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Abstract

Background: Protein-protein docking is an in silico method to predict the formation of protein complexes. Due to
limited computational resources, the protein-protein docking approach has been developed under the assumption of
rigid docking, in which one of the two protein partners remains rigid during the protein associations and water
contribution is ignored or implicitly presented. Despite obtaining a number of acceptable complex predictions, it
seems to-date that most initial rigid docking algorithms still find it difficult or even fail to discriminate successfully the
correct predictions from the other incorrect or false positive ones. To improve the rigid docking results, re-ranking is
one of the effective methods that help re-locate the correct predictions in top high ranks, discriminating them from
the other incorrect ones.

In this paper, we propose a new re-ranking technique using a new energy-based scoring function, namely IFACEwat - a
combined Interface Atomic Contact Energy (IFACE) and water effect. The IFACEwat aims to further improve the
discrimination of the near-native structures of the initial rigid docking algorithm ZDOCK3.0.2. Unlike other re-ranking
techniques, the IFACEwat explicitly implements interfacial water into the protein interfaces to account for the water-
mediated contacts during the protein interactions.

Results: Our results showed that the IFACEwat increased both the numbers of the near-native structures and
improved their ranks as compared to the initial rigid docking ZDOCK3.0.2. In fact, the IFACEwat achieved a success
rate of 83.8% for Antigen/Antibody complexes, which is 10% better than ZDOCK3.0.2. As compared to another re-
ranking technique ZRANK, the IFACEwat obtains success rates of 92.3% (8% better) and 90% (5% better) respectively
for medium and difficult cases. When comparing with the latest published re-ranking method F°Dock, the IFACEwat
performed equivalently well or even better for several Antigen/Antibody complexes.

Conclusions: With the inclusion of interfacial water, the IFACEwat improves mostly results of the initial rigid docking,
especially for Antigen/Antibody complexes. The improvement is achieved by explicitly taking into account the
contribution of water during the protein interactions, which was ignored or not fully presented by the initial rigid
docking and other re-ranking techniques. In addition, the IFACEwat maintains sufficient computational efficiency of
the initial docking algorithm, yet improves the ranks as well as the number of the near native structures found. As
our implementation so far targeted to improve the results of ZDOCK3.0.2, and particularly for the Antigen/Antibody
complexes, it is expected in the near future that more implementations will be conducted to be applicable for other
initial rigid docking algorithms.
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Background

Protein-protein interactions have been well studied by
both lab experiments and computational simulations [1].
Understanding protein interactions is crucial for design-
ing drugs and finding drug targets. While knowledge of
protein interactions and their molecular pathways have
been discovered experimentally, limited information
about structures of the known protein complexes could
be elucidated. In addition, due to the transient or obli-
gatory associations, not every protein complex could be
experimentally crystalized. Therefore predicting the
complex formation using in silico method, e.g. protein-
protein docking, has become an important complement
with the in vitro studies in investigating protein-protein
interactions.

Due to the compromise of protein flexibility against lim-
ited computational resources, most current protein dock-
ing algorithms are driven under the assumption of rigid
docking, i.e. one of the protein partners remains rigid dur-
ing the complex associations [2-11]. Hence, results of the
rigid docking often require further refinement to obtain
optimal structures of the protein complexes. However, this
refinement stage is computationally intensive [12].

Although the rigid docking has successfully predicted
formations of many protein complexes, it often fails if
the proteins undergo conformational changes (e.g. Anti-
gen/Antibody complexes) or their interactions are influ-
enced by the solvent [13]. In fact, rigid docking results
contain high false positive rates caused by a failure to
locate the correct predictions from the other incorrect
ones. Therefore, if the refinement is a crucial step that
every protein docking algorithm needs to perform, it is
important to improve the number of correct predictions
while limiting the number of false positives that need to
be refined in order to achieve better computational
efficiency.

Re-ranking technique used in protein docking is an
effective approach to discriminating the correct predic-
tions from the others [14-17] by re-locating them in the
top higher ranks than those of the incorrect and false posi-
tives. For examples, the re-ranking algorithm ZRANK [17]
aims for a more accurate and quick re-ranking of the rigid
docking predictions from ZDOCK (i.e. ZDOCK2.3 [9] at
the time). Unlike ZDOCK?2.3, the scoring function of
which consists of grid-based discrete functions derived
from both the receptor and the ligand [9], the scoring
function developed in ZRANK includes a linear sum of
the potential terms (e.g. van der Waals, electrostatics and
desolvation) and does not require the grid-based presenta-
tions before the scoring [17]. ZRANK therefore does not
significantly affect the overall complexity of the initial
docking algorithm, marking it an important improvement
in terms of computational efficiency because it can com-
pute quickly and effectively the scores of each of the

predicted protein complexes while there is no Fast Fourier
Transform (FFT) technique required. In particular,
ZRANK achieves noticeable improvement by improving
the rankings of the top 2000 conformations for most of
the cases in the protein complex benchmark 2.0 [16,17]
and benchmark 4.0 over the initial docking programs
ZDOCK (version 2.1, 2.3, and 3) (data not shown).

Another re-ranking technique using an implicit solvent
model (Generalized Born or GB) implemented in a rigid
docking program F?Dock also shows better performances
by locating more correct predictions in higher ranks [18]
than the conventional initial rigid docking. F?Dock applies
a GB model to estimate the changes in the solvation
energy (AEsol) at the protein surfaces of protein com-
plexes, and uses this AEsol value to re-rank the docking
predictions [18]. The F*Dock GB re-rank showed better
results for two out of 3 types of protein complexes (i.e.
Antigen/Antibody and Enzyme/Inhibitor) than those of
the initial rigid docking ZDOCK3.0.2 [18]. The estimation
of the AEsol in the GB model is dependent on the polari-
zation energy, which represents the electrostatics changes
due to the solvent. However this estimation neglects the
conformational changes upon the complex formation [19].
Therefore biases may be expected due to the rigidity of
the protein backbones and side-chains.

Although each of the techniques approaches from dif-
ferent angles of employing potential energy terms, they
both interpret the solvent effect using the energy-based
scoring functions and show significant improvement as
compared to the initial docking algorithm ZDOCKS3.0.2.
It is observed that the inclusion of water effect into the
protein interactions is taken into account [17,18]. How-
ever, the water is yet presented implicitly. This is not
always true for all the protein complexes, especially for
Antigen/Antibody complexes.

Water molecules are often found in protein-protein
interfaces. Despite quick exchanges between interfacial
water and the bulk solvent, some water-mediated inter-
actions contribute directly to the stability of protein for-
mation and specificity of protein recognitions [20]. For
examples, Antigen/Antibody interfaces are prone to less
hydrophobic while the Enzyme/Inhibitor interfaces are
more hydrophobic. However, studies have shown that
both types of complexes contain either wet or dry inter-
faces [20] and that wet interfaces with water-filled cav-
ities maintain the close pack of the structures and
facilitate the protein interactions via water-mediated
hydrogen bonds or indirect interactions [21-24].
Although water plays an important role in protein inter-
actions, inclusion of the water in current protein dock-
ing and re-ranking algorithms is only implicit due to the
limited computational resources. In other words, the
water molecules are not actually presented in the pro-
tein-protein interactions in those computational models.
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Hence in this work, combining two objectives of
simultaneously improving the ranks of the correct pre-
dictions and explicitly presenting the water influence on
the protein interactions, we proposed a new re-ranking
algorithm via an energy-based scoring function, namely
IFACEwat. The IFACEwat was implemented based on
the Interface Atomic Contact Energy (IFACE) of the
initial rigid docking algorithm ZDOCK3.0.2 [25] and on
derived energies of water-involved interactions at the
protein interfaces. It was expected that when accounting
exclusively for the water-mediated interactions and tak-
ing advantages of shape complementarity, we could eli-
cit some extent of protein flexibility at the protein
interfaces, especially for the Antigen/Antibody com-
plexes, which could not or be limitedly achieved by
some current initial rigid docking algorithms.

Results and discussion

The proposed re-ranking algorithm is a combination of
various potentials and energy terms, especially employing
the interface Atomic Contact Energy (IFACE) of the initial
docking algorithm ZDOCK3.0.2 [25] to evaluate both the
protein recognitions and water mediated effect at the pro-
tein interfaces (see Methods). The algorithm, namely IFA-
CEwat, was used to estimate the number of near native
structures (or hits) and re-rank those hits, which were
among the predicted complexes generated by the initial
rigid docking algorithm ZDOCK3.0.2 (hereafter referred
to ZDOCK for simplification or otherwise noted). The re-
ranking process was performed for each complex in the
dataset of 159 cases of Antigen/Antibody, Enzyme/Inhibi-
tor, and other types, and then followed by comparisons
with the ranking results of the initial rigid docking algo-
rithm ZDOCK and those of two other current re-ranking
techniques ZRANK [17] and F*Dock [18].

The IFACEwat improves significantly the rank of the near
native structures as compared to the initial rigid docking,
especially for Antigen/Antibody complexes

A dataset extracted from the latest protein-protein
benchmark 4.0 [26] is used in this work. It includes
non-redundant structures of protein-protein complexes
of Enzyme/Inhibitor (E), Antibody/Antigen (A/AB), and
other types (O) (see details in Methods section). Results
of the initial dockings by ZDOCK showed that 139 out
of 159 cases of this dataset, including 18 Antigen/Anti-
body, 40 Enzyme/Inhibitor, and 81 other complexes,
obtained at least one near native structure among 2000
predictions. In our results, a near native structure called
a “hit” was defined as the complex structure, the ligand
orientation of which obtained a root mean square devia-
tion (RMS) less than 2.5A. The value of RMS < 2.5A is
commonly used to indicate how deviating the predicted
ligand orientation is as compared to the original ligand

orientation in the corresponding crystalized structure.
For this comparison, we used “success rate” to evaluate
the performances (Figure 1).

The success rate reflects how well the technique can
rank the correct predictions in the top ranks, and there-
fore it shows how effective the technique can discrimi-
nate the correct structures from the incorrect and false
positive ones. It is important to achieve the higher ranks
for the correct predictions because those top ranked
predictions would then undergo further refinement
using more intensive computing, e.g. molecular
dynamics simulation.

# cases that obtain at least 1 hit in the top 100 predictions

Success rate = .
# total cases of the particular complex type

Comparisons of the success rate between ZDOCK and
the IFACEwat indicated that the IFACEwat improved
the ranks for most of the complexes classified either by
physicochemical properties (Antigen and unbound/
bound Antibody complex A/AB, Enzyme/Inhibitor E,
and others O) or by CAPRI-defined difficulty level (i.e.
easy, medium, and difficult) [26]. Except for the difficult
cases, in which both the methods achieved a tight per-
centage of 90% (Figure 1 - right panel), the IFACEwat
showed better ranking outcomes, and was therefore
expected to discriminate better the correct from the
false positive predictions.

In addition, it was demonstrated in Figure 1 (left
panel) that the IFACEwat outperformed ZDOCK for A/
AB complexes (83.3% as compared to 72.2% of the lat-
ter). The improvement was due to including interfacial
water effect and the flexibility of the interfaces, which
are the two important characteristics of the Antigen/
Antibody interactions (i.e. most of Antigen/Antibody
complexes contain wet-interfaces and conformational
changes are induced during their complex formation
[13,20]). For examples, in the two Antigen/Antibody
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Figure 1 Performances of ZDOCK, ZRANK, and IFACEwat re-
ranking technique in terms of success rate of different
complex types. For example, on the left chart, the ZDOCK success
rate of 72.2%(13/18) for the Antigen/Antibody complex (A/AB)
means that in the top 100 predictions generated by ZDOCK, at least
one hit was found in 13 out of 18 cases of type A/AB.
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cases of [PDB:11QD] (easy) and [PDB:1BGX] (medium)
the IFACEwat improved significantly both the number
of hits and ranks of the hits (see Additional file 1). For
both these two cases, while there was only one hit that
could be generated, the IFACEwat could detect it and
ranked it in the top 1, but ZDOCK could find none.
Furthermore, for several difficult complex cases, while
both the methods could find the same numbers of hits,
the IFACEwat ranked the first hit in the better ranks (e.
g. [PDB:202B] obtained 1 hit which was found in rank
7 by ZDOCK, but in rank 5 by the IFACEwat). Notice-
ably, the IFACEwat found 2 hits more for the difficult
case of [PDB:1BKD] (Additional file 1).

It was also observed that the IFACEwat could detect
more near native structures than ZDOCK (Figure 2).
Especially for the type AB (complexes of Antigen and
the bound-Antibody), while ZDOCK was able to locate
only one hit of 1 complex (i.e. [PDB:1K4C] shown in
Additional file 1), the IFACEwat found 5 hits for 3 cases
([PDB:1K4C], [PDB:1I1QD], and [PDB:1KXQ]) out of 7
cases and ranked the first hit as rank 1 for all these 3
cases.

Compared to ZRANK, the IFACEwat performed
equivalently well for both the Antigen/Antibody (at the
equal success rate of 83.3%) and Enzyme/Inhibitor com-
plexes (60% versus 57.5% by ZRANK), yet slightly better
for some medium and difficult cases (Figure 1 - right
panel).

To demonstrate further the performance comparisons
among the three methods, we used the complex confor-
mations that obtained the best RMS for the top 10, 100,
and 1000 predictions (Figure 3 andAdditional file 2). It
was indicated that, for either types of complex classifica-
tion (easy, medium, difficult or Antigen/Antibody,
Enzyme/Inhibitor, Others), the IFACEwat outperformed
ZDOCK in locating the best RMS conformations (left
panels in both the Figures). For the top 10 ranks, the
two methods were equivalent although the IFACEwat
had shown better performance particularly for complex
type AB (Figure 3left). When the number of predictions
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Figure 2 Performances of ZDOCK, ZRANK, and IFACEwat in

terms of numbers of hits found for each type of complexes.
The total number of hits found is shown in the brackets.

medium (240) difficult (154)

increased to 1000, the trend was clearer for all the
types, especially for medium and difficult cases (Addi-
tional file 2-left).

As comparing with ZRANK, the trend was also more
pronounced when the number of predictions increased,
especially for the medium and difficult cases (Additional
file 2-right). However, both the methods performed
equivalently well in locating the best RMS conforma-
tions for Antigen/Antibody cases, yet sometimes
ZRANK was found with slightly better performance
(Figure 3-right).

Comparisons of the IFACEwat and F?Dock

While the IFACEwat was being developed, there was
another re-ranking method independently developed
and published in March 2013 and included in the
F’Dock package [18]. The F’Dock applies Generalized
Born model to estimate the changes in solvation energy
of the protein interfaces, and also considers separately
the characteristics of protein complexes.

There are different implementations between the IFA-
CEwat and F?Dock in ways of defining the near-native
structures and re-ranking them [18]. For examples,
while F>Dock defines the “hit” based on RMS of the
interface-involved residues (with interface RMS < 5A),
the “hit” in the IFACEwat is defined with the RMS of
the whole ligand orientation against ligand position in
the crystalized structures (with RMS < 2.5A). Therefore,
to obtain a fair comparison, we evaluated the relatively
significant improvement of the success rate (as defined
above) achieved by each of the methods as compared to
the initial docking program ZDOCK (Figure 4).

It was observed in Figure 4 that different implementa-
tions of the role of water in the scoring function might
result in different performances between the two techni-
ques. In particular, the IFACEwat performed better for
some Antigen/Antibody cases (e.g. improved 11.1% over
ZDOCK versus 4% by F?Dock) and also for some med-
ium and difficult cases (see Additional File 3). Both the
methods account for the water effect, but while the
F’Dock approximates the changes of solvation energy
only [18], the IFACEwat includes the free energy change
of the complex interfaces by applying solvated rotamers,
subsequently accounting for the side chain and back-
bone flexibility of the proteins; especially for some of
difficult cases that required induced conformational fit
during the protein associations.

The F?Dock on the other hand performed better than
the IFACEwat in some Enzyme/Inhibitor cases (13.5% ver-
sus 2.5% in Figure 4). This might be the result of consider-
ing the energy to form the cavities that were frequently
observed in the Enzyme and Inhibitor interactions.

Unlike F?Dock, a strict constraint of hit numbers is set
in the IFACEwat implementation to ensure that the first
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hit needed to acquire the rank as high as possible. In
fact, the IFACEwat estimates the numbers of hits that
are considered only among the numbers of near-native
structures in the ground truth. For example, for the case
of [PDB:1BGX] (Antigen/Antibody, medium), there was
only 1 hit generated according to the ground truth (so
number_of _hits = 1). The constraint was set to the case
that only the conformation ranked at the top-1 (and
with RMS < 2.5A) would be considered as a hit by the
IFACEwat. And this hit was the first and the only hit
according to the method. Other conformations out of

this window length of ranking (e.g. here window_length
= I) would not be considered as hits found by the IFA-
CEwat although their conformations obtained RMS <
2.5A. On the other hand, F>Dock considered any con-
formations with interface-RMS < 5A as hits found [18].

As a result, some first hits found by F*Dock obtained
low ranks, e.g. for the case of [PDB:1E6]] (Antigen/Anti-
body - type easy), the first hit was ranked at rank 126
by F?Dock, but ranked at rank 2 by the IFACEwat.
However, for the [PDB:1BGX] case above F?Dock did
not obtain any hit (see Additional file 3).
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Figure 4 Improvement of the IFACEwat and F2Dock against
the initial docking ZDOCK. The success rate is defined the same as
in Figure 1. It is observed that the IFACEwat performs better for
Antigen/Antibody (A/AB) complexes while the F’Dock is better for
Enzyme/Inhibitor (E).

The IFACEwat presented the water-mediated hydrogen
bond network in the complex interfaces
In this work, the solvent effect is explicitly presented in
the complex interfaces during the re-ranking. Comple-
ment with the interface Atomic Contact Energy (IFACE)
of the initial docking ZDOCK, the water contribution
via the energies of protein-water dispersion and water-
mediated Hydrogen bonds fulfills the overall picture of
water-facilitating interactions between the protein part-
ners, particularly in the Antigen/Antibody complexes.
Especially, the IFACEwat is strictly constrained in
defining the kit to locate the near native structures of
protein complexes in as high ranks as possible (as
describe above). Together with the inclusion of the
interfacial water, the IFACEwat improves not only the
number of hits found but also the ranks of the first hit,
which represents the best complex predicted and the
nearest to the corresponding original protein complex
(as shown in Additional file 1). Among the protein cases
that were improved in ranking the first hit as compared
to the initial docking ZDOCK, structural observations of
their complex interfaces revealed the presence of the
hydrogen bond network, which was mediated by the
interfacial water (Figure 5). For the Antigen/Antibody
case of [PDB:1KXQ)], while the initial docking could not
locate any hit, the IFACEwat found the best hit (with
RMS = 0.09A) and ranked it as the top-1. The interface
of this protein complex contained 6 water molecules,
two of which contributed to the hydrogen bond network

that bridged the protein interactions between the inter-
facial residues. Similarly, in the cases of [PDB:1FLE]
(Enzyme/Inhibitor) and [PDB:2BTF] (Others), it was
observed that the interfacial water molecules also
formed the mediated hydrogen bonds that connected
the protein chains (Figure 5).

The IFACEwat improved the rank of the first hit for either
with- or without water-containing structures

Our results of the re-ranking show that the IFACEwat
also improves the number of near native structures and
their ranks for several protein complexes that do not
contain interfacial water (Table 1). In fact, the re-rank-
ing effectiveness of the IFACEwat maintains for such
cases because it takes into account the free energy
change of the protein complex interfaces (i.e. AGjpterface
in Equation 1 - in Methods section).

In addition to highlighting the contributions of water
in the interfaces, the IFACEwat accounts for the interac-
tions occurring at the complex interfaces by including
the free energy change as the last potential term (Equa-
tion 1). Re-ranking observations of some complex struc-
tures that do not contain water indicated that the
contribution of the free energy change AGj,erface helps
improve significantly the rank of the first hit.

Among the components that were integrated in this
AGipterface term, the energies of side chain- and back-
bone-involved hydrogen bonds contributed noticeable
portions in the overall value of the AGj,terface and
helped determine the influence of side chain flexibility
in the interfaces. Except for the complex [PDB:4CPA]
(Enzyme/Inhibitor) in Table 1 the interactions occurring
at the interfaces of the other non-water protein com-
plexes were induced by significant conformational
changes [27-31]. Therefore, it was expected that taking
into account these energy contributions would help dis-
tinguish the good-binding complexes from the others.
For examples, in the two cases obtaining the first hit at
top-1 rank, i.e. [PDB:1QA9] and [PDB:2HLE], the free
energies AGjpterface Were -76.04 kcal/mol and -178.17
kcal/mol, respectively. Their break-down of the hydro-
gen bond-involving energies of -2.805 kcal/mol and
-5.712 kcal/mol, respectively, indicated the sufficient
contributions of the hydrogen bonds in the protein
interactions. However, those energies were ignored by
the initial docking algorithm ZDOCK.

Similarly, for some water-containing complex cases,
the first hit of which was ranked top-1 by the IFACE-
wat, the free energies of the complex interfaces also
obtained significantly low values (as in the more nega-
tive the more favorable). Particularly, in 2 cases of Anti-
gen/Antibody complexes, i.e. [PDB:1BGX] (AGinterface =
-348.73 kcal/mol) and [PDB:1KXQ] (AGjnterface =
-191.97 kcal/mol), the IFACEwat located the first hit at
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1KXQ (Antigen/Antibody)

2BTF (Others)

Figure 5 Presence of the water-mediated Hydrogen bonds at the interfaces of protein complexes, the first hit of which is improved in
ranking. The complex interfaces (in grey shaded surfaces) contain interfacial water molecules (red spheres) that mediate the hydrogen bonds
(black dotted lines) bridging the interactions between the receptor (green) and the ligand (cyan).

rank 1 while ZDOCK could not find any hit. Therefore,
it was suggested that including the consideration of the
flexibility of protein side chains during the protein asso-
ciations improved the discrimination of good binding
complexes from the others, thereby improving the rank
of the first hit or the best near native structure of the
protein complexes.

Free energy change (AGjnterface) Plays the most important

role in the IFACEwat scoring function

The IFACEwat scoring function includes various potential
terms of the complex-binding score and the protein inter-
actions at the interfaces (i.e. protein-protein and protein-
water interactions). The contributions of these terms are
evaluated given a set of weights (w;, wo, w3, wy), each of

which reflects an independent influence of each potential
onto the overall f'score (Equation 1). As discussed more in
detail in this section, the free energy change (AGipnterface)
contributes the most among the four potential terms,
especially in Antigen/Antibody complexes (i.e. wy = 6.2).
The free energy change (AGinterface) iS used to evaluate the
interactions occurring at the complex interfaces, therefore
determining the more favorable bound complex confor-
mations (i.e. the more negative values).

To evaluate the contribution of each potential term,
“leave-one-parameter-out” experiments were performed.
In those experiments, each potential contribution i was
alternately disabled, i.e. w; = 0 (Table 2), while the
others were used to calculate the total f score and esti-
mate the number of the found near native structures (or
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Table 1 The IFACEwat improves both the number of hits and the rank of the first hit for either protein complex cases

of with- or without interfacial water.

Crystal structure contains WAT Complex Type 1 number of hits 1 rank of the first hit
ZDOCK IFACEwat ZDOCK IFACEwat AGinterface(1°*hit)

No 1FC2 O 16 20 - - -
4CPA E - 51 4 -26.14
1QA9 O - - 2 1 -76.04
2AYO O - - 32 10 -47.54
2HLE 0 - - 2 1 -178.17
2VDB 0 - - 57 18 -5842
3BP8 o] 11 3 -32.08

Yes 10QJ A 6 7 - - -
1BGX A 0 1 - 1 -348.73
1K4C AB 1 3 - - -
TKXQ AB 0 1 - 1 -191.97
1CLV E 140 141 - - -
203B E - 7 5 -47.95
1YVB E 0 1 - 2 -55.84
1FLE = - - 6 4 -47.85
1AK4 O 0 1 - 3 -44.51
1FQJ 0 2 4 - - -
1H9D ) 0 1 - 1 -131.85
THCF ) 0 1 - 1 -175.53
1RV6 ) 0 1 - 3 -110.72
1T6B 0 3 5 - - -
1Z0K O 0 1 - 1 -133.32
1Z5Y O 2 3 - - -
2A9K O 0 1 - 2 -161.63
2B4) O [§ 8 - -
T™MQ8 @) 4 5 - - -
1R6Q @) 3 4 - - -
2CFH O 9 10 - - -
20ZA O 1 2 - - -
270E 0 6 8 -
2BTF O - - 6 1 -142.31
200R O 0 3 - 1 -141.03

“-" represents “not applicable” for the corresponding cases. For examples, in the first case [PDB:1FC2], it is found that IFACEwat improves the number of hits (i.e. 4
hits more than ZDOCK), but does not improve the rank of the first hit (e.g. the first hit found by both IFACEwat and ZDOCK is ranked at top-1). Also noted in this
table that AGipterface Value is only shown for the first hit of the case, in which the rank of the first hit is improved by the IFACEwat.

hits). Resulting observations show that the contribution
of the free energy change (AGjnterface) plays the most
important role among the potential terms. When w, =
0, the protein-protein interactions that occurred at the
interfaces were mostly ignored and the side chain flex-
ibility was limited (in experiment #4), consequently lead-
ing to the noticeable drop of the total number of hits
found (Table 2), especially for the Antigen/Antibody
complexes (i.e. types A and AB obtained only 17.1% and
37.5% numbers of hits, respectively as compared to the
experiment #0). Differences of Antibody conformations
between the two types (unbound in A and bound in
AB) might explain the decrease of the number of hits.
For the Antigen/bound-Antibody structures (type AB),

interactions of the Antibody and its possible substrate
might have re-oriented the conformation of the Anti-
body itself, substantially leading to conformational
changes before it interacts with the Antigen. The signifi-
cant drop of the number of hits in type A implied that
the free energy change AGj,terface provided significant
influence to determine the number of near native struc-
tures for the Antigen/unbound-Antibody complexes.
Further, results of both the experiments (#4 and #6)
with w,; = 0 showed the significant decrease of the num-
ber of hits of the types A and AB. Results of the
Enzyme/Inhibitor complexes also indicated the similar
decreasing trend, especially when both the first potential
term (e.g. shape complementarity) and the free energy
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Table 2 Decreases in the numbers of near native
structures for all types of protein complexes

# W;=0 Number of hits found (in %) and level of hit
decrease

A AB E ()
0 (W;W5;W3W,) 100 100 100 100
T (OWW3Wy) Wl @s)y @75 1] (738) ] (744)
2 (W1,0W3W,) - 1L (7500 | (97.) 1 (982)
3 (Wi, W0 W) - - 1 97.0) 1 (98.0)
4 WiWoWs00  LLLL (7)) 1L B75) L1 (780) || (900)
5 (\/\/W,O,O,\/\/z,)b - 11 (875) 1 (97.0) 197.7)
6 (OW,,Ws0) LWL @87) L1 (500) Ll (30.0) L] (187)
7 (000W,) WL @39 L0 1019 1758
8 (W;,000) LWL (170)  LLLLL ©0) L) (742) L] (89.0)

Antigen/unbound-Antibody (A), Antigen/bound-Antibody (AB), Enzyme/
Inhibitor (E) and others (O): | (less than 5% hits drop), || (less than 30% hits
drop), ||| (noticeably drop less than 50% hits), | ||| (significantly drop less
than 70% hits), ||]]] (dramatically drop more than 95% hits), - (unchanged).
Experiment #0 shows the results of number of hits obtained from the full set
of weights (w;, w,, w3, w,) for each complex type and is used as the reference
(in bold). ®% of hits as compared to the reference (i.e. results of the
experiment #0) bOnly 4 combinations (#5 to #8) of weights are presented to
highlight the significant contributions of w; and w,

change (AGipyterface) Were disabled in experiment #6, the
results of which significantly became worse. In the
experiment #6, numbers of hits obtained for each com-
plex type were 4.87% (A), ~50% (AB), ~30% (E), and
18.7% (O) as compared to the results of experiment #0.
Similarly, results of the experiment #8 reinforced the
important role of the free energy change (AGinterface) i
the IFACEwat scoring function, particularly for the
Antigen/Antibody complexes. Decrease of the number
of hits therefore implies the increases of the false posi-
tives when the unfavorable complex conformations are
not detected.

It was observed in Table 2 that restriction of the combi-
nations of shape complementarity, electrostatics and deso-
lvation also contributed significantly to the decrease of the
number of hits for the type A complexes. When w; = 0 in
the experiment #1, except for type A (41.5%), most of the
complexes obtained only around >70% (nearly 30% drops)
of the number of near native structures as compared to
the experiment #0 results. Comparisons of the two experi-
ments #1 (with w; = 0) and #4 (with w, = 0) again
revealed the different influences of both shape comple-
mentarity and free energy change on protein complexes of
different physicochemical properties. Although the shape
complementarity surprisingly affected much on the com-
plexes type A (i.e. more than 50% drop) as shown in
experiment #1, ignoring the contribution of the free
energy change (AGipyerrace) resulted in more decrease of
hits (i.e. more than 82% drop shown in experiment #4). A
similar decreasing trend was observed in type AB in
experiments #1 and #4 as well as in the experiments #7
and #8. On the other hand, the shape complementarity

showed more predominant role in determining the num-
ber of hits in the Enzyme/Inhibitor (type E) complexes.

It was also observed in the Antigen/Antibody com-
plexes that the effect of water molecules was clearer on
the complexes of type AB than on the complexes of
type A. As discussed above, interactions of the Antigen
with the bound-conformation of the Antibody might
result in more spacious interfaces where the space could
be occupied by the water molecules, thereby increasing
the effect of water onto the protein interactions at the
complex interfaces of type AB. Hence, when w, = 0
(experiment #2), especially if there existed water mole-
cules at the complex interfaces, this might cause the
decreases in the number of hits in type AB, but not in

type A.

Optimal weights w,, w,, ws, w, of the proposed scoring
function

We performed various experiments to investigate the
dependency of different potential terms on physico-
chemical properties of the protein complexes (data not
shown). It was indicated that interactions between the
Enzymes and the Inhibitors were driven mostly by
hydrophilic and planar residues and that methods based
on the Atomic Contact Energy did not likely work well
in predicting interactions of Antigen/Antibody com-
plexes. Because the dataset used in this work contained
different types of protein complexes, i.e. Antigen/Anti-
body (A), Antigen/bound-Antibody (AB), Enzyme/Inhi-
bitor (E), and Others (O), it was expected that
contributions of the four potential terms in the Equation
1 (see Methods) would be diverse. Therefore, we esti-
mated the weights w;, w,, w3, and wy of the proposed
scoring function (Equation 1) differently according to
the different complex types.

After a number of iterations (averagely 40,000 steps)
to estimate the weights using Monte Carlo method, the
sets of weights [wl, w2, w3, w4] obtained for each com-
plex type are [0.96, 0.002, 0.6, -6.2] for type A, [0.96,
0.95, 0.6, -6.2] for type AB, [1.6, 0.12, 0.15, -1.6] for type
E and [2.0, 0.12, 0.15, -1.6] for type O.

Among the four weights evaluating the interactions of
the protein complexes, w4 is set negative to maintain
the positive f scores (Equation 1). The free energy
change AGijpyterface represents the interactions of the pro-
tein partners at the interfaces. It is considered as a com-
plementary potential terms to either (1) the Scorejpack,
which favors the shape complementarity of the two
molecules, or (2) the complex flexibility due to the
trade-off of the rigid docking. The more negative AG;,.
terface Will favor the more stable interactions (AG < 0)
and also reflects the difficulty level that drives the two
molecules to interact with each other, e.g. w, = -6.2 for
type A/AB as compared to w, = -1.6 for type E/O.



Su et al. BVIC Bioinformatics 2014, 15(Suppl 16):59

Page 10 of 15

http://www.biomedcentral.com/bmcbioinformatics/supplements/15/516/59

In fact, different sets of weights implicitly reflect differ-
ent physicochemical properties between the Antigen/Anti-
body and Enzyme/Inhibitor complexes. In addition to the
noticeable difference of w, between the two types, the
weight of the first term w; also indicates the susceptibility
to shape complementarity of type E/O (w; = 1.6 or 2.0)
over the other type A/AB (w; = 0.96). The Enzyme-Inhibi-
tor interactions are characterized as geometrical matching
or shape complement whereas the Antigen and Antibody
interactions are known as “induced fit” and require con-
formational changes during the associations. These prop-
erties however could not be totally interpreted using rigid
docking although some “soft” docking techniques were
applied (i.e. adjusted surface layers for receptor and ligand
when their grids were prepared; some allowed slight over-
laps, or the added electrostatics terms in the scoring func-
tion, etc. [9,10,32]).

While there are no significant differences of weight
values between type E and O (in both of which the shape
complementarity was more predominant), noticeable dif-
ference of weights is observed between type A and AB
cases of Antigen/Antibody complexes. Especially, the
Lennard-Jones repulsive energy contributes more domi-
nantly in type AB (w,=0.95) than in type A (w,=0.002).
Structural observations reveal that steric constraints of
the Antibody conformations between the unbound (A)
and bound (AB) might lead to the difference. Interactions
of the Antigen with the Antibody bound-conformation
(AB) might have formed more spacious interfaces where
there is room for the presence of water. In fact for the
AB structures, interactions of the Antibody and its sub-
strate might re-orient the overall conformational packing
and therefore expose more hydrophilic regions on its sur-
face; consequently forming hydrophilic cavities when
interacting with the Antigen. Increase of the hydrophili-
city in those cavities might facilitate occupation of one or
more water molecules, substantially increasing the water
effect onto the interfacial free energy change of these AB
complexes.

The IFACEwat maintained sufficiently the computational
efficiency yet improved ranking of the first hit
The IFACEwat scoring function was developed as a re-
ranking technique using explicit interfacial water to
further discriminate the correct predictions from the other
incorrect and false positive ones of an initial docking algo-
rithm, particularly in improving the results of predicting
complex formations for Antibody/Antigen complexes.
The nature of the rigid initial docking is to keep the
receptor rigid and allows limited flexibility of the ligand in
order to achieve computational efficiency due to the large
sizes of both the molecules. However, at the same time, it
limits the ability of finding the correct bindings of the pro-
tein complexes as well as increases the probability of

generating the false positive ones. This leads to a need of
structural refinement to optimize the conformations of the
protein complexes and further eliminate the decoys.
Nonetheless, such a process, e.g. using energy-based eva-
luation by MD simulation, for the refinement purposes
requires intensive computation, especially for the Anti-
body/Antigen complexes. Therefore, for this work the
IFACEwat is expected to reduce as many as possible false
positives that need not to be refined before heading to the
refinement steps, but still maintain the computational
efficiency.

Results of re-ranking time (7z) by the IFACEwat
(Table 3) indicate that the IFACEwat is able to maintain
sufficient timing (less than approximately 22 minutes) to
re-rank 2000 conformations of each protein complex.
Among the complexes, two Antigen/Antibody com-
plexes, i.e. [PDB:1BGX] and [PDB:1KXQ] took the long-
est re-ranking time using the IFACEwat. While the
IFACEwat ranked their first hits as the top-1, the initial
docking ZDOCK could not locate any hits.

Let Tp; be the MD simulation time for each confor-
mation that would undergo the structural refinement
and assume that each of them would take an equivalent
time. In the cases of [PDB:1BGX] and [PDB:1KXQ],
there would be 2000*Tp; computational time needed for
the MD simulation to find the near native complex
structure. However, after being re-ranked by the IFACE-
wat, only 1*Tp; simulation time would be needed to
obtain at least one near native structure of the protein
complex because this conformation was found at the
top-1. Similarly for other complexes, which obtained the
higher rank for the first hit, the speed of MD simulation
would be significantly improved if the structures under-
went the refinement stage (as shown in Table 3).

Conclusions

The re-ranking algorithm IFACEwat improves the initial
rigid docking results by increasing not only the number
of near-native structures found but also the ranks of the
correct predictions. In fact, most of the near-native
structures are ranked at the top-1.

The IFACEwat achieved a success rate of 83.8% for
Antigen/Antibody complexes, which was 10% better than
ZDOCK3.0.2. As compared to another re-ranking techni-
que ZRANK, the IFACEwat obtained success rates of
92.3% (8% better) and 90% (5% better) respectively for
medium and difficult cases. When comparing with the
current re-ranking method in F>Dock, which employs a
Generalized Born (GB) model in its energy-based func-
tion, it was shown that the IFACEwat performed equiva-
lently with or even better than the GB-rerank FDock,
especially for the Antigen/Antibody complexes. Our
results showed that the improvement of those cases was
facilitated by taking into account some extent of protein
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Table 3 Real running time T, of the IFACEwat in re-ranking some of the protein complexes and the estimated formula
of the MD time for the structural refinement stage of the IFACEwat results as compared to ZDOCK

Complex Type IFACEwat re-ranking time T; (second/~minute) Expected MD refinement time® to obtain at least 1 near native structure

using
ZDOCK IFACEwat

Rank of 1st Hit MD time Rank of 1st Hit MD time
4CPA E 489.9/8.2 51 51 * Ty 4 4* Ty
1QA9 O 542.9/9.1 2 2 * Ty 1 Toi
2AYO O 1109.8/18.5 32 32 % Ty 10 10 * Ty
2HLE 0 819.0/136 2 2% Ty 1 Toi
2VDB O 864.0/14.4 57 57 * Tpi 18 18 * Tpi
3BP8 O 500.8/8.3 1 11 * Ty 3 3* Ty
1BGX A 1215.4/20.2 - 2000 * Ty 1 Toi
1KXQ AB 1289.5/215 - 2000 * Ty 1 Toi
203B E 6324/105 7 7 * Toi 5 5% Toi
1YVB = 855.5/14.2 2000 * Ty 2 2 * Ty
1FLE E 564.0/94 6 6* To; 4 4% Ty
1AK4 O 290.4/4.8 - 2000 * Ty 3 3* Ty
1TH9D O 954.9/15.9 - 2000 * Ty 1 Toi
THCF 0 738.7/12.3 - 2000 * Tpy 1 Toi
1RV6 0 848.2/14.1 2000 * Tpy 3 3% T
170K O 859.6/14.3 2000 * Tp; 1 Toi
2A9K O 6789/11.3 2000 * Ty 2 2 * Ty
2BTF O 1130.1/1838 6 6 * Ty 1 Toi
200R 0 1297.8/21.6 2000 * Tpy 1 Toi

®Re-ranking of 2000 predictions of each protein complex on an Intel Xeon CPU E5540@2.53GHz machine. PAssume that each conformation of each complex takes
equivalent time during the MD simulation, i.e. Tp;. “-” means ZDOCK does not obtain any hit in the corresponding case

side chain flexibility when the proteins interacted, espe-
cially for those of difficult cases that required induced
conformational fit during the protein associations.

Although the IFACEwat achieved a high success rate
of 83.3% for Antigen/Antibody complex, 60% for
Enzyme/Inhibitor, and more than 90% for medium and
difficult cases, the method was restricted to improve
particularly the result of the rigid docking algorithm
ZDOCKS3.0.2 and especially for the Antigen/Antibody
complexes. In the near future, we will be further devel-
oping the algorithm to apply for other shape comple-
mentary-based docking algorithms to achieve better
robustness.

Methods

Data preprocessing

In this project, we extracted a dataset from the latest
Zlab protein-protein benchmark 4.0 [26] and retrieved
the protein structures from Protein Data Bank [33]. The
dataset includes non-redundant structures of protein-
protein complexes of Enzyme/Inhibitor (E), Antibody/
Antigen (A/AB), and other types (O). These structures
are also classified into 3 groups (easy, medium, and dif-
ficult) according to the CAPRI [34] defined difficulty
level that the current protein-protein docking algorithms
could handle [26].

As we were interested in the interfaces of one-receptor
versus one-ligand complexes, we only selected the com-
plexes that contained monomer ligands from the bench-
mark 4.0 and included them in the dataset, which yielded
a total of 159 cases. The dataset contains 113 easy cases
(for which simple rigid-body docking algorithms can suc-
cessfully predict the protein complex structures), 26
medium, and 20 difficult cases (predictions of which
were significantly deviated from the native structures, i.e.
interfacial root mean square deviation iRMS > 2.5A [26]).

Initially, we quantified the statistics of interfacial water
contributed in each of the crystalized protein complexes
to investigate the contribution of water on the protein
interactions in the original structures. It was observed
that a percentage of 67% (130/159 complexes) of the
dataset included water. Among the difficult cases, 16 out
of 20 cases contained at least 6 water molecules buried in
the protein interfaces. Hence, it was expected that taking
into account the interfacial water molecules and water-
mediated interactions would contribute significantly to
the prediction of the protein-protein associations.

Implementation of interfacial water into the proposed
energy-based scoring function of IFACEwat

We proposed a new energy-based scoring function to
re-rank the results of the initial rigid docking algorithm
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ZDOCK3.0.2. The scoring function contains a linear
combination of potential scores and derived energies that
are involved in the protein-protein and protein-water
interactions at the complex interfaces (Equation 1).

(1)

in which the Scorejpacg is derived from the combina-
tion of shape complementarity, electrostatics, and deso-
lvation (SC+ELEC+DEpscg using the interface Atomic
Contact Energy IFACE) employed in the initial rigid
docking algorithm of ZDOCKS3.0.2. The Epj epusive and
Ewater-mediated-Hbond are Lennard-Jones repulsive and

f = wiScorergack + W2ELy repulsive + W3Ewater - mediated - Hbond + W4 AGinterface

water-mediated Hydrogen bond energies respectively to
represent the protein-water interactions. Finally the
AGipterface 15 the free energy change of the interface
representing the interactions between the protein part-
ners. The four parameters wl, w2, w3, and w4 are sepa-
rate weights of the corresponding potentials. Flowchart
of the whole process is shown in Figure 6.

i Combinations of pairwise shape complementarity,
electrostatics, and desolvation

ZDOCK3.0.2 is the rigid docking algorithm to optimize
functions of shape complementarity (SC), electrostatics
(ELEC), and desolvation (DE) as linear combination of
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correlations using FFT algorithm [35]. The ZDOCK3.0.2
algorithm employs the Interface Atomic Contact Ener-
gies (IFACE) for its desolvation potential [25,36] to
represent the water effect during the protein associa-
tions. In this work, we estimated the sum of the three
potentials (SC, ELEC, DE) and defined the score as
Scorerpace = Ws5SC + WeELEC + w;DEpacE, in which
ws = 0.01, wg = 0.06, and w, = 1 [36]. For the purpose
of improving the docking results of the rigid docking
algorithm ZDOCK3.0.2, we initially kept these para-
meters intact.

The searching space was obtained from 15° rotational
sampling, which yielded 3,600 predictions. We selected
top 2,000 predictions for the further implementation. In
this work, we set the searching exhaustively to cover the
entire binding regions of the ligand interfaces, which
involved only the interacting residues with respect to the
receptor. The purpose of doing this was to minimize the
chances of getting false positives which were the wrong
predictions but obtained high ranks by the ZDOCK3.0.2.

Observations of the FFT-based docking algorithms
indicated that the Scorejracg was obtained based on
correlations of two grid-based discrete functions of the
ligand and the receptor. In order to simplify the calcula-
tion to achieve better computational efficiency, instead
of following the FFT-based calculations, we chose to
estimate the sum of all the energy terms linearly as
shown in the Equation 1 and weight them separately.
We therefore estimated firstly the Scorepace before
heading to other energy implementations.

ii Water-mediated contacts and the water effect on the
protein interfaces

The water effect and contacts are represented by the
energies of the protein-water dispersion (Er repuisive)
and the water-mediated Hydrogen bonds at the inter-
faces (Ewater-mediated-Hbond)- 1nitially, we extracted the
complex interfaces and subsequently followed a process
of adding water molecules. There was no water mole-
cule found in the interfaces of the predicted complexes
by ZDOCK3.0.2 because no water was so far involved in
the previous dockings of the protein complexes.

We extracted the complex interfaces using INTER-
VOR [37], a Voronoi-based algorithm modeling and
computing macromolecular interfaces. Repeated inter-
face extractions for all the crystalized complexes in the
dataset were firstly performed and then mapped back to
the original structures to confirm the reliability of the
INTERVOR package. Our preliminary results showed
that 159/159 interfaces of the protein complexes were
successfully extracted and superimposed with the origi-
nal crystalized structures. Only after being cross-con-
firmed of its fidelity, INTERVOR was used to extract
the complex interfaces of all the 2000 predictions in the
same protocol for each protein complex in the dataset.

Then, we applied DOWSER to explicitly add water
molecules into the protein complex interfaces. DOW-
SER is a modeling package that investigates free energy
of hydrophilic cavities and surfaces of proteins and adds
water molecules into the cavities in which water exists
[38]. Similarly, we tested the reliability and accuracy of
the DOWSER application in recovering internal water of
the protein interfaces by performing a simulation of
adding water into interfacial cavities of protein com-
plexes for the dataset of the 159 crystal structures. It
was demonstrated that 91.3% of internal water mole-
cules were successfully recovered (where the predicted
water positions were within a distance < 1.5A from the
water positions in the crystal structures). Therefore, it
suggests that DOWSER could be a reliable tool to
recover the water in the protein crystalized structures
and thus it was used to predict the water positions for
the interfaces of protein complexes in our work.

After adding water into each of the extracted inter-
faces of the protein complexes, we conducted the struc-
tural minimization using AMBERI10 (force field ff99SB)
to stabilize the water positions with respect to the whole
structure of the protein interface. Initially, 2500 steps of
steepest descent were performed and followed by
another 500 steps of conjugate gradient minimization.
During the minimization, no restraint was applied and
random initial velocities were used to maintain the
robustness. The minimized water-containing structures
of the protein interfaces were then subject to the next
process of energy calculations.

Protein-water dispersion: E, repuisive

In the presence of the interfacial water, there exist
repulsive forces between the water molecules (oxygen
atom) and any other atoms in a distance of 3.6A (which
is the maximum distance of the equilibrium inter-
nuclear separation between oxygen and any atom). In
this work, we presented contribution of the force to the
energy changes of the protein interfaces by using the
Lennard-Jones repulsive energy (Eij repuisive)s and derived
it from the linear van der Waals repulsive potential:

o\ 12
Ey repulsive = 48( . )
where ¢ is the well-depth, r (with r < 3.6A) is the
inter-nuclear distance, and o is the sum of van der
Waals radii of water (1.4A) and the interacting atom
(Table 4).

Water-mediated Hydrogen contacts: E,ater-mediated-Hbond

A solvated rotamer library developed by Jiang et al.
offers this project a modeling approach to evaluate
water impact on the protein interfaces and to describe
water-mediated Hydrogen bonds [39]. Studies have
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Table 4 van der Waals parameters (based on AMBER
force field) used to calculate the Lennard-Jones repulsive
energy in this project

Atom o(A) ¢(kcal/mol)
C 17 0.173
N 1.55 0.179
(0] 152 0.2
S 18 02
H 12 0.063

shown that water attaching to protein side chains and
mediating the Hydrogen bond network at protein inter-
faces contribute significantly to the changes of free energies
in protein interactions [40,41], subsequently stabilizing
structures of protein complexes. Therefore, it was expected
that accounting for the interfacial water effect and energies
of the water-mediated hydrogen bonds into the proposed
scoring function would help locate effectively the favorable
protein bindings, thereby improving the ranks of the cor-
rect predictions of protein complexes.

According to this library, a hydrogen bond that is con-
sidered as water-mediated needs to satisfy a number of
geometric constraints of angles and distances around
the water molecules (shown in Additional file 4). The
water-mediated Hydrogen bond energy derived in this
work is therefore distance-dependent and follows the
energy function below:

E A _ | Eup when constraints are satisfied
water - mediated - Hbond 0 otherwise

where Ep, is the Hydrogen bond energy evaluated by
Jiang et al. from the solvated rotamer library.

Free energy change of the protein interfaces AGiterface
The last energy term in the proposed scoring function
(Equation 1) represents interactions of protein partners at
the interfaces. In order to take into account the flexibility
of the interfaces and the trade-off of the rigid docking, we
included all the interactions that involved side-chains.
Derived from the solvated rotamers by Jiang et al. [39], the
free energy change of the interface (AGipterface) includes
van der Waals interactions of protein atoms, hydrogen
bond energies involved in side chain-backbone, side chain-
side chain, backbone-backbone, and a potential of side-
chain and backbone torsions. Further in this calculation,
we included the solvation energy to complement the deso-
Ivation term (DE in the Scorejpace). The calculation of
this AGjyterface term was performed using PyRosetta [42],
the Rosetta package on the Python platform.

Estimation of weights w,, w,, w3, W,
The proposed scoring function to re-rank the protein
complexes (Equation 1) contains four separate weights

wy, Wy, ws, and w, representing different contributions
of the four potential terms. Optimal values of these
weights were obtained by performing Monte Carlo
experiments for the whole dataset of 159 protein com-
plexes which were clustered into four types of com-
plexes, i.e. Antigen/Antibody (A), Antigen/bound-
Antibody (AB), Enzyme/Inhibitor (E), and Others (O).
The weights were estimated during the recurring experi-
ments until the maximal numbers of hits converged. In
this project, hits were defined as the near native struc-
tures, RMS of which was within 2.5A from the crystal-
ized structures (RMS < 2.5A).

Additional material

Additional file 1: Overall results of ZDOCK, ZRANK, and the
IFACEwat in terms of numbers of near-native structures (hits) found
and the rank of the first hit. Cases which are in bold indicate that
IFACEwat method performs equivalently with or better than both of the
others.

Additional file 2: Best RMS of conformations in the top 10, 100, and
1000 ranks found by the IFACEwat against ZDOCK (left) and ZRANK
(right). Each dot represents a protein complex case according to
difficulty level: easy (black), medium (red), and difficult (blue).

Additional file 3: Re-rankings results that are equivalent with or
better than the F?Dock-GB rerank. To maintain a rational assessment,
results between each of the methods and ZDOCK3.0.2 separately are
used as the intermediate comparison since all the 3 methods are applied
for the same dataset of protein complexes (the benchmark 4.0) with 15°
rotational sampling. Results of F?Dock are done by Chowdhury et al.
Filename: AdditionalFile-3.pdf

Additional file 4: Angle and distance constraints to define a water-
mediated Hydrogen bond according to the solvated rotamer library
by Jiang et al. d is the distance between the water (W) oxygen and
polar (acceptor A/donor D) atoms. H and AB are Hydrogen and
Acceptor-Base atoms respectively.

List of abbreviations

IFACE: interface Atomic Contact Energy,

A/AB: Antigen/Antibody complex (A: unbound-Antibody, AB: bound-
Antibody),

E: Enzyme/Inhibitor complex, O: other complex types,

RMS: root mean square deviation,

SC: shape complementarity, ELEC: electrostatics, DE: desolvation,
El)_repuisive: Lennard-Jones repulsive energy, Eyater-mediated-rbond: Water-
mediated hydrogen bond energy,

AGinerface: free energy change at the protein interface.
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