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Abstract

Background: The earliest whole protein order/disorder predictor (Uversky et al., Proteins, 41: 415-427 (2000)),
herein called the charge-hydropathy (C-H) plot, was originally developed using the Kyte-Doolittle (1982)
hydropathy scale (Kyte & Doolittle., J. Mol. Biol, 157: 105-132(1982)). Here the goal is to determine whether the
performance of the C-H plot in separating structured and disordered proteins can be improved by using an
alternative hydropathy scale.

Results: Using the performance of the CH-plot as the metric, we compared 19 alternative hydropathy scales, with
the finding that the Guy (1985) hydropathy scale (Guy, Biophys. J, 47:61-70(1985)) was the best of the tested
hydropathy scales for separating large collections structured proteins and intrinsically disordered proteins (IDPs) on
the C-H plot. Next, we developed a new scale, named IDP-Hydropathy, which further improves the discrimination
between structured proteins and IDPs. Applying the C-H plot to a dataset containing 109 IDPs and 563 non-
homologous fully structured proteins, the Kyte-Doolittle (1982) hydropathy scale, the Guy (1985) hydropathy scale,
and the IDP-Hydropathy scale gave balanced two-state classification accuracies of 79%, 84%, and 90%, respectively,
indicating a very substantial overall improvement is obtained by using different hydropathy scales. A correlation
study shows that IDP-Hydropathy is strongly correlated with other hydropathy scales, thus suggesting that IDP-
Hydropathy probably has only minor contributions from amino acid properties other than hydropathy.

Conclusion: We suggest that IDP-Hydropathy would likely be the best scale to use for any type of algorithm
developed to predict protein disorder.

Background
Intrinsically disordered proteins (IDPs) exist as flexible
ensembles under normal physiological conditions, thus
lacking stable tertiary structures, and yet carrying out var-
ious biological functions [1-4]. These IDPs challenge the
universality of the sequence ® structure ® function para-
digm, with biological functions associated instead with
flexible ensembles rather than with structured proteins.
IDPs are involved in numerous biological activities, such
as providing sites for post-translational modifications,

entropic spring-based restoring forces, flexible linkers, spe-
cific binding to multiple partners, multiple binding to a
specific partner, and many others [5-15].
Many computational tools have been developed for

predicting IDPs and IDP regions from amino acid
sequence, including several Predictors of Natural Dis-
ordered Regions (PONDR®s) [16-19], IUPred [20,21],
DisoPred [7,22], SPINE-D[23], FoldIndex[24] and more
than 50 others [25,26]. For the various sequence-based
approaches using machine learning methodologies,
hydrophobicity is widely if not universally used as one
of the inputs [16,20-24,26-29].
One of the more widely used prediction methods is

based on a very simple model: repulsion from like
charges favors unfolding while increased hydrophobicity
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favors folding [30]. In this approach, normalized net
charge is plotted against normalized hydropathy, which is
calculated from the hydropathy scale developed by Kyte-
Doolittle (1982) [31], giving the charge-hydropathy (C-H)
plot. Remarkably, this simple C-H plot largely separates
IDPs from structured proteins [30]. This model has been
used both for whole protein disorder prediction via the
C-H plot [30] and for residue-by-residue disorder predic-
tion via the FoldIndex algorithm [31].
The values for the original hydrophobicity scale were

estimated experimentally as the side chain free energies of
transfer from selected organic solvents to water [32]. The
selected organic solvents, dioxane and aqueous ethanol,
were chosen because their dielectric constants are similar
to the values estimated for protein interiors. Measure-
ments using these two solvents gave similar transfer free
energy values for each of the various hydrophobic amino
acids. Such free energy values for transfer from organic
solvent to water are negative (e.g. spontaneous) for hydro-
philic amino acids and positive (e.g. spontaneous in the
opposite direction) for hydrophobic amino acids. While
the original work [32] focused on the hydrophobic amino
acids, later scales (reviewed in [31]) provided values for
both hydrophobic and hydrophilic amino acids. To reflect
the balanced importance of both hydrophobic and hydro-
philic amino acids as well as to indicate a scale with both
types of amino acids, Kyte and Doolittle [31] changed the
name of the scale from “hydrophobic” to “hydropathic.”
They explained their revised name as follows: “Since
hydrophilicity and hydrophobicity are no more than two
extremes of a spectrum, a term that defines that spectrum
would be as useful as either, just as the term light is as
useful as violet light or red light. Hydropathy (strong feel-
ing about water) has been chosen for this purpose” [31].
Since the original work of Nozaki and Tanford [32], many
hydropathy scales or indices have been developed using a
variety of experimental or computational methods to esti-
mate the transfer free energy values [31,33-53].
The ExPASy server [54] alone provides 19 different

hydrophopathy scales in ProtScale [55]. Even after normal-
ization, the hydrophobicity value for each amino acid fluc-
tuates by a large amount in the different scales. This raises
the possibility that the prediction accuracy of the C-H plot
could be improved by using a different hydropathy scale.
Here we used the C-H plot formalism to compare the

structure-disorder prediction accuracy when combined
with net charge for the 19 hydropathy scales from
ExPASy along with the prediction accuracies for other
amino acid indices obtained from TOP-IDP [56], Fol-
dUnfold [57], B-value [58], and DisProt [56,59-61]. Next
we used the formalism underlying the linear support vec-
tor machine [62,63] to develop a new hydropathy scale
that further improves prediction of IDPs. As we show by
several measures, our new scale, which we first named

SVM parameters scale, and later addressed as IDP-
Hydropathy scale after showing its high correlation with
hydropathy, gives substantially improved predictions as
compared to the originally used Kyte-Doolittle scale and
also as compared to the best of the tested hydropathy
scales. Here we report these comparisons of the various
hydropathy scales as well our analysis of their predictions
and prediction errors on our set of fully structured and
fully disordered proteins. A correlation study between
IDP-Hydropathy scale and various clusters with different
amino acid properties of Amino Acid index database
(AAindex) shows that this new scale is highly correlated
with hydropathy [51-53,64,65]. In addition to improved
predictions using the C-H plot, we speculate that, given
the strong negative correlation between crystallographic
disorder and hydropathy [66], our new scale would likely
improve disorder prediction for any algorithm that uses
hydropathy as one of the inputs.

Results
Comparing Hydropathy scale of Kyte-Doolittle (1982)
with 18 other hydropathy scales
The C-H plot developed by Uversky et al [3] is a
straightforward, simple, fast, yet effective whole protein
disorder versus order predictor. FoldIndex is a per resi-
due predictor adapted from the C-H plot, using the
same features of charge and hydropathy as the C-H plot
[24]. Because of their dependence on intuitive biophysi-
cal features and their simplicity, both methods are still
heavily used today. However, unlike net charge, which is
fairly unambiguous at neutral pH, a variety of hydropa-
thy scales have been developed using quite different
methods and assumptions. Thus, the various scales have
the potential of being more or less useful, depending on
the application.
The hydropathy scale of Kyte-Doolittle (1982) [31] has

been used in both the whole protein predictor based on
the CH-plot and in the FoldIndex per residue predictor.
Therefore, one natural question to ask is, how well do
other hydropathy scales perform compared to this particu-
lar hydropathy scale? To compare the performances of
various hydropathy scales, the 19 different hydropathy
scales from ExPASy were tested via C-H plots to predict
the structure - disorder status of the proteins in our data-
set. The results of this experiment are given in Table 1.
The sensitivity (true positive prediction of disorder,

first column in Table 1) and specificity (true positive
prediction of order, second column in Table 1) are aver-
aged to give the balanced accuracy (third column in
Table 1). As shown in Table 1, many other hydropathy
scales from ExPASy achieved a higher balanced accuracy
when compared to the Kyte-Doolittle hydropathy scale.
Another commonly used measure of predictor quality is
the area under the receiver operator characteristic curve,

Huang et al. BMC Bioinformatics 2014, 15(Suppl 17):S4
http://www.biomedcentral.com/1471-2105/15/S17/S4

Page 2 of 13



commonly abbreviated as AUC. Just as for the balanced
accuracy, the AUC metric indicates that the Kyte-Doo-
little scale is far from the best with regard to classifica-
tion of ordered and disordered proteins (Table 1,
column 4).
While the balanced accuracy and AUC values give easy-

to-interpret measures of predictor performance and so are
widely used, these metrics have deficiencies for predictors
trained on unbalanced datasets. For such imbalanced data-
sets, over-predicting the minority examples leads to a false
indication of improvement because such over-prediction
leads to only small errors in the majority examples [67]
(see Methods for more discussion). As a result, we further
evaluated the results using metrics designed to evaluate
predictors trained on imbalanced data (Table 2), including
the F-score (Table 2 column 1), Matthews Correlation
Coefficient (MCC, Table 2, column 2), Positive Predictive
Values (PPV, Table 2, column 3), and Negative Predictive
Values (NPV, Table 2, column 4, see Methods for more
discussion of these metrics). The F-score and MCC values
both provide a good summary of a predictor’s overall per-
formance. The PPVs and NPVs indicate whether the algo-
rithm over-predicts the indicated class.
Predictor training for the data in Tables 1 and 2 were

carried out so as to optimize the F-score (Table 2,

column 1). The results show that, just as for the
balanced accuracy and AUC metrics (Table 1), the
hydropathy scale of Kyte-Doolittle (1982) is only aver-
age, giving 0.67 for the F-score, ranking in the middle of
the 19 hydropathy scales. The Guy (1985) hydropathy
scale gives the highest F-score, a value of 0.75, which is
a 12% improvement compared to the hydropathy scale
of Kyte-Doolittle (1982). Also, the use of the Guy (1985)
scale maintains a PPV score of 0.82, suggesting that the
gain in its sensitivity (Table 1) is not from an overly
large increase in its false positive rate. Clearly the Guy
(1985) hydropathy scale gives improved performance
compared to that of Kyte-Doolittle (1982) when used
with net charge to classify structured and disordered
proteins via the C-H plot. Note that, because predictor
training was carried out so as to optimize the F-score,
sensitivity (correct predictions of disorder) and specifi-
city (correct predictions of order) give values that are
very different from each other.

Finding a hydropathy scale for improved prediction of
IDPs
Since disorder prediction based on C-H plot can be sig-
nificantly improved by simply adopting a different

Table 1 The Order versus Disorder Prediction
Performances of 19 Hydropathy Scales

Scales Sens Spec Bal. Acc AUC

Guy 0.70 ± 0.16 0.97 ± 0.02 0.84 ± 0.09 0.90 ± 0.06

Miyazawa 0.70 ± 0.15 0.96 ± 0.02 0.83 ± 0.09 0.90 ± 0.11

Manavalan 0.70 ± 0.15 0.96 ± 0.03 0.83 ± 0.09 0.90 ± 0.07

Sweet 0.69 ± 0.14 0.97 ± 0.02 0.83 ± 0.09 0.91 ± 0.07

Fauchere 0.68 ± 0.13 0.97 ± 0.02 0.83 ± 0.08 0.88 ± 0.07

Rose 0.67 ± 0.17 0.97 ± 0.02 0.82 ± 0.09 0.91 ± 0.06

Black 0.64 ± 0.09 0.97 ± 0.02 0.81 ± 0.06 0.88 ± 0.06

Woods 0.61 ± 0.15 0.97 ± 0.03 0.79 ± 0.09 0.88 ± 0.06

Breese 0.64 ± 0.12 0.95 ± 0.04 0.80 ± 0.08 0.87 ± 0.08

Leo 0.61 ± 0.12 0.96 ± 0.03 0.79 ± 0.08 0.86 ± 0.08

Kyte-Doolittle 0.61 ± 0.16 0.96 ± 0.03 0.79 ± 0.09 0.87 ± 0.10

Roseman 0.56 ± 0.16 0.96 ± 0.02 0.76 ± 0.09 0.86 ± 0.08

Chothia 0.55 ± 0.13 0.96 ± 0.03 0.76 ± 0.08 0.88 ± 0.05

Argos 0.54 ± 0.10 0.97 ± 0.03 0.76 ± 0.06 0.85 ± 0.06

Janin 0.52 ± 0.16 0.96 ± 0.02 0.74 ± 0.09 0.86 ± 0.06

Tanford 0.49 ± 0.14 0.96 ± 0.03 0.73 ± 0.08 0.86 ± 0.09

Eisenberg 0.48 ± 0.19 0.96 ± 0.03 0.72 ± 0.11 0.85 ± 0.05

Welling 0.40 ± 0.14 0.97 ± 0.03 0.69 ± 0.09 0.79 ± 0.07

Wolfenden 0.36 ± 0.11 0.97 ± 0.02 0.67 ± 0.07 0.79 ± 0.06

For equations and explanations, see the Methods section at the end of this
manuscript:

Sens: Sensitivity

Spec: Specificity

Bal. Acc: Balanced accuracy (average of sensitivity and specificity)

AUC: Area under the curve

Table 2 The Order versus Disorder Prediction
Performances of 19 Hydropathy Scales Measured by
Other Metrics

Scales F MCC PPV NPV

Guy 0.75 ± 0.12 0.71 ± 0.13 0.82 ± 0.10 0.94 ± 0.03

Miyazawa 0.74 ± 0.11 0.70 ± 0.12 0.80 ± 0.10 0.94 ± 0.03

Manavalan 0.74 ± 0.11 0.70 ± 0.12 0.80 ± 0.10 0.94 ± 0.03

Sweet 0.74 ± 0.08 0.71 ± 0.08 0.83 ± 0.11 0.94 ± 0.03

Fauchere 0.74 ± 0.08 0.70 ± 0.09 0.83 ± 0.12 0.94 ± 0.02

Rose 0.73 ± 0.12 0.70 ± 0.13 0.82 ± 0.09 0.94 ± 0.03

Black 0.71 ± 0.05 0.67 ± 0.06 0.81 ± 0.12 0.93 ± 0.02

Woods 0.68 ± 0.12 0.64 ± 0.13 0.78 ± 0.12 0.93 ± 0.03

Breese 0.68 ± 0.11 0.63 ± 0.13 0.75 ± 0.15 0.93 ± 0.02

Leo 0.68 ± 0.10 0.64 ± 0.12 0.79 ± 0.15 0.93 ± 0.02

Kyte-Doolittle 0.67 ± 0.13 0.63 ± 0.14 0.78 ± 0.14 0.93 ± 0.03

Roseman 0.64 ± 0.15 0.59 ± 0.17 0.75 ± 0.15 0.92 ± 0.03

Chothia 0.63 ± 0.11 0.59 ± 0.13 0.77 ± 0.15 0.92 ± 0.03

Argos 0.63 ± 0.09 0.59 ± 0.10 0.78 ± 0.13 0.92 ± 0.02

Janin 0.59 ± 0.14 0.55 ± 0.12 0.74 ± 0.11 0.91 ± 0.03

Tanford 0.57 ± 0.14 0.53 ± 0.14 0.72 ± 0.15 0.91 ± 0.02

Eisenberg 0.56 ± 0.16 0.53 ± 0.18 0.74 ± 0.20 0.91 ± 0.03

Welling 0.50 ± 0.15 0.48 ± 0.13 0.78 ± 0.19 0.89 ± 0.02

Wolfenden 0.46 ± 0.11 0.43 ± 0.13 0.69 ± 0.15 0.89 ± 0.02

For equations and explanations, see the Methods section at the end of this
manuscript:

F: the F1 score

MCC: Matthew Correlation Coefficient

PPV: Positive Predictive Values

NPV: Negative Predictive Values
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hydropathy scale, it seems reasonable to ask whether
another hydropathy scale can be found or developed
that further improves the performance of the C-H plot.
Use of Linear SVMs to find a hydropathy scale giving an
improved classification
To find a hydropathy scale that gives an improved order-
disorder classification via the C-H plot methodology, we
adopted a linear support vector machine (SVM) [68] for
this purpose. SVMs represent a new generation of learn-
ing systems based on recent advances in statistical learn-
ing theory [62,63]. The aim in training a linear SVM is to
find the separating hyperplane with the largest margin;
the expectation is that the larger the margin, the better
the generalization of the classifier. Typically, the weights
that are found as giving the best performance are viewed
as arbitrary parameters. However, in this particular
instance, the SVM weight given to each amino acid,
when appropriately normalized, corresponds to its hydro-
pathy value.
Given the above, we rephrase the question of finding

the optimal scale by viewing sets of protein sequences/
windows as an n by 21 matrix (Eq. 1). The n rows
represent n protein sequences/windows, and 21 columns
are comprised of 20 normalized amino acid composi-
tions and normalized net charge. For sequence window
i, Compij is its j’s amino acid composition, and Ci is its
normalized net charge, calculated as (Eq. 2). We repre-
sent the disorder/order status of ith protein sequence/
window as Yi (-1 or 1), thus giving:

⎡
⎢⎢⎢⎢⎢⎢⎣

Y1
Y2
...
...
Yn

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

Comp11 Comp12 . . . Comp20 C1
Comp21 Comp22 . . . Comp20 C2

Comp31
. . .

Compn1

Comp32
. . .

Compn2

. . .

. . .
. . .

Comp20
. . .

Comp20

C3
. . .

Cn

⎤
⎥⎥⎥⎥⎥⎦

∗

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1
w2
...
...

w20
w21

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ b, (1)

whereCi = CompiArg + CompiLys − CompiGlu − CompiAsp. (2)

Note that, to conform to the energy transferring con-
vention set by Kyte & Doolittle, disordered examples are
assigned with Y values of -1, such that a negative weight
will be disorder promoting. Then, the linear SVM is
employed here to find a 21 by 1 weight vector w, such
that wM+b (bias) is closest to Y (Eq. 1). We then
adopted the w1 to w20 values as ‘SVM parameters
scale’. As shown later, this SVM parameters scale is
highly correlated with amino acid hydropathy, and then
we change its name into ‘IDP-Hydropathy scale’. For
now, we address it as SVM parameters scale. Because
the first published C-H plot by Uversky normalized the
Kyte-Doolittle scale to the interval of 0 to +1, when we
were plotting the C-H plot later, we normalized our
scale to the interval of 0 and +1 for easier comparison
among each scale.

We previously showed that amino acid compositions
associated with disordered segments exhibit changes
that depend on segment length [69] and that construc-
tion of length-dependent predictors gives improved per-
formance [17]. To minimize such length-dependent
variation, we tested whether use of uniform-sized seg-
ments of protein during training would improve the
subsequent classifiers based on the C-H plot. We found
this to be the case. We tried a wide range of window
sizes, and based on these results we chose a value of 41
residues. The reasons for choosing this size are that,
first, this window size yields good prediction accuracy,
and, second, this window size is smaller than almost all
of the smallest currently known self-folding domains.
The scale was constructed from the weight vector

found by the SVM. To be consistent with the original
C-H plot paper, and with previous hydropathy scale test
results, this scale is applied and tested over the entire
protein sequences. A 10-fold cross validation was used
here, and was reiterated 5 times in this method. We
also tested a genetic algorithm [70] and an elastic net
[71] (i.e., a penalized logistic regression classifier) as
alternatives for the generation of the best hydropathy
scale for the order/disorder classification via the C-H
plot. Both of these approaches give scales with predic-
tion performance values similar to those obtained by the
SVM methodology. We chose to present the SVM
approach because of its greater simplicity and elegance
compared to the other methods.
The new scale developed using the SVM formalism

shows an improved performance compared to the tested
19 scales, namely: 0.84 F-score, 0.81 sensitivity, 0.98 spe-
cificity, 0.90 balanced accuracy, 0.94 AUC, and 0.89 PPV.
We named this scale “SVM parameters scale” for now,
and its values for the 20 amino acids are given in Table 3.
Also shown in Table 3 are the Kyte-Doolittle and Guy
hydropathy scales so their differences can be compared.
A more in-depth comparison of these three scales is
discussed later.

Comparing C-H Plots for three scales
The C-H plots generated using scale SVM parameters
scale, Kyte-Doolittle hydropathy scale, and Guy hydropathy
scale for whole protein prediction are shown in Figure 1.
Figure 1A, which is derived by SVM parameters scale,
shows many fewer misclassified disordered proteins on the
ordered side, compared to Figure 1B and 1C.

SVM parameters scale is highly correlated with other
amino acid hydropathy scales
Since SVM parameters scale is derived via computation,
and focused on maximizing prediction accuracy rather
than being based on experimentally measured physical
attributes, another question to ask is if this scale is truly
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a hydropathy scale or if it contains input from other
amino acid properties. One way to test this possibility is
to study how this scale correlates with non-hydropathy
and hydropathy scales.
To obtain sets of amino acid indices grouped according

to their properties, we referred to the AAindex cluster ana-
lysis by Tomii et al [65]. AAindex is a database of numeri-
cal indices for various amino acids physicochemical and
biochemical properties [51-53]. Tomii et al clustered the
AAindex into 6 clusters according to the absolute value of
correlation coefficient (|r|) between pairs of amino acid
indices. These 6 clusters are, a and turn propensities (A), b
propensity (B), Composition (C), Hydropathy (H), Physico-
chemical properties (P), and Other properties (O).
The correlation coefficients of the SVM parameters

scale and each amino acid scales from all 6 clusters are
shown in Figure 2 and Table 4. Ordered by averaged |r|
values, the SVM parameters scale is shown to be most
correlated with the Hydropathy cluster with an average
|r| of 0.73. Interestingly, SVM parameters scale is also
very closely correlated with the b propensity cluster
with an average |r| of 0.72. Note that b sheets have a
high occurrence of aromatic residues such as Tyr, Phe
and Trp, and such residues tend to be strongly depleted
in disordered proteins, thus resulting in a high value for
|r|. Other non-hydropathy AAindex clusters are much
less correlated with our newly developed scale. This sug-
gests that the SVM parameters scale is indeed strongly
related to other hydropathy scales with little input from
other properties. We thus refer to this scale as the IDP-
Hydropathy scale from now on.

Comparing the IDP-Hydropathy scale with the Doolittle
and Guy hydropathy scales
A detailed comparison of IDP-Hydropathy scale to other
hydropathy scales provides further understanding of this

new scale. In Figure 3, the hydropathy scores of each
amino acid residue in Guy (Figure 3A) and Kyte-Doolittle
(Figure 3B) scales are plotted against the scores in IDP-
Hydropathy scale. If the scores from the two scales com-
pared are equal, that amino acid residue would appear on
the solid line given in each plot (Figure 3AB). Keep in
mind that Kyte-Doolittle scale was calculated with a
minus sign in front of the energy transfer function, while
Guy scale was not [31,33]. Thus, the hydrophobic resi-
dues have positive values for Kyte-Doolittle scale
(Figure 3B, quadrant 1 and 4) but negative values
(Figure 3A, quadrant 2 and 3) for the Guy scale. The
IDP-Hydropathy scale is designed to follow the rule set
by Kyte-Doolittle scale, in which hydrophobic residues
are positive (Figure 3A and 3B, quadrant 1 and 2) and
hydrophilic residues are negative (Figure 3A and 3B,
quadrant 3 and 4). From these plots and the data in
Table 3 (above), the values for the following amino
acids show step-wise changes in the same direction
thus correlating with the increased accuracy in the
order/disorder classification, where the indicated
amino acid is followed by the hydropathy values in
order from Kyte-Doolittle-, to Guy, to IDP-Hydropa-
thy:; W, - 0.90, - 0.51, + 10.66; Y, -1.3, - 0.21, + 6.64;
A, + 1.80, + 0.10, + 0.91; G, - 0.40, + 0.33, + 0.02; and
P, - 1.60, + 0.73, - 3.89. In both of Figure 3A and 3B,
W and Y are located in quadrant 2, indicating that
they are hydrophobic in Guy and IDP scale, but hydro-
philic in Kyte-Doolittle scale. In fact, Kyte-Doolittle
[31] suggested that W and Y are slightly hydrophilic
due to their hydrogen bonding potential, whereas most
hydropathy scales classify these amino acids as hydropho-
bic. The IDP-Hydropathy ranks W as the most hydropho-
bic (+ 10.66) of all, despite its hydrogen bonding potential.
Interestingly, Kyte-Doolittle ranks A as quite hydrophobic
(+ 1.80), while both Guy and IDP-Hydropathy rank this

Table 3 A comparison of 3 hydropathy scales

IDP-Hydropathy scale

Residue W Y I F C L V M N T

Hydropathy Score 10.66 6.64 6.19 5.79 5.62 5.17 4.64 2.49 2.06 1.22

Residue A R G D Q S H E K P

Hydropathy Score 0.91 0.07 0.02 -0.48 -1.23 -1.84 2.18 -2.20 -2.43 -3.89

Guy scale

Residue W Y I F C L V M N T

Hydropathy Score -0.51 -0.21 -1.13 -2.12 -1.42 -1.18 -1.27 -1.59 0.48 0.07

Residue A R G D Q S H E K P

Hydropathy Score 0.10 1.91 0.33 0.78 0.83 0.52 -0.50 0.95 1.40 0.73

Kyte-Doolittle scale

Residue W Y I F C L V M N T

Hydropathy Score -0.90 -1.30 4.50 2.80 2.50 3.80 4.20 1.90 -3.5 -0.70

Residue A R G D Q S H E K P

Hydropathy Score 1.80 -4.50 -0.40 -3.50 -3.50 -0.80 -3.20 -3.50 -3.90 -1.60
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amino acid as somewhat hydrophilic. G is ranked as
hydrophilic in all three scales with larger values as the
classification accuracy improves. Finally, despite its hydro-
phobic side chain, proline is indicated to be hydrophilic by
all three scales, and being the most hydrophilic residue of
all (e.g. a value of - 3.89) in the IDP-Hydropathy scale.
This counter-intuitive result arises from the lack of NH
groups on the proline peptide bonds, leading to hydrogen
bond acceptors from the carbonyl oxygen but no corre-
sponding donors. This donor/acceptor imbalance makes it
very costly in terms of energy to bury proline’s backbone
atoms. Indeed, because of this imbalance, proline is the
most soluble of all the amino acids at neutral pH [72], and

polyproline is far more soluble than polyleucince, polyala-
nine and even polyglycine [73].
Thus, when the backbone is taken into account, pro-

line becomes a very hydrophilic amino acid [74].

Hydropathy versus other scales related to protein folding
The C-H plot assumes the biophysical model that net
charge repulsion favors the unfolded state while hydro-
pathy favors the folded state. What if other factors also
contribute significantly to protein folding? Thus, repla-
cing the hydropathy scale in the C-H formalism with
another scale that differentiates between structured and
disordered proteins has the potential of improving the
order/disorder classification.
Several amino acid scales have been developed that

are related to whether a protein folds or folds tightly.
These include the fractional differences in the amino
acids found in structured proteins compared with those
found in the disordered proteins and regions in the Dis-
Prot database [59,60] as described in Campen et al [56].

Figure 1 Charge-Hydropathy plots. In (A) the IDP-Hydropathy scale
was used, in (B) the Guy (1985) Hydropathy scale was used, and in (C)
the Kyte-Doolittle (1981) hydropathy scale was used. Red circles
indicate disordered proteins, blue circles indicate structured proteins.
For these plots, each scale was normalized to be in the interval of 0 to
1. The Guy’s scale is multiplied by -1 prior to normalization to conform
to the energy rule set by Kyte-Doolittle scale. In (A) the function
describing the boundary is: <charge> = 3.31 <hydropathy> -0.97. In
(B) the function describing the boundary is: <charge> = 2.32
<hydropathy> -0.93. In (C), the function describing the boundary is:
<charge> = 1.35 <hydropathy> -0.49.

Figure 2 Correlation coefficients between IDP-Hydropathy and
AAindex clusters. H: Hydrophobicity cluster B: b propensity cluster
P: Physicochemical properties cluster C: Composition cluster O:
Other properties cluster A: a and turn propensities

Table 4 Mean, median, standard deviation, max, and min
of |r| and AAindex in each cluster

Cluster Mean Median Std Max Min

H 0.75 0.75 0.07 0.86 0.60

B 0.72 0.72 0.08 0.82 0.58

P 0.49 0.49 0.16 0.76 0.23

C 0.43 0.36 0.13 0.61 0.31

O 0.23 0.21 0.06 0.32 0.18

A 0.08 0.05 0.08 0.28 0.01

H: Hydropathy cluster

B: b propensity cluster

P: Physicochemical properties cluster

C: Composition cluster

O: Other properties cluster

A: a and turn propensities cluster

Huang et al. BMC Bioinformatics 2014, 15(Suppl 17):S4
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Figure 3 Comparing IDP-Hydropathy scale against Guy’s scale (A) and Kyte-Doolittle’s scale (B). Each letter is the one letter code for an
amino acid. Note that in Guy’s scale (A), the measurement for free energy transfer adopted the opposite theme as compared to the Kyte-
Doolittle scale. In Guy’s scale, a positive value indicates hydrophilic, while in Kyte-Doolittle scale and IDP-Hydropathy, a positive value indicates
hydrophobic. The r value is the correlation coefficient of the 2 scales compared.
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and herein called DisProt, a scale based on improved
classification of ordered and disordered regions of pro-
teins called TopIDP [56], a scale based on side chain
packing capacity called FoldUnfold [57] and a scale
based on the B-factor values for the different residues
averaged over multiple protein structures [58] herein
called B-value. Thus, using each of these scales along
with net charge via the C-H plot formalism might give
better classification than using scales based on hydropa-
thy alone. Table 5 gives the results of replacing the
hydropathy scale with each of the four disorder propen-
sity scales along with the results of IDP-Hydropathy and
the Guy and Doolittle scales for comparison. In this
comparison, IDP-Hydropathy again ranks on as the best,
followed by DisProt, Top-IDP, Fold-Unfold, Guy, B-
value, and Doolittle. Thus, when combined with net
charge, IDP-Hydropathy is a better indicator of whether
a protein is structured as compared to these alternative
measures.

Disorder is harder to predict
One interesting observation here is that across all tested
hydropathy scales, including the IDP-Hydropathy, the
specificity is high (>0.96) for all predictors, while the
sensitivity is quite low compared to specificity. These
scales were developed, not by attempting to obtained
equal-accuracy predictions on structure and disorder,
but rather by optimizing the F-value, which was devel-
oped to deal with imbalanced data [57]. Of the 19
ExPAsy hydropathy scales, the highest sensitivity is only
0.70 (Table 1). IDP-Hydropathy also has a relatively
large gap between its sensitivity (0.81) and specificity
(0.98). The straightforward interpretation of these
results is simply that disorder is harder to predict than

structure. We hypothesize that this results from the fre-
quent occurrence of segments having a high tendency to
form structure within experimentally characterized dis-
ordered proteins and regions.
This hypothesis is supported by running per residue

predictors, PONDR® VLXT [16] and VSL2 [17] on our
whole disordered/structured protein dataset. Fractions
of predicted disorder and order over the entire dataset
by each predictor are displayed in Table 6. The
PONDR® VLXT algorithm predicts residue disorder
tendencies within a narrow window, and is built to be
very sensitive to local features in protein sequences.
PONDR® VSL2, on the other hand, uses a longer win-
dow, and so its prediction is smoother with less focus
on local changes. In Table 6, on average, PONDR®

VLXT predicts only 58% disordered residues within an
entirely disordered protein, while it predicts 78% struc-
tured residues for the sequence of wholly structured
protein. The PONDR® VSL2 prediction results are quite
different. VSL2 has a comparable amount of predicted
disorder residues within disordered protein as predicted
structure in a structured protein. This suggests that
indeed, there are many short segments with potential
for structure-formation within regions within a disor-
dered protein.

Discussion
Here we show that the performance of C-H plot can be
improved significantly by introducing a new hydropathy
scale. This new IDP-Hydropathy scale boosts the predic-
tor’s F-score from an original value of 0.67 to the 25%
higher value of 0.84. This new scale also performs con-
siderably better than four existing disorder propensity-
based scales. A correlation study between this scale and

Table 5 IDP-Hydropathy scale performance compared to 4 disorder propensity scales, DisProt, TopIDP, FoldUnfold,
and B-value

Method Sens Spec Bal. acc AUC F MCC PPV NPV

IDP-Hydro 0.81 ± 0.11 0.98 ± 0.02 0.90 ± 0.07 0.94 ± 0.05 0.84 ± 0.08 0.82 ± 0.09 0.89 ± 0.09 0.96 ± 0.02

DisProt 0.77 ± 0.12 0.97 ± 0.04 0.87 ± 0.08 0.94 ± 0.06 0.80 ± 0.08 0.77 ± 0.10 0.85 ± 0.14 0.96 ± 0.02

TopIDP 0.76 ± 0.11 0.97 ± 0.02 0.87 ± 0.07 0.93 ± 0.04 0.79 ± 0.06 0.76 ± 0.06 0.84 ± 0.07 0.96 ± 0.02

FoldUnfold 0.72 ± 0.12 0.97 ± 0.02 0.85 ± 0.07 0.91 ± 0.07 0.77 ± 0.10 0.73 ± 0.11 0.82 ± 0.11 0.95 ± 0.02

Guy 0.70 ± 0.16 0.97 ± 0.02 0.84 ± 0.09 0.90 ± 0.06 0.75 ± 0.12 0.71 ± 0.13 0.82 ± 0.10 0.94 ± 0.03

B-value 0.67 ± 0.14 0.98 ± 0.02 0.83 ± 0.08 0.91 ± 0.07 0.74 ± 0.11 0.71 ± 0.12 0.85 ± 0.10 0.94 ± 0.02

Kyte-Doolittle 0.61 ± 0.16 0.96 ± 0.03 0.79 ± 0.09 0.87 ± 0.10 0.67 ± 0.13 0.63 ± 0.14 0.78 ± 0.14 0.93 ± 0.03

The accuracy metrics for Guy and Kyte-Doolittle hydropathy scales are also presented as references.

For equations and explanations, see the Methods section at the end of this manuscript:

Sens: Sensitivity

Spec: Specificity

Bal. Acc: Balanced accuracy (average of sensitivity and specificity)

AUC: Area under the curve

F: the F1 score

MCC: Matthew Correlation Coefficient

PPV: Positive Predictive Values

NPV: Negative Predictive Values

Huang et al. BMC Bioinformatics 2014, 15(Suppl 17):S4
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clusters of different amino acid indices shows that this
scale is indeed highly associated with amino acid
hydropathy.
In all of our tested scales, including IDP-Hydropathy,

disorder prediction accuracy is much lower than the
order prediction accuracy. We hypothesize that this
results from the existence of many small regions with
increased order propensity that are located inside larger
disordered regions. Despite of these short structure-
prone elements, these regions are still experimentally
shown to be mostly disordered. These regions with
increased order propensity are often found to be func-
tional domains within the disordered proteins. Molecular
recognition features (MoRFs)[75,76] that bind to specific
protein or nucleic acid partners are one type of disorder-
based functional regions. When not bound to a partner,
such MoRF segments remain disordered and flexible.
Upon binding, they typically become structured, adopting
ordered conformations that depend on the templates
provided by the binding partners. Their flexibility in the
unbound state allows them change their shape as needed
to fit onto the surfaces of different and distinct partners
[5,75,77,78].
This new scale, IDP-Hydropathy derived from entirely

disordered and structured proteins, is a very handy tool
because of its simplicity and prediction power. This new
scale should improve other disorder predictors that use
hydropathy as one of the input features. We are looking
forward to the incorporation of this new scale into a
per-residue predictor based on these same principles.

Conclusions
The original hydrophobicity scale of Nozaki and Tanford
[32] was developed with the purpose of understanding the
relative importance of different amino acids to protein
folding. The IDP-Hydropathy scale developed here is
based on sets of sequences that fold into 3D structure as
compared to collections of sequence that don’t fold, using
the C-H plot as the classifier. Thus, to a very significant
degree, IDP-Hydropathy fulfills the intent of the original
scale by providing a measure of how the various amino
acids contribute to protein folding by means of their
hydropathy values.

Methods
Dataset
Two sets of proteins were used in this study [19,79]:
experimentally verified entirely disordered proteins and
experimentally verified completely structured or ordered
proteins. Entirely disordered proteins were taken from
Disprot 6.0 [59,60]. These proteins were filtered such that
only those proteins with their entire sequences being dis-
ordered were retained. Our fully disordered protein data-
set contains 109 disordered sequences with 22,614 amino
acid residues. The set of fully structured (ordered) proteins
consisting only of single-chain and non-membrane pro-
teins was assembled from the Protein Data Bank (PDB)
[80] http://www.rcsb.org/pdb/. Only structures deter-
mined by X-ray crystallography and characterized by unit
cells with primitive space groups were kept in our dataset.
Structures with ligands, disulfide bonds, or missing resi-
dues were also removed. Then a BLASTCLUST [81] ana-
lysis was performed to cluster proteins into subsets, with
all members of each subset having at least 25% sequence
identity with another subset member and having less than
25% sequence identity with any member of any other sub-
set. The longest sequence in each cluster was selected to
construct the fully ordered protein set. This set of experi-
mentally determined structured proteins contains 563
fully structured protein sequences with 113,895 amino
acid residues.

Training method
In the current dataset, disordered proteins are outnum-
bered and under-represented. To develop a good predic-
tor in the scenario of unbalanced dataset, we tried several
popular methods [67]. Both under-sampling structured
proteins, and oversampling disordered proteins [82-84]
were implemented separately to achieve a balanced disor-
der/order dataset. Synthesizing new data for the disor-
dered class was also carried out to obtain more
disordered samples [85,86]. We found that in this study,
all of these methods gave similar results. The approach of
adding weights to the SVM cost function [62,67,71] so
that a greater penalty occurs when a disordered protein
is misclassified, achieves results similar to the sampling
methods above while being much simpler to implement
compared to under- or oversampling. Therefore, for sim-
plicity, here we only used the approach of using a
weighted cost function.
The entire dataset is divided into 10 subsets for 10 fold

cross-validation. For each subset, the whole protein
sequences are further chopped into small windows of
length 41 amino acids. The above two processes are iter-
ated until each subset has approximately the same num-
ber of small protein windows. The trained parameters
from each training set are averaged to obtain the final
IDP-Hydropathy scale. In each fold of cross-validation,

Table 6 VLXT and VSL2 per residue prediction over our
entirely disordered/structured dataset

Predicted

VLXT VSL2

Disorder Structure Disorder Structure

Dataset Disordered 58% ~ 78% ~

Structured ~ 78% ~ 74%

The entries are fraction of residues that are predicted disordered/structured
over the whole disordered/structured dataset. For simplicity, only the diagonal
entries for each predictor are shown.

Huang et al. BMC Bioinformatics 2014, 15(Suppl 17):S4
http://www.biomedcentral.com/1471-2105/15/S17/S4

Page 9 of 13

http://www.rcsb.org/pdb/


the windows are reassembled to whole protein to derive
the boundary parameters for whole protein disorder
prediction. The final parameters are also an average of all
10 folds.

Dealing with unbalanced data
Assessment metrics
Our dataset of disordered/structured proteins is highly
imbalanced with 16% disordered and 83.8% structured
based on numbers of chains or 17% disordered and 83%
structured based on numbers of amino acid residues.
Accuracy, defined as the proportion of correctly classi-
fied samples in the population (Eq. 3), is not a good
measurement when the number of one class dominates
[67]. In fact, simply predicting every case as structured
would yield accuracy close to 0.84. A better approach is
to average the correct prediction of order and the cor-
rect prediction of disorder, called the balanced accuracy
and calculated as follows: first, estimate the value for
the correct prediction of disorder, called sensitivity
(Eq. 4), and the value for the correct prediction of struc-
ture, called specificity (Eq. 5), then average the values
for sensitivity and specificity[67] (Eq. 6):

Acc =
TP + TN

TP + TN + FP + FN
, (3)

where Acc = accuracy, TP = true positive predictions,
TN = true negative predictions, FP = false positive pre-
dictions, and FN = false negative predictions,

Sensitivity(Recall) =
TP

TP + FN
, (4)

Specificity =
TN

TN + FP
, (5)

BalancedAcc =
Sensitivity + Specficity

2
. (6)

The usefulness of the balanced accuracy metric is
undermined by the high fraction of structured residues
in the training set. That is, predicting more disordered
residues rewards sensitivity much more than the penalty
in specificity, so this imbalance encourages overpredict-
ing disorder [25,26,67]. To further help with the analysis
of prediction on imbalanced data, the positive predictive
value (PPV) metric was introduced[87-89]. PPV, also
called “precision”, is calculated as the fraction of cor-
rectly predicted disorder versus all the predicted disor-
der (Eq. 7):

PPV(Precision) =
TP

TP + FP
. (7)

Overpredicting disorder will result in low PPV,
whereas a high PPV value indicates that a high propor-
tion of the predicted disorder is indeed actual disorder.
Combing PPV with sensitivity (also known as recall) as
indicated (Eq.8) yields the F-score, which is an effective
representation of the predictive power in imbalanced
dataset[90]:

F = 2 · precision · recall
precision + recall

. (8)

The F-score values range from 0 to 1, and because of
the product of precision and sensitivity in the numera-
tor, a high F-score usually means a high score for both
PPV and sensitivity, or recall.
The Matthews correlation coefficient (MCC) is

another very commonly used and effective metric for
imbalanced datasets[26,91] (Eq. 9):

MCC =
TP · TN − FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
. (9)

The MCC has been observed to be highly correlated
with the F-score for disorder prediction in Critical Assess-
ment of protein Structure Prediction 9 (CASP9)[26].
In contrast to PPV, negative predictive value (NPV)

measures the correctly predicted structured proteins
over all of the predicted structured proteins[87] (Eq. 10):

NPV =
TN

TN + FN
. (10)

A Receiver Operating Characteristic (ROC) curve is a
plot of sensitivity versus specificity[92]. The area under
the curve (AUC) is another often used metric for jud-
ging predictive power of an algorithm.
Given all of the above, we estimated F-score, MCC,

sensitivity, specificity, AUC, PPV, and NPV as the
metrics to assess the quality of the predictions that
were made on the unbalanced dataset used herein. Sen-
sitivity, specificity and AUC are informative about the
correctly predicted disorder and structure of one class.
PPV and NPV reveal whether the algorithm is overpre-
dicting disorder or structure. In the end, the F-score
and MCC give an overall estimate of the quality of the
predictions.

Correlation study
The absolute value of Pearson product-moment correla-
tion coefficient [93], r, was calculated between IDP-
Hydropathy scale and shaded indices from AAindex
clusters. For each scale from AAIndex, the correlation
of it with IDP-Hydropathy scale is calculated as in Equa-
tion 11, where IDPi is the score for ith amino acid in
IDP-Hydropathy scale, Scalei is the score for ith amino

Huang et al. BMC Bioinformatics 2014, 15(Suppl 17):S4
http://www.biomedcentral.com/1471-2105/15/S17/S4

Page 10 of 13



acid in that AAIndex. IDP and Scale stands for the
mean value of the two scales:

r =

∑20
i=1(IDPi − IDP)(Scalei − Scale)√∑20

i=1 (IDPi − IDP)
2 ·

√∑20
i=1 (Scalei − Scale)

2
. (11)

Benchmarking
The IDP-Hydropathy scale was derived from windows of
proteins. Since entire protein sequences are applied to
the original C-H plot by Uversky et al, for consistency,
the benchmarking of IDP-Hydropathy scale and other
scales was carried out over the entire protein sequences.
The normalized composition and net charge were calcu-
lated as before. Then we obtained the ‘hydropathy score’
for each protein by multiplying the composition matrix
and the column vector of the scale. Therefore, 2 attri-
butes are calculated for each amino acid sequences, the
‘hydropathy score’ and the net charge. A linear SVM
classifier was then applied to predict disorder/structure
proteins.
For entire protein prediction of per-residue predictors,

PONDR-FIT, VSL2, VLXT, VL3, IUPred, the average of
their scores are used.

Charge-Hydropathy plots
C-H plots were generated using our dataset with the fol-
lowing scales: IDP-Hydropathy, the Guy scale [33], and
the Kyte-Doolitte (1982) scale [31]. The normalized net
charge was calculated as previously: the absolute value
of [(Arginine + Lysine) - (Glutamate + Aspartate)]/Pro-
tein Length. Then the normalized hydropathy was calcu-
lated using the indicated scales. Note that to be
consistent with the original C-H plot [3], the various
hydropathy scales were renormalized so as to cover the
range between 0 and +1 rather than -1 to +1 as we use
elsewhere herein. The linear SVM method implemented
by LIBLINEAR library[68] was then applied to calculate
the boundary in MATLAB (MATLAB 2012a. Natick,
Massachusetts: The MathWorks Inc., 2012).
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