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Abstract

Background: Diabetes mellitus of type 2 (T2D), also known as noninsulin-dependent diabetes mellitus (NIDDM) or
adult-onset diabetes, is a common disease. It is estimated that more than 300 million people worldwide suffer from T2D.
In this study, we investigated the T2D, pre-diabetic and healthy human (no diabetes) bloodstream samples using
genomic, genealogical, and phonemic information. We identified differentially expressed genes and pathways. The study
has provided deeper insights into the development of T2D, and provided useful information for further effective
prevention and treatment of the disease.

Results: A total of 142 bloodstream samples were collected, including 47 healthy humans, 22 pre-diabetic and
73 T2D patients. Whole genome scale gene expression profiles were obtained using the Agilent Oligo chips that
contain over 20,000 human genes. We identified 79 significantly differentially expressed genes that have fold
change > 2. We mapped those genes and pinpointed locations of those genes on human chromosomes.
Amongst them, 3 genes were not mapped well on the human genome, but the rest of 76 differentially
expressed genes were well mapped on the human genome. We found that most abundant differentially
expressed genes are on chromosome one, which contains 9 of those genes, followed by chromosome two that
contains 7 of the 76 differentially expressed genes. We performed gene ontology (GO) functional analysis of
those 79 differentially expressed genes and found that genes involve in the regulation of cell proliferation were
among most common pathways related to T2D. The expression of the 79 genes was combined with clinical
information that includes age, sex, and race to construct an optimal discriminant model. The overall
performance of the model reached 95.1% accuracy, with 91.5% accuracy on identifying healthy humans, 100%
accuracy on pre-diabetic patients and 95.9% accuract on T2D patients. The higher performance on identifying
pre-diabetic patients was resulted from more significant changes of gene expressions among this particular
group of humans, which implicated that patients were having profound genetic changes towards disease
development.

Conclusion: Differentially expressed genes were distributed across chromosomes, and are more abundant on
chromosomes 1 and 2 than the rest of the human genome. We found that regulation of cell proliferation actually
plays an important role in the T2D disease development. The predictive model developed in this study has utilized
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the 79 significant genes in combination with age, sex, and racial information to distinguish pre-diabetic, 72D, and
healthy humans. The study not only has provided deeper understanding of the disease molecular mechanisms but
also useful information for pathway analysis and effective drug target identification.

Introduction
Diabetes mellitus of type 2 (T2D) is among 10 most com-
mon diseases. According to World Health Organization
(WHO), it is estimated that 347 million people suffer
from type 2 diabetes. T2D is usually considered not
reversible, but if not controlled well, it will eventually
lead to fatal complications. However, earlier diagnosis of
diabetes requires preventative screening and regular
healthcare monitoring, which are not always provided in
many countries. Therefore, lower income countries have
higher death rates from diabetes. WHO estimated that
diabetes deaths will be doubled by the year of 2030.
Unfortunately about half of diabetes patients do not rea-
lize that they have the disease [1]. In United States of
America, diabetes commonly occurs in all ethnic popula-
tion, and is the seventh most common cause of death.
According to American Diabetes Association, the preva-
lence of the disease is now climbing towards 10% and 30
million people. T2D is also an age related disease. The
prevalence in seniors is more than a quarter of the entire
population. Because T2D is related to lifestyles, especially
foods and exercises, the disease has been and will be con-
sistently increasing and has been estimated to reach one
third of the population by 2050 [2]. While type 1 diabetes
mellitus is known as juvenile diabetes with strong genetic
dispositions or viral involvement, type 2 diabetes is
known genetically diverse and contribute to more than
90% of all diabetes [3]. All diabetes can lead to not only
long-term but also lethal complications, including cardio-
vascular, retina, nerve system complication, chronic renal
failure, and greater susceptibility of infection. Because
T2D is so popular, it has led to the increasing death rate
as well as social and economic burdens. While T2D has
been known as a genetically complex and multifactorial
disease with impaired glucose regulation, such as
impaired fasting glucose (IFG) and impaired glucose tol-
erance (IGT), it is a gradually developing disease and
commonly considered as irreversible at our current treat-
ment capabilities. T2D often proceed gradually with
aging and can be worsened by many factors, such as
hypertension, high cholesterol, lacking of exercise,
genetic disposition and family history of diabetes [4-7].
Obesity and immune/inflammatory issues can contribute
to the disease [8,9]. The changes of modern lifestyles in
humans have been considered an important factor in the
ever-increasing T2D occurrences.

While so far no effective treatment can virtually cure
diabetes, significant research progresses have been made

in understanding the genetic changes in the develop-
ment of T2D, especially the mechanisms of gene regula-
tion. New research has led to better prevention of the
development of T2D and effective identification of drug
targets for blocking or even reversing the disease devel-
opment [10]. Frayling from the UK’s Peninsula College
of Medicine and Dentistry found that Single Nucleotide
Polymorphism in fat mass and obesity associated gene
(FTO) has a strong association with the risk of T2D
[11]. Zhao’s research showed that analysis of combined
gene expression and lipid profiles helped to identify the
pathogenesis of T2D [12]. As our research has been
unfolded to the study of differential expression of genes
and regulatory mechanisms of the genes in diabetes
mellitus, we have made significant progresses in finding
specific genes and the specific pathways to be targeted
by drugs for the purposes of preventing and inversing
the disease development.

Pre-diabetic or early stage T2D patients usually do not
have any noticeable symptoms and are not diagnosable
without blood analysis. Clinical diagnosis of diabetes
includes fasting plasma glucose test [13], hemoglobin
Alc test, glucose tolerance test, and clinical screening
during physical checkup, but all rely on laboratory blood
analysis [14]. Although blood analysis does not provide
any genetic, genomic or pathological information about
the disease, such information can be useful in assessing
the stage, subtype, prognosis, damage and impact of the
disease. New research efforts include differential gene
expression profiling and genome-wide association studies
(GWAS) [15-19] have been made. Yet, the molecular
mechanisms of disease are potentially heterogeneous
while the limited availability of samples for genome-wide
association studies almost prevented effective population
genetics analysis and sub-type identification of the dis-
ease. In this paper, we assessed and analyzed a number of
patients and healthy humans using genomic information
including peripheral white blood cell gene expression
profile (GEP), and phonemic information including age,
gender, and race. Our past studies found that phonemic
factors have little influence on GEP. Hierarchical cluster-
ing and principal component analysis (PCA) showed that
GEP were not directly related to the phonemic factors
including gender, blood sugar level, age, and race. How-
ever, race and gender are not randomly distributed in the
clustering analysis, which implicated that they had poten-
tial relevancy with GEP [20]. Therefore, we use age, gen-
der, race, and 79 significant genes as parameters to derive
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the discriminant model. The model was used successfully
to classify the samples of different disease stages respec-
tively with high performance and accuracy. This has led
to find molecular mechanisms and genetic diversity for
identifying sub-types and pathogenesis of type 2 diabetes
mellitus.

Materials and methods

Research objectives, and laboratory and clinical data
Based on our previous research, we now aim to identify
characteristic genes and pathways in diabetes. The criteria
for the diagnosis of T2D were based on the American Dia-
betes Association (ADA) [21] guidelines in accordance
with the symptoms in diabetes. The diagnostic criteria are
positively correlated with body mass index (BMI) and fast-
ing blood glucose level > 126 mg/dl, or 2H blood glucose
level > 200 mg/dl in the oral glucose tolerance test. A total
of 142 bloodstream samples were collected, including 47
people from a healthy control group, 22 pre-diabetic, and
73 T2D patients. The experiments were carried out and
analyzed using comprehensive information that includes
age, gender, race, and GEP. Tougaloo College in Missis-
sippi provided data, and the research was approved by the
Institutional Review Board of Tougaloo.

RNA isolation

Firstly, Total RNA from 8 - 10 ml of peripheral blood
white cells was extracted according to the manufac-
turer’s instructions with LeukoLock ™ general RNA sys-
tem (Anbion Inc, Austen, Texas, USA). Then the
content of the RNA was detected and separated by
using Nanodrop spectrophotometer and Agilent 2100
Bioanalyzer (Agilent Technologies, Santa Clara, Califor-
nia, USA). All protocols have been carefully assured and
all RNAs have been carefully inspected to ensure that
RNAs were not degenerated.

Microarray experiments

All standard protocols and instructions on handling
RNA have been carefully followed. A total of 500 ng of
RNA was amplified and labeled by Agilent Low RNA
Input Fluorescent Linear Amplification. 850 ng of Cy5-
(universal control) and Cy3-labeled (sample) cRNA were
mixed and dispersed by the Agilent In Situ Hybridiza-
tion Kit for every two color array. According to the Agi-
lent 60-mer oligo microarray, hybridizations were put
forward for 17 hours in rotating hybridization oven first,
and then an Agilent Scanner (G2565AA, Agilent Tech-
nologies, Wilmington, Delaware, USA) was used to wash
and scan them. Finally, quality control analysis was per-
formed and the Agilent Feature Extraction software
(v.9.5.3.1) was used to handle the information from the
chips and correction of background noises from default
parameters.
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Microarray data analysis

Gene chip data was analyzed using GeneSpring 10.0 and
quality control was conducted with Pearson correlation
coefficients between each sample of the experiment and
others pair-wisely. Samples showing less than 80% of
correlation with other samples were excluded for further
analysis. Scanning probe intensity of less than 5 was
directly converted into 5. All probe values using the
chip in the 5000 percentile were standardized as per-
chip (inner) data. Each gene was standardized using the
median value of one gene in all of the samples. The
probe characteristics were screened by markers while
“Occupying” or “Absence” of the symbol could be used
to define the Aglient properties. The Database for
Annotation, Visualization and Integrated Discovery
(DAVID, http://david.abcc.ncifcrf.gov/) online analysis
tool was used to analyze chromosomal localization and
function of differentially expressed genes.

Statistical analyses

Analysis of differentially expressed genes

GeneSpring GX 10.0 (Agilent Technologies, Santa Clara,
California, USA) software was used for gene expression
analysis. To standardize the data using the method of
Lowess [22], each chip used the 50% as the base, and
each gene was standardized by a median reference. The
standardized sample data was entered into the Gene-
Spring GX software. Firstly, quality controls were per-
formed to select the data and samples of the inserted
microarray data. Secondly, all the samples were divided
into 3 groups: the normal group (ND), pre-diabetic
group (PD), and T2D group (D). Thirdly, matched pair-
wise analysis was conducted and groups were compared
pair-wisely. Finally, less significant genes were filtered
out. The selection threshold was set as: False discovery
rate (FDR) = 5%, p < 0. 05, |fold change| > 2.
Discriminate analysis

Fisher’s exact test was used as a discriminant method
and a discriminant model was built by all parameters in
the experimental group. Statistical software package
SPSS 16.0 was used. All samples were finally classified
by the discriminant model.

Results

Quality control on samples and entities

We performed quality control analysis. Figure 1 showed
that the gene chip quality was well controlled and
acceptable. The correlation coefficients were greater
than 0.9. The correlation plot shows the Pearson corre-
lation coefficient for each pair of array and displays in
visual form as a heatmap. The correlation coefficient is
a number between 0 and 1. If there is no relationship
between the samples, the correlation coefficient is zero
or very low, while high correlation gives a coefficient
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Figure 1 Correlation plot shows the Pearson correlation
coefficient for each pair of array and displays in visual form as
heatmap. Red color means highly correlated, black color means no
or barely any correlation.

value close to and up tol.0 (Figure 1). Thus, it appears
the higher the correlation coefficient, the better quality
of the data.

Hierarchical clustering

Hierarchical clustering analysis was performed on all
samples of diabetes, pre-diabetes, and normal human
groups as shown in Figure 2. PD group and the other
two groups are clearly separated. The results showed
that the gene expression levels of PD group from GEP
were relatively most significant compared to the other
two groups (Figure 2).

Differential genes

We identified 79 significantly differentially expressed
genes with fold change > 2.0. In the differentially
expressed gene analysis between the pre-diabetes, and
T2D groups, there are 24 genes with fold change > 2.0,
among which 7 genes were up-regulated and 14 genes
were down-regulated. In the comparison between pre-
diabetes and normal human groups, there are 74 genes
with fold change > 2.0, among which 20 genes were up-
regulated and 14 genes were down-regulated. A number
of genes were expressed differentially among all groups.
For example TFEB gene was not only significant in the
T2D and pre-diabetes comparison but also in the
healthy and pre-diabetes comparison, with 2.76 and 3.88
times in difference in each pairs of comparisons
respectively.
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Chromosome location of differentially expressed genes
We performed bioinformatics analysis, and found 79 dif-
ferentially expressed genes with more than 2 fold
changes. Locations of 3 of the79 genes are not known
and the other 76 differentially expressed genes were dis-
tributed across different chromosomes. Chromosome 1
contains 9 of them (11.3%); and chromosome 2 contains
7 of them (8.86%). These two chromosomes are most
abundant in significant genes. No differentially expressed
genes were found in chromosomes 4, 9, 20, and the sex Y
chromosome. It is reasonable that T2D does not have
obvious gender difference. 57 genes were located in the
long arm of a chromosome, accounting for 72.2% in
total; 19 genes were located in the short arm of a chro-
mosome, accounting for 24.1%. Although chromosome 1
is the longest chromosome in a human genome, differen-
tially expressed genes are still more abundant relatively
on chromosomes 1 and 2.

Functional classifications of differentially expressed genes
We performed gene ontology (GO) analysis and classified
differentially expressed genes by biological pathways. 11
significant genes were found in the regulation of cell pro-
liferation process, 5 genes were found in taxis process, 5
genes were found in chemotaxis process, 7 genes were
found in positive regulation of cell proliferation process, 3
genes existed in sperm motility process and T2D may
impact on male sexual functionality. We found 6 signifi-
cant genes in the localization of cell process, 6 genes in
cell motility process, 7 genes in cell motion process, 3
genes in rho protein signal transduction process, 3 genes
in rho protein signal transduction process, 5 genes in
epithelium development process, 8 genes in cell adhesion
process, 8 genes in biological adhesion process, 5 genes in
locomotory behavior process, 3 genes in cellular defense
response process which implicate that T2D may impact
cellular function. For examples, increased B-cell prolifera-
tion has been known in pre-diabetes and implicates that
the pancreas may have loosen hormone secretion function.
Impaired neutrophil chemotaxis has been known in dia-
betic patients. Furthermore we found 6 genes in behavior
process, 13 genes in cell surface receptor linked signal
transduction process, 4 genes in tissue morphogenesis
process, 5 genes in negative regulation of cell proliferation
process, 4 genes in tube development process, and 3 genes
existed in morphogenesis of an epithelium process. Results
are summarized in Table 1. The Gene Ontology analysis
has provided deeper insights into the molecular mechan-
isms of T2D that can help the identification of drug targets
in blocking the pathways in the disease development.

Discriminate analysis
A discriminant model was built by 82 parameters (V2-
V83) from the 142 samples, and V60 was eliminated in
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Fig.2 Hierarchical clustering based on T serum miRNAs could discriminate n.TZD. Each row represents an individual subject from ND, PD o1 D
groups, and each column represents an individual gene probe name.

Figure 2 Hierarchical clustering based on 7 serum miRNAs that could discriminate T2D, pre-diabetes and normal samples. Columns
represent names of individual gene probes while rows represent samples from T2D (D), pre-diabetic (PD) and non-diabetic (ND) humans.

the analysis process. Two typical discrimination func-
tions (Functionl, Function2) were extracted, among
which Functionl explained 74.4% of all variations and
Function2 explained the rest 25.6%. Testing results

showed a p-value = 0.000 from Functionl through
Function2, which meant the discriminate function has
the greatest statistical significance. The functional
expressions of discriminate functions were analyzed.

Table 1 Classification of Biological Process Categories Based on Gene Ontology (GO) analysis

Biological Process Genes P-value Count
Regulation of cell proliferation LAMB1, ALDH1A2, GPNMB, PTN, IL8RB, CXADR, CTTNBP2, PRAME, IL4, IGFBPS, 0 11
LAMAT, CXADR

Taxis CCR3, IL8RB, CXCL14, IL4, IL8RA 0.002 5
Chemotaxis CCR3, IL8RB, CXCL14, IL4, IL8RA 0.002 5
Postive regulation of cell proliferation LAMB1, ALDH1A2, PTN, IL8RB, PRAME, IL4, LAMA1 0.003 7
Sperm motility LAMAT, APOB, CTTNBP2 0.004 3
Localization of cell ROPN1B, APOB, NR2F1, IL8RB, CTTNBP2, LAMA1 0.004 6
Cell motility ROPN1B, APOB, NR2F1, IL8RB, CTTNBP2, LAMA1 0.004 6
Cell motion ROPN1B, APOB, NR2F1, IL8RB, SEMAGA, CTTNBP2, LAMA1 0.006 7
Rho protein signal transduction ROPN1B, COL1A2, ARHGAP29 0.008 3
Epithelium development AHNAK, ALDH1A2, ZIC2, NEUROG3, LAMA1 0.008 5
Cell adhesion LAMB1, ROPN1B, CCR3, FLRT2, GPNMB, BCAN, CXADR, LAMAT1, CXADR 0011 8
Biological adhesion LAMBI1, ROPN1B, CCR3, FLRT2, GPNMB, BCAN, CXADR, LAMAT1, CXADR 0011 8
Locomotory behavior CCR3, IL8RB, CXCL14, IL4, IL8RA 0016 5
Cellular defense response CCR3, IL8RB, IL4 0.02 3
Behavior CCR3, PTN, IL8RB, CXCL14, IL4, IL8RA 0.025 6
Cell surface receptor linked signal P2RY14, CCR3, COLTA2, SEMA6A, IL8RB, PTN, IL8RA, LAMAT1, FFAR2, ROR1, GPR161, 0.026 13
transduction HRH4, STC2

Tissue morphogenesis ALDH1A2, COL1A2, ZIC2, LAMA1 0.026 4
Negative regulation of cell proliferation ALDHTA2, GPNMB, CXADR, CTTNBP2, IGFBP5, CXADR 0.039 5
Tube development ALDHTA2, SALLT, CTTNBP2, ZIC2 0.043 4
Morphogenesis of an epithelium ALDH1A2, ZIC2, LAMA1 0.05 3
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The performance of classification results from the dis-
criminant model derived by principles of back substitu-
tion was high. Results showed that 95.1% samples were
correctly classified overall, and groups of pre-diabetes
were all correctly predicted. The accuracy rate of T2D
group was 95.9% and the accuracy rate of healthy group
was 91.5%. The results are summarized in Table 2.
Figure 3 presented a graph of scattered discriminant
scores. It can be seen from the Figures 1, 2, 3 that the
model can distinguish disease group from health group,
especially the distinctions between pre-diabetes group
and others were particularly obvious. Therefore, the
model built in this study can provide useful information
for early biomarker identification of the disease.

Discussion

While Grayson et al. [23] published an article about the
study of human peripheral blood gene chips, their
research only showed that the difference of gene expres-
sion in T2D played an important role in signal transduc-
tion of T cell activation, but the number of samples used
in their study (only six cases) was limited, and their sam-
ples did not include racial information. When Lei Kong
et. al. [10] discussed the significance of seven microRNA
in the serum (miR-9, miR-29a, miR-30d, miR34a, miR-
124a, miR146a, and miR375) that are related to diabetes,
their samples were 56 healthy controls, 18 newly diag-
nosed T2D patients (n-T2D), and 19 pre-diabetic patients
with known susceptibilities (s-NGT). Canonical discrimi-
nant analysis results confirmed 70.6% of n-T2D samples
(12/17), while the samples of the s-NGT and pre-diabetic
could not be distinguished from each other. Rui Wang-
Sattler et al [24] quantified 140 metabolites of fasting
serum samples of 4297 and confirmed candidate biomar-
kers for pre-diabetes using metabolomic methods to
identify three metabolites [glycine, lysophosphatidylcho-
line (LPC) and acetyl] for prediction of IGT and T2D.
Wang et al. [25] studied the samples of 189 T2D and
showed that the increasing content of a small group of
essential amino acids [leucine (Leu), valine (Val), isoleu-
cine (Ile)] and aromatic amino acids [phenylalanine
(Phe), tyrosine (Tyr)] in serum are associated with risk of
T2D by five-fold increment. Our study provides comple-
mentary insights into the mechanism of T2D and useful

Table 2 Classification Results

Predicted Group Membership

VAR00001 D PD Total
Original  Count D 70(95.9%)  3(4.1%) 0(0%) 73
% ND 4(85%)  43(91.5%)  0(0%) 47
PD 0(0%) 0(0%) 22(100%) 22

a. 95.1% of original grouped cases correctly classified
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information for better prevention and treatment of the
disease and effective identification of drug targets.

Conclusion

This study identified 79 significant genes with more than
2-fold changes in differentially expressed genes using
bioinformatics approaches. Differentially expressed genes
were mainly distributed in chromosomes 1, 2, 3, 5, and 7,
with more abundance in chromosomes 1 and 2. Accord-
ing to Gene Ontology and gene functional analysis, genes
which belong to the regulation of cell proliferation were
very significant and played important roles in the patho-
genesis of T2D. Many genes have multiple functions. For
instance, insulin receptor is involved in diabetes and also
plays a role in cell proliferation and cancer. Diabetes is a
disorder of metabolic syndrome, which will also induce
cell proliferation changes on some tissues. T2D patients
may have compromised cellular function in absorbing
bloodstream sugar, it is reasonable to have elevated gene
expression relating to cell proliferation pathways. This
study discussed feasibility of combined molecular and
bioinformatics methods to distinguish normal humans,
pre-diabetic, and T2D effectively. We have analyzed 142
blood samples, including the healthy control group of 47
people, 22 pre-diabetic, and 73 T2D patients. By compar-
ing the gene chip spectrum of these samples, T2D bio-
markers can be implicated from the 79 significant genes.
Discriminant analysis model showed that combination of
79 genes with three phonemic factors could effectively
distinguish healthy human, pre-diabetic, and T2D
patients. The results showed that 95.1% of the samples
were correctly classified, amongst which 100% was
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acheived in predicting pre-diabetic samples, 95.9% accu-
racy was achieved in T2D group, and 91.5% accuracy in
healthy human group. The research provided a combined
molecular and pedigree analytic method that could
potentially lead to an effective screening tool for identify-
ing overall health or illness of humans and prediction of
the prognosis of the disease development. The results
also showed that 79 genes are significant in diabetes, and
these 79 differentially expressed genes have revealed dee-
per molecular mechanisms of the disease. The research
has also led to effective pathway and drug target identifi-
cation, treatment planning and future therapeutic strate-
gies. In addition, since the discriminant analysis method
can separate the pre-diabetes group well from the other
two groups, it can lead to the development of new diag-
nostic tool for the earlier detection of the disease.
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