational sampling and
a lower RMSD decoy, which was picked by pcSM during
final five ranking. Bhageerath-H successfully modeled
and picked a structure in the top five having leucine
repeat domain similar to the native structure. The
domain form horseshoe shape reflects its biological
activity.
(ii) Target T0686: This target is a sporozite surface

protein of plasmodium vivax, one of the causative
agents for malarial disease. It is also called TRAP
(thrombospondin repeat anonymous protein) which
mediates the invasion of mosquitoes and vertebrates
host cells in malaria. TRAP protein has two functional
domains (i) TSP (thrombospondin type I) and (ii) VWA
(von willebrand factor type A) that are responsible for
cell adhesion. Bhageerath-H Strgen generated a 7.41Å
RMSD structure which was retained post clustering.

Figure 6 Comparison of Bhageerath-H software suite with BAKER-ROSETTA server, Quark server and MULTICOM-CLUSTER server for 75
CASP10 targets.
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pcSM and PROTSAV picked an 8.13Å structure which
was submitted for QM based refinement. The final low-
est RMSD model in top 5 is 7.75Å, which is a much
better prediction in comparison to other server predic-
tions. Model structure closely superimposes with VWA
domain of native crystal structure (PDB: 4QHO) protein
while there are a few anomalies in TSP domain. VWA
domain is mainly responsible for protein’s biological
activity and covers a stretch of ~180 amino acids. TSP
is a shorter domain (∼40 amino acids). The final ranked
Bhageerath-H modelled structure missed an extended b-
sheet, which resulted in a high RMSD of the prediction
from the native.
(iii) Target T0724: This target is a hypothetical

uncharacterized protein from bacteroides vulgates hav-
ing PDB: 4FMR. It has only one characterized functional
domain i.e DNA binding. QM based structure refine-
ment assisted in better conformational sampling and in
generating a near-native decoy. A brief biological
description of the studied targets is given in the Addi-
tional File 2.
In a nut shell, major reasons behind the ability of

Bhageerath-H to predict lower RMSD near-native mod-
els are firstly exhaustive sampling technique. Bhageer-
ath-H Strgen and the newly developed amino acid
chemical logic based scoring matrix help in a thorough
search of template and protein conformational space,
ensuring generation of near-native models in maximum
instances. Secondly, it is the pcSM scoring function
which cherry picks these native-like candidates with 93%
accuracy. Apart from these two major modules, it is the
PROTSAV structure analysis which ranks models
accordingly and submits for QM refinement. Finally,
QM based refinement protocol facilitates in going one
step ahead and improves prediction accuracy.
(B) Assessment of individual modules of Bhageerath-H
pipeline
To comprehend the potential of individual modules of
Bhageerath-H automated pipeline, we further analyzed 7
targets where Bhageerath-H outperformed all the three

servers. Table 1 details the output of individual modules
of Bhageerath-H i.e Bhageerath-H Strgen, clustering,
pcSM scoring, PROTSAV ranking and final output.
Table 1 column 3 contains the result of module 1, Bha-
geerath-H Strgen. It shows the lowest Ca RMSD
sampled in the decoy pool. Column 4 shows the size of
the decoy pool. Column 5 has Ca RMSD result for
module 2, clustering. It contains information of the low-
est RMSD structure in the decoy pool after clustering.
Column 6 represents the size of the decoy pool post
clustering. Column 7 contains the result for module 3,
pcSM scoring. It shows the lowest Ca RMSD among
the top 10 pcSM ranked decoys. Column 8 has results
of module 4, PROTSAV ranking. The Ca RMSD of top-
most PROTSAV ranked model. The last column has the
final prediction results of Bhageerath-H pipeline, the
lowest Ca RMSD among final five Bhageerath-H predic-
tions for the given target.
As discussed earlier the backbone of any protein ter-

tiary structure prediction software/tool is its protein
conformational sampling module. Unless a near-native
decoy is sampled/generated, it is impossible to attain
high prediction accuracy. In Table 1 for all the 7 tar-
gets near-native decoys (Ca RMSD ≤5.0Å) were pre-
sent in Bhageerath-H Strgen sampled decoy pool.
These decoys were retained post K-mean clustering.
While filtering bad decoys from good ones, it is extre-
mely important to retain the sampled near-native
decoys in the smaller basket. As can be seen from
Table 1 clustering was able to reduce the basket size
while retaining good structures. Second major module
of prediction pipeline is scoring. pcSM scoring func-
tion has successfully picked the best decoys in top10
except in the case of T0655. PROTSAV has further
assisted in ranking the best model (lowest Ca RMSD) as
topmost model in 5 cases. In 2 cases we missed out the
lowest RMSD sampled decoy in final ranking but success-
fully selected a ≤5 Å in final predicted output. The last col-
umn shows the final prediction results of Bhageerath-H
pipeline. Figure 7(a1-a7) shows superimposition of lowest

Table 1 Assessment of individual modules of Bhageerath-H pipeline for 7 CASP10 targets.

S.
No

Target Lowest Ca RMSD
structure in

Bhageerath-H Strgen
sampled decoy pool

Number
of decoys
generated

Lowest Ca
RMSD structure
post K-mean
clustering

Number
of

filtered
decoy

Lowest Ca RMSD
structure among

top10 pcSM ranked
decoys

Ca RMSD of
the topmost

SAVPRO ranked
model

Lowest Ca RMSD
among final five
Bhageerath-H
predictions

1. T0655 2.98 77826 3.13 19742 3.13 3.13 3.13

2 T0669 2.85 20002 2.85 7634 2.85 2.85 2.85

3 T0675 4.90 108131 4.95 31104 5.05 5.1 4.93

4 T0716 2.97 109056 2.97 11708 2.97 3.06 2.97

5 T0733 2.54 105124 2.54 14460 2.54 2.65 2.59

6 T0747 4.11 60584 4.11 17874 4.11 4.11 4.11

7 T0672 5.00 116786 5.00 26806 5.00 5.09 5.00
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Ca RMSD Bhageerath-H predicted models with the corre-
sponding natives.
(D) Quality assessment of Bhageerath-H predictions
Finally, the quality of Bhageerath-H predictions was
assessed based on Molprobity score [98]. Molprobity score
evaluates the stereochemistry of input structure. Online
Molprobity server http://molprobity.biochem.duke.edu
was used for score calculation. Additional File 3 shows the
Molprobity score of the best Bhageerath-H predictions.
Best refers to the lowest Ca RMSD in the final five Bha-
geerath-H predictions. The average Molprobity score is
1.94 for 75 predictions.

Bhageerath-H web server
Bhageerath-H automated pipeline is available for the scien-
tific community as a freely accessible web server at url
http://www.scfbio-iitd.res.in/bhageerath/bhageerath_h.jsp.

The web server takes as input amino acid sequence of the
query protein. The processed results are sent to the users
at the email id provided by them. Each submitted job is
provided with a unique Jobid, which can be used to check
job status. The server provides an option for specifying
templates. A user can either opt for automatic template
searching option or user defined template option. In auto-
matic template searching option software itself searches for
the best templates and uses hybrid approach to predict ter-
tiary structure. In user defined template option, user is
required to input template information i.e. template’s pdb-
id and chain id. Structures based on the defined templates
will be given to the user as output. Complete Bhageerath-H
run takes approximately 5-6 hours depending on the size of
the protein. The software runs on a 35 node Quad-Core
AMD Opteron(tm) Processor 2380 based cluster on
CentOS platform over an Infini-band QDR backbone.

Figure 7 (a1-a7): A superimposition of best Bhageerath-H predicted model with native for 7 targets. Bhageerath-H predicted model is in
red and native is in blue.
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Bhageerath-H receives at least 10-20 jobs every day from all
across the world. Bhageerath-H is participating in CASP11
competition (1st May 2014 - 16th July 2014). Figure 8 show
a screenshot of Bhageerath-H webserver.

Conclusions
We have developed Bhageerath-H, an automated pipe-
line for protein tertiary structure prediction and made it
into a freely accessible web server http://www.scfbio-iitd.
res.in/bhageerath/bhageerath_h.jsp. The pipeline com-
prise six different modules which are Bhageerath-H
Strgen for decoy generation, K-mean clustering, pcSM
for decoy selection, PROTSAV for structure validation,
QM (PM6) based loop refinement and final ranking.
Together each module assists in pushing the prediction
accuracy to higher limits. Bhageerath-H server was vali-
dated on 75 CASP10 targets and results show that the
methodology is effective in predicting good structures
for proteins with varying sequence and structural simila-
rities. Comparison with some of the existing softwares
demonstrated the uniqueness of the hybrid methodology
in effectively sampling conformational space, scoring
best decoys and refining low resolution models to high
and medium resolution. A critical analysis of the targets

where Bhageerath-H was unsuccessful in predicting low
RMSD structures highlights the areas of improvement.
These include better secondary structure prediction, bet-
ter alignment strategies, improvement in ab initio mod-
eling for sampling new folds and refinement strategies.
We are currently working on these areas especially for
targets with very low sequence similarity. The current
version of Bhageerath-H has already taken the structure
prediction field beyond CASP10. This improved metho-
dology is fielded in the ongoing CASP11 experiment.
Several proteins exhibit partial or complete instability

in their structures. These proteins are classified as
intrinsically disordered proteins (IDPs). Bhageerath-H is
a homology and abinito hybrid method for modeling
structures of monomeric proteins. The current web-
enabled version of the protocol is not specifically pro-
grammed to model structures of IDPs. Rather, the ab
initio loop modeling section of the first module as well
as QM(PM6) method for loop bond angle refinement
attempt to sample conformation space of long loop
stretches/disordered regions.
Thus to summarize, in the recent years, data driven

homology based computational methods have proved
successful in predicting tertiary structures for sequences

Figure 8 Screenshot of Bhageerath-H web server.
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with high sequence similarity. With the dwindling simi-
larities of query sequences, advanced homology/ ab
initio hybrid approaches are being explored to solve
structure prediction problem. Overcoming these limita-
tions while pushing the frontiers of protein structure
prediction, we have proposed Bhageerath-H algorithm.
The proposed algorithm finds applications in the field of
protein structure/function prediction, active-site directed
drug design, in studying protein-protein interactions,
and in protein design and engineering. In the absence of
experimental protein structure, the availability of com-
putational protein tertiary structural models helps to
probe biological functions of proteins.

Additional material

Additional File 1: Ca RMSD and TM-Score of best Bhageerath-H
prediction. Best refers to lowest Ca RMSD predicted model in final five
Bhageerath-H predictions.

Additional File 2: Description of biological and structural relevance
of CASP10 Targets (T0655, T0672, T0675, T0700, T0716, T0736,
T0747, T0755, T0669, T0713, T0686, T0724).

Additional File 3: Molprobity score of the best Bhageerath-H prediction.
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