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Abstract

Background: Automated assignment of functions to unknown proteins is one of the most important task in
computational biology. The development of experimental methods for genome scale analysis of molecular
interaction networks offers new ways to infer protein function from protein-protein interaction (PPI) network data.
Existing techniques for collective classification (CC) usually increase accuracy for network data, wherein instances are
interlinked with each other, using a large amount of labeled data for training. However, the labeled data are time-

protein function prediction.

from PPI networks in the paucity of labeled data.

consuming and expensive to obtain. On the other hand, one can easily obtain large amount of unlabeled data.
Thus, more sophisticated methods are needed to exploit the unlabeled data to increase prediction accuracy for

Results: In this paper, we propose an effective Markov chain based CC algorithm (ICAM) to tackle the label
deficiency problem in CC for interrelated proteins from PPl networks. Our idea is to model the problem using two
distinct Markov chain classifiers to make separate predictions with regard to attribute features from protein data
and relational features from relational information. The ICAM learning algorithm combines the results of the two
classifiers to compute the ranks of labels to indicate the importance of a set of labels to an instance, and uses an
ICA framework to iteratively refine the learning models for improving performance of protein function prediction

Conclusion: Experimental results on the real-world Yeast protein-protein interaction datasets show that our
proposed ICAM method is better than the other ICA-type methods given limited labeled training data. This
approach can serve as a valuable tool for the study of protein function prediction from PPl networks.

Background
We have witnessed a revolution in sequencing technolo-
gies in last decade. The biological sciences are under-
going an explosion in the amount of genome sequences.
There are increasing interests about using computa-
tional methods to identify the biological functions of the
protein sequences [1], as experimentally determining
protein functions is time-consuming and it cannot catch
up with the fast growth of newly found proteins [2].
Various studies have applied machine learning methods
to protein data from biological experiments to predict the
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functions for unknown proteins. (e.g. [3,4]). Classical
computational approaches for protein function predic-
tion represent each protein as a set of features, and
employ machine learning algorithms to automatically
predict the protein function based on these features. The
most well-established methods [5] are the BLAST [6]
approach based on sequence, PROSITE [7] based on
sequence motifs, and PFAM [8] based on profile
methods.

In recent years, the development of experimental meth-
ods for genome scale analysis of molecular interaction
networks offers new ways to infer protein function in the
context of protein-protein interaction (PPI) network,
wherein proteins and detected PPIs are represented by
nodes and edges, respectively. The basic idea is that the
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direct interaction partners of a protein are likely to share
similar biological functions [9]. Assignment of protein
functions using PPI data has also been extensively stu-
died, such as neighborhood counting based method [10],
graph theoretic methods [11], hierarchical clustering-
based methods [12] and graph clustering methods [13].
Although many efforts have been made in protein func-
tion prediction, most of them were based on either
sequence similarity that ignores the protein interactions,
or PPI information without using attributes derived from
the content of protein sequence. The former method
often fails to work if a query protein has no or very little
sequence similarity to any proteins of known labels, the
latter method has similar problem if there are insufficient
relevant PPI information.

To explicitly use the information of the content of the
data and the links information of the PPI network to
improve the prediction performance, collective classifica-
tion (CC) is proposed. It received considerable atten-
tions in the last decade. Various CC algorithms has
been proposed in the literature [14], such as the iterative
classification algorithm (ICA) [15], Gibbs sampling
(Gibbs) [16], and variants of the weighted-vote relational
neighbor algorithm (wvRN) [17]. Here, we focus on
ICA-type approaches, which consist of a local classifier,
such as kNN, to infer the class labels of related
instances. The key idea is to construct new relational
feature vectors by summarizing the label information
from neighborhood nodes, and then use the relational
features together with the attribute features derived
from the content of data to learn local classifiers for
prediction.

Figure 1 is an illustration of how ICA proceeds. In
Figure 1(a), an attribute-only classifier M, induced from
using only the attribute features is first learned to esti-
mate the classes of unlabeled instances. The algorithm
then employs an aggregation function to compute the
relational features by counting the number of neighbors
with respect to each label. Once the features are con-
structed, a collective classifier, My, is learned using both
the attribute features and relational features (Figure 1(b));
The algorithm repeats step ¢ and step d to make new
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prediction for unlabeled instances (Figure 1(c)), and to
update the relational features based on the new generated
predictions (Figure 1(d)). The ICA-type of algorithms
usually assume a separate training graph with abundant
labeled data. However, in many applications such as pro-
tein function prediction problems, the number of labeled
protein data is actually very limited and very expensive to
obtain. In this situation, most data have no connection to
labeled data, and supervision knowledge cannot be
obtained from the local connections (as illustrated in
Figure 1(a)). As a result, the collective classifier M,z
learned from these networks may suffer a reduction in
the classification performance.

This paper describes an effective Markov chain based CC
algorithm (ICAM) to tackle the label deficiency problem in
CC for protein function prediction from PPI networks.
Our idea is to model the classifier M4 via the Markov
chain with restart. The Markov chain model computes the
ranks of labels to indicate the importance of a set of labels
to an instance by propagating the label information in a
graph constructed from labeled and unlabeled data. The
ICAM algorithm further refines the Markov chain model
using an ICA framework to generate the possible labels for
a given instance. By these techniques, M,z can be learned
more effectively. Experiments on the realworld Yeast PPI
datasets have demonstrated that our proposed ICAM
method improves the classification performance when
compared with the ICA-type CC methods. The main con-
tributions of this paper are as follows.

+ We study the label deficiency problem of collective
classification (CC) and show that the protein func-
tion prediction problem from PPI networks can be
formulated as a CC task.

+ We extend the ICA-type CC algorithm and pro-
pose the ICAM algorithm to leverage the unlabeled
portion of the data to improve the classification per-
formance of CC via the Markov chain with restart.

+ We demonstrate the effectiveness of our proposed
ICAM algorithm using the Yeast benchmark data-
sets. We find that ICAM leads to significant accu-
racy gains compared to other ICA-type methods
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Figure 1 An example of ICA algorithm learning with limited labeled data. (a) initial state, train classifier M, and classify W (o) Compute
relational features Xx , train classifier Myg; (C) re-predict W (use Mag); (d) re-compute relational features X; . ICA repeats step ¢ and step d until a
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when there are limited numbers of labeled data
available.

Methods

Preliminaries

Assume that the PPI network data are represented as a
graph G(V, E, Xy, Y, ¢), where V is a set of nodes, E is a
set of edges representing the interactions between the
instances. Each instance/node v; € V is described by an
attribute vector x; € X,4. Each Y; € Y is a set of labels
for v;, and c is the number of possible labels. Assume
that we have a set of labeled nodes VX € V with known
labels Y = {Y;|v; € VX}, and the task is to predict the
labels Y¥ for unlabeled nodes V¥ = V - VX, In this
paper, we are primarily interested in generating a rank-
ing of possible labels for a given protein such that its
correct functions receive higher ranking than the less
unlikely one.

The ICAM algorithm

Inspired by the ICA approach, we introduce the ICAM
algorithm for collective classification. The algorithm is
summarized in Algorithm 1. Similar to the ICA frame-
work, the ICAM algorithm has two parts as follows:
bootstrap and iterative inference. The bootstrap part
learns an attribute-only classifier M, from the known
nodes, and uses M, to predict labels for the unknown
nodes V¥ (step 1-2). In the iterative inference part, the
relational features Xz are updated based on the esti-
mated class labels of data (step 4). Specifically, Xz of the
(i + 1)-th iteration is based on the known and predicted
labels from the i-th iteration. Next, the algorithm trains
a collective classifier M4 using both attribute features
X4 and relational features Xz to compute the labels for
unlabeled data. The iterative process stops when the
predictions of M, are stabilized or a fixed number of
iteration is reached.

An important component of the ICA algorithm is to
build the relational features that summarizes the relational
information, and to construct new feature vectors to train
the classifier M4z. For instance, Neville et al. [15] summar-
ize the labels of neighboring nodes as relational features as
illustrated in Figure 1(b), where node “B” has two positive
neighboring nodes and two negative neighboring nodes.
Here, the relational features is “2, 2;”, and then “;2, 2;” is
appended onto the original feature vector, <x; 1, %;2, ...>, as
new features, “ <x;, %;2, ..., 2, 2 >“. ICA-type CC methods
usually increase accuracy for network data using a large
amount of labeled data to train M,. In this scenario,
the supervision knowledge can be effectively propagated in
the network and improve the learning accuracy [18]. How-
ever, the labeled data are time-consuming to obtain and
the number of labeled data is very limited. Most of the
nodes may not link to the labeled nodes, as illustrated in
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Figure 1(a). As a result, the prediction accuracy of the col-
lective classifier M, will be decreased greatly.

Algorithm 1 ICAM (V, E, X4, YX, n)

Input:

V = nodes, E = edges, X, = attribute feature vectors,
YX = labels of known nodes, # = # of iterations,

Procedure:

1: My = learnClassifer(X 4, YX);

2: YU = predict(Ma, XY);

3:for ¢t =0tondo

4:  Xg = aggregation(V, E, Y u YY)

5:  Re-train Mug = learnClassifer(X,, Xz , Y<);
6: YU = predict(Mar, V, E, XY, XF, YX);

7: end for

8: return Y

In our ICAM algorithm, we assume that the attribute
features x; and the relational features r; are conditionally
independent given the class label Y; [19]. We then use
two distinct classifiers to make two separate predictions
for attribute features X, and relational features Xz. The
prediction is given as follows:

p(xilYi)p(rilYi)p(Yi)
p(xi, 1)
p(Yilxi)p(xi) p(Yilri)p(ri)
p(Yi) p(Yi)
p(xi 1)
p(Yilxi)p(Yilri)
p(Yi)

where 7 is a constant independent of Y;. The attribute
classifier to estimate p(Y;|x;) is referred to as M4, and
the relational classifier to estimate p(Y;|r;) is referred to
as Mp.

There are two main advantages of this prediction
method. First, this method allows us to train classifiers
M, and Mjy, for attribute features X, and relational fea-
tures Xz in parallel. Second, in the collective inference
process, the classifier My can be re-trained in each itera-
tion based on the re-constructed relational features Xp
to improve the prediction accuracy of the collective clas-
sifier M 4p.

Various traditional supervised learning methods can be
used to train M, and My where the classifier, such as
kNN, naive bayes and logistic regression [16,20], is learned
from a separate training data with a large amount of
labeled data. However, when dealing with label deficiency
problem in PPI networks, we propose to use transductive
learning method for acquiring additional information from
unlabeled data to improve the classification performance.
Specifically, we set up Markov chain based learning mod-
els to estimate p(Yj|x;) and p(Yi|r;).

p(Yilxi, i) =

p(Yi)
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Markov chain based learning

The Markov chain based learning model is based on the
idea of random walk with restart. We note that there are
many learning tasks using random walk techniques such
as protein network cluster discovery [21], community
discovery [22], multi-instance multi-label learning [23],
and transfer learning [24]. The idea of random walk with
restart is to consider a random walker that starts from
labeled nodes, and iteratively transmits to its neighbor-
hood with probabilities proportional to their edge
weights. At each step, it has a probability o(0 < a <1) to
return back to labeled node. The steady-state probability
that the walker will finally stay at node j is the relevance
score of node j with respect to the labeled nodes [25]:

u=(1—-oa)Pu+aq

where u = [1] is the steady-state probability of relevance
scores of different nodes, P is the affinity matrix associated
with the instances in Markov chain transition probability
graph, and q is the label distribution vector containing the
elements of labeled instances being 1 and 0 for others.
Here, the steady-state probability (relevance score of the
instances) captures the global structure of the graph and
relationship between the nodes. The advantage of this ran-
dom walk procedure is that it converges to a unique solu-
tion for any initial u(0). The process converges fast,
needing just a few iterations. The random walk and related
methods have been shown to have good performance on
the learning tasks mentioned above. In the following, we
introduce the learning of M, via the Markov chain with
restart using all the instances (both labeled and unlabeled).
The process of learning Mp, is similar.

Given the constructed attribute feature vector x; € X4
for a node v; € V, pairwise affinity A € R™*" between
the nodes based on relational information are computed
using the Gaussian kernel function as follows

ai,j=exp|:_“xi_xj”2] (1)

202

where ||x; - xj|| is the Euclidean distance between the i-th
feature vector and the j-th feature vector in X,. The para-
meter O is a positive number to control the linkage in the
manifold [26]. The m-by-m matrix A, with its (i, j)-th entry
given by a;, is always nonnegative. Similar to (1), using the
Gaussian kernel to r; € Xy, leads to the affinity matrix R for
relational features. We then set up Markov chain models
for classifiers M4 and My, based on A and R, respectively.

For the classifier M4, we construct an m-by-m Markov
transition probability matrix P by normalizing the entries
of A with respect to each column, i.e., each column sum
of P is equal to one, i [P] ij = 1. For such P, we model
the probabilities of visiting the other instances from the
current instance in a Markov chain transition probability
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graph. We construct a transition probability graph, all
the labeled and unlabeled instances are linked together.
Intuitively, a random walker starts from nodes with
known label to propagate labels among labeled instances
to the other unlabeled instances. The walker iteratively
visits its neighborhood of nodes with the transition prob-
ability graph based on A.

Next we use the idea in topic-sensitive PageRank [27]
as a Markov chain with restart [25] to solve the learning
problem. The random walker has a probability of « to
return to labeled instances at each step. It can be inter-
preted that during each iteration each instance receives
the label information from its neighbors via the random
walk, and also retains its initial label information. The
parameter aspecifies the relative amount of the informa-
tion from its neighbors and its initial label information.
Using this approach, we compute the steady state prob-
abilities that the random walker finally stay at different
instances. These steady state probabilities give ranking
of labels to indicate the importance of a set of labels to
an unlabeled instance.

More formally, we adopt the following equation:

U-=(1-a)PU+aQ, (2)

to compute the steady probabilities U = [u;, uy, ..., u]
(m-by-c matrix) according to P and Q = [qy, q3, - , q]
(m-by-c matrix) which is the assigned probability distri-
bution vector of the class labels that are constructed
from the labeled data. The restart parameter 0 < o <1
controls the importance of the assigned probability dis-
tributions in the labeled data to the resulting label rank-
ing scores of instances. Given the training data, one
simple way to construct q  is using a uniform distribu-
tion on the instances with the label class d. The summa-
tions of the entries of q, is equal to 1. More precisely,

1/l;, ifd eY;
[ad]; = { 0, otherwise. ®)
where [; is the number of instances with the label
class d in the training data.

The steady probability distribution vector U is solved
by the iteration method with an initial matrix Uy where
each column is a probability distribution vector. The
overall algorithm is summarized in Algorithm 2.

Algorithm 2 Markov Chain based Classifer

Input: P, Q and U, a, and the tolerance ¢

Output:the steady probability distribution matrix U

Procedure:

1: Sett =1;

2: Compute U, = (1 - )PU,; + 0Q;

3: If ||U, - U.1|| < ¢ then stop, set U = U, other-
wise set £ = t + 1 and goto Step 2.
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Experimental results

In this section, we compare the performance of ICAM
algorithm with other ICA-type collective classification
algorithms: ICA, Gibbs and ICML. We show that the
proposed algorithm outperforms these algorithms given
limited number of labeled training data.

KDD Cup 2001 data and baselines

The first experiment is conducted for Yeast gene func-
tion prediction from KDD Cup 2001 [28]. The dataset
includes 1,243 genes and 1,806 interactions among the
pair of genes encoding the proteins physically interact
with one another. These interaction relationships are
symmetric. The protein functions are autocorrelated in
this dataset and a subset of the data have been withheld
for testing. The task is to predict the functions of the
proteins encoded by the genes. There are 14 functions
and a protein can have one (or several) function(s).

We compare our proposed method with the following
three baseline learners:

1. ICA. The Iterative Classification Algorithm (ICA)
algorithm proposed by Neville et al. [15] is one of the sim-
plest and most popular CC methods that is frequently
used as baseline for CC evaluation in previous studies. For
multi-label problem, we transform it into multiple single-
label prediction problems using one-against-all strategy
and employ ICA to make prediction for each single-label
problem.

2. Gibbs. This baseline is another ICA-type CC algo-
rithm using the ICA iterative classification framework. In
each iteration, Gibbs re-samples the label of each node
based on the estimated label distribution [16]. We also
use one against-all strategy to convert the multi-label
problem into multiple single-label problems for the
Gibbs algorithm.

3. ICML. This baseline is a multi-label CC algorithm
proposed by Kongetal. [29]. ICML extends the ICA
algorithm to multi-label problems by considering depen-
dencies among the label set in the iteration process.

In the experiments, we use kNN as node classifier for
ICA, Gibbs and ICML. The parameter k was automatically
selected in the range of 10 to 30 at an increment of 5
using 3-fold cross validation on the training set. For the
proposed ICAM method, we learn the classifiers M, and
My, using Markov chain based models to perform separate
predictions. We set the value of o in the Markov chain
model to be 0.95 as suggested in [23].

Evaluation criteria

We evaluate the performance of our proposed method
with four multi-label evaluation measures: average preci-
sion, coverage, ranking loss, and one-error. They are
commonly used for multi-label learning algorithm
evaluation.
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Given a multi-label dataset D = {(x;, Y;)|1 < i < m},
where x; € X is an instance and Y; C ) is the true labels
of x;, and Y; = (Y1, Yo, - Yio) € {0, 1}°. Here x; belongs
to the j-th label when Yj; = 1, otherwise Y;; = 0, and c is
the number of possible labels. The evaluation measures
are defined using the following two outputs provided by
the learning algorithms: s(x;, [) returns a real-value that
indicates the confidence for the class label [ to be a
proper label of x; rank; (x; [) returns the ranks of class
label / derived from s(x;, I).

Coverage [30] evaluates how far we need, on the aver-
age, to go down on the list of labels in order to cover all
the true labels of an instance:

1 m
coverage(f) = max ranks(x;, 1) — 1.
ge(/) mZ, (i)

Ranking loss [30] evaluates the average fraction of
label pairs that are reverse ordered for the instance:

m

1
Z ARil,
|Yil|Yi]

where R; = {(I1, L) Ih(xi, 1) < h(xi, ), (1, 1) € Yi x Yil}-

One-error [30] evaluates how many times the top-
ranked label is not in the set of true labels of the
instance. Define a classifier H that assigns a single label
to an instance x; by H(x;) = argmaxjeyh (x;, I), then the
one-error is

rloss(f) =

1 m
one — error(H) = " Zl [H(x) ¢ Yi] .
i=
Average precision [30] evaluates the average fraction of
labels ranked above a particular label / € Yin Y:

= |Pl
avgprec(f) = Z |Y| Z ranks(x;, 1)’

where P; = {I' € Y;|rank(x;, ') < ranks(x;, 1)}.

The smaller the value of coverage ranking loss and
one-error, the better the performance. As for average
precision, the bigger the value the better the perfor-
mance, we report the results of 1-average precision.
Thus, for all evaluation metrics, the smaller the value
the better the performance.

Results on KDD Cup 2001 data

In this experiment, we test the performance of our pro-
posed ICAM algorithm on the KDD Cup 2001 dataset.
We randomly select 50% of data as training set, and use
the remaining 50% of data as test set. The experiment is
conducted 10 times by randomly selected training/test
split (each with a different random seed), and we report
the results of mean as well as standard deviation of each
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compared algorithm. The mean as well as standard
deviation of each compared method over the same 10
trails are reported.

Table 1 shows the performance of each compared
method on the Yeast protein dataset. The best perfor-
mance achieved among different compared algorithms is
marked in bolded. The results show the competitiveness
of the ICAM method against other learning methods.
Difference evaluation measures for the learning perfor-
mance are used in the experiments. One algorithm
rarely outperforms another algorithm in all criteria. For
example, a method that is optimal for instance ranking
loss usually does not perform well in coverage or one-
error [31]. In the experiments, we find that ICAM is
able to produce better results across all evaluation
metrics. These results are impressive and imply that the
ICAM algorithm is a good collective classification
method for protein function prediction.

We also test the performance of different comparable
algorithms with different number of labeled instances ran-
ging from 200 to 1000 with an increment of 200. For
example, we randomly pick up 200 instances as training
data. The remaining data is used for testing. The experi-
ment is conducted 10 times by randomly selecting train-
ing/test split. We report the results of mean as well as
standard deviation of each compared algorithms. Figure 2
shows the performance of ICAM and other learning meth-
ods with respect to different number of labeled instances.

We can see from the figure that ICAM (the black line)
has the best performance in general. ICAM outperforms
other algorithms using different number of training data,
especially when the size of training data is small. Specifi-
cally, ICAM achieves coverage improvement of 0.4916
over the second best method Gibbs (ICAM:4.2213 versus
Gibbs:4.7129) and achieves 0.0439 improvement on rank-
ing loss (ICAM:0.1184 versus ICML:0.1623) when the
number of training instance is 200. As the size of training
data increases, ICAM consistently achieves better perfor-
mance than other learning algorithms across all evalua-
tion criteria.

We find that ICAM outperforms the other ICA-type
methods substantially in terms of coverage. On the other
hand, ICAM only slightly outperforms other methods in
terms of one-error. We note that one-error and coverage
are two different quantitative measures. One-error evalu-
ates how many times the top-ranked label is not in the
set of possible labels. Thus, if the goal of a prediction
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system is to assign a single function to a protein (single-
label classification), the one-error is identical to test
error. Whilst coverage measures how far we need, on the
average, to go down on the list of the labels in order to
cover all the possible labels assigned to a protein. Cover-
age is loosely related to precision at the level of perfect
recall [30]. The experimental results indicate that the
top-rank label predictions from other ICA-type methods
are as accurate as those from ICAM, but the predictions
from ICAM are more complete than other ICA-type
methods. A reasonable explanation for this finding is that
the ICA-type methods focused on the single-label setting.
In this case, the multi-label problem is first transformed
into multiple single-label prediction problems, and then
the ICA-type methods use independent classifiers
induced from labeled training data for each problem.
Nevertheless, ICA-type approaches ignore the effect of
unlabeled data and the interdependence of the protein
functions. On the other hand, our proposed ICAM
approach is based on Markov chain based transductive
learning method that uses both label and unlabeled data
for label propagation. The Markov chain based method
takes the correlation of the classes into account to effec-
tively compute ranking of labels to an instance. There-
fore, ICAM provides an opportunity to leverage the
individual ICA-type classifiers to achieve higher coverage
of predictions.

Results on KDD Cup 2002 data
To validate the effectiveness of the proposed method
when there are only a limited number of positive labeled
training data, we conduct additional experiments on a
relatively large scale Yeast dataset from KDD Cup 2002.
It consists of 4507 instances (i.e., genes) from experi-
ments with a set of cerevisiae (Yeast) strains. Each
instance is described by various types of information
that characterize the gene associated with the instance.
The data sources for describing the instances include
abstracts from the scientific literature (MEDLINE), gene
localization and functions. We represent each instance
by a feature vector with 20545 dimensions. The pairs of
genes whose encoded proteins physically interact with
one another. Such protein-protein interaction network
consists of 1218 links.

Each instance is labeled with one of three class labels
“nc”, “control” and “change”. The “change” label indicates
instances in which the activity of the hidden system was

Table 1 The performance (mean + standard deviation) of compared algorithms on the Yeast protein dataset.

Methods Coverage Ranking Loss One-error 1-Average Precision
ICA 4217 £ 0273 0.140 = 0.013 0.042 + 0.005 0.155 + 0.005
Gibbs 4319 £ 0.195 0.148 + 0.008 0.043 £ 0.005 0.154 + 0.006
ICML 4409 £ 0091 0.153 + 0.006 0.043 + 0.007 0.162 + 0.006
ICAM 3.748 + 0.164 0.100 + 0.008 0.041 + 0.005 0.151 + 0.005
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Figure 2 The performance of different algorithms on the Yeast protein dataset with varying number of labeled instances.
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significantly changed, but the activity of the control sys-
tem was not significantly changed. The goal of the KDD
Cup 2002 task is to learn a model that can accurately
predict the genes that affect the hidden system but not
the control system. In this case, the positive class consists
of those genes with “change” labels and the negative class
consists of those genes with either “nc” or the “control”
label. This partition is highly imbalanced. The rate of
positive instances is only 1.2%. Therefore, we base our
evaluation analysis on Receiver Operating Characteristic
(ROCQ) curves, which reflect the true positive rate of a
classifier as a function of its false positive rate. ROC
curves are commonly used for evaluating highly skewed
binary classification problems. Recent study has shown
that ROC curves have a deep connection to the preci-
sion-recall (PR) curves [32].

To evaluate the performance of our ICAM algorithm,
we compare it with the linear kernel SVM method that
implemented by LIBSVM [33]. Figure 3 shows the results
of ROC curves on the KDD Cup 2002 task for ICAM and
SVM. The x-axis and y-axis of the figure refer to the false

positive rate and true positive rate respectively. We see
from the figure that our ICAM (the red curve), outper-
forms the SVM method (the blue curve) in general.
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Figure 3 ROC curve of baseline SVM and our ICAM method.
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Table 2 The description of experimental datasets used in the experiments on collaboration networks.

Datasets Number of Instances Number of Attributes Number of Links Number of Classes
DBLP-A 23,806 12,588 150,042 6
DBLP-B 16,020 8,595 95,108 6

ICAM achieves improvement of 10.0% (0.713 versus
0.613) on area under the ROC curves. The experimental
results imply that the proposed ICAM method is able to
deliver better performance in the situation of small posi-
tive labeled data size.

Experiments on collaboration networks

In this section, we compare the performance of the pro-
posed ICAM algorithm with other collective classification
algorithms on 2 multi-label collaboration networks datasets
to validate the effectiveness of the proposed method more
thoroughly. These collaboration networks datasets are col-
lected from the DBLP computer science bibliography web-
site, and used in prior work to study the multi-label
collective classification problems [29]. Their characteristics
are listed in Table 2. Specifically, we extract DBLP coau-
thorship networks that contain authors who have pub-
lished papers during the years 2000-2010 as the nodes of
the networks, and link any two authors who have collabo-
rated with each other. At each node, we extract a bag-of-
words representation of all the paper titles published by
the author, and used it as the attributes of the node. Each
author has one (or multiple) research topic(s) of interests
from 6 research areas. The representative conferences from
each area are selected as class labels. If an author has pub-
lished papers in any of these conferences, we assume the
author is interested in the corresponding research class.
The task is to classify each author with a set of multiple
research classes of interest. The conferences corresponding

to the class labels of two datasets (DBLP-A and DBLP-B)
are given as follows.
The classes of DBLP-A are as follows:

1 Database: ICDE, VLDB, SIGMOD, PODS, EDBT
2 Data Mining: KDD, ICDM, SDM, PKDD, PAKDD
3 Artificial Intelligence: IJCAI, AAAI

4 Information Retrieval: SIGIR, ECIR

5 Computer Vision: CVPR

6 Machine Learning: ICML, ECML

The classes of DBLP-B are as follows:

1 Algorithms & Theory: STOC, FOCS, SODA, COLT

2 Natural Language Processing: ACL, ANLP,
COLING

3 Bioinformatics: ISMB, RECOMB

4 Networking: SIGCOMM, MOBICOM, INFOCOM
5 Operating Systems: SOSP, OSDI

6 Parallel Computing: POD, ICS

We test ICAM and other ICA-type algorithms with dif-
ferent number of labeled instances from 1000 to 5000
with an increment of 500. The average results as well as
standard deviation of a 10-time data split are given in
Figure 4. The experimental results are in concordant with
our previous study. We observe that ICAM consistently
outperforms the other ICA-type methods on these two
datasets, especially when there are only limited number of

coverage
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Figure 4 The coverage performance of different algorithms with varying number of labeled instances: (a) DBLP-A dataset; (b) DBLP-B
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labeled instances, i.e. larger(smaller) improvement is
obtained with less(more) labeled data.

Conclusion

In this paper, we studied the label deficiency problem in
collective classification (CC). We showed the protein
function prediction problem from PPI networks can be
formulated as a problem, and proposed an effective and
novel Markov chain based CC learning algorithm, namely
ICAM. It focuses on how to use labeled and unlabeled
data to enhance the classification performance of PPI
network data. Experimental results on two real-world
Yeast PPI network datasets and two collaboration net-
work datasets showed that our proposed ICAM method
is effective in learning CC tasks in the paucity of labeled
data. In future, we will consider other semi-supervised
learning techniques for collective classification in PPI
network data and we will also research on other complex
biological networks, such as heterogeneous network
classification.
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