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Abstract

Background: It has recently become possible to rapidly and accurately detect epigenetic signatures in bacterial
genomes using third generation sequencing data. Monitoring the speed at which a single polymerase inserts a
base in the read strand enables one to infer whether a modification is present at that specific site on the template
strand. These sites can be challenging to detect in the absence of high coverage and reliable reference genomes.

Methods: Here we provide a new method for detecting epigenetic motifs in bacteria on datasets with low-
coverage, with incomplete references, and with mixed samples (i.e. metagenomic data). Our approach treats motif
inference as a kmer comparison problem. First, genomes (or contigs) are deconstructed into kmers. Then, native
genome-wide distributions of interpulse durations (IPDs) for kmers are compared with corresponding whole
genome amplified (WGA, modification free) IPD distributions using log likelihood ratios. Finally, kmers are ranked
and greedily selected by iteratively correcting for sequences within a particular kmer’s neighborhood.

Conclusions: Our method can detect multiple types of modifications, even at very low-coverage and in the
presence of mixed genomes. Additionally, we are able to predict modified motifs when genomes with “neighbor”
modified motifs exist within the sample. Lastly, we show that these motifs can provide an alternative source of
information by which to cluster metagenomics contigs and that iterative refinement on these clustered contigs
can further improve both sensitivity and specificity of motif detection.

Availability: https://github.com/alibashir/EMMCKmer

Background
DNA modification can occur in a wide variety of living
organisms, from bacteriophages [1,2] to prokaryotes [3,4]
and eukaryotes [5]. They range from directed and con-
trolled modifications to more irregular damage events
[6,7]. These modifications can trigger a wide variety of
functions, such as origin of replication (oriC) firing in
E. coli [8,9] and gene silencing in humans [10]. DNA
methylation is so far the best understood and most well
characterized of modification events[4,8,9,11]. In eukar-
yotes, DNA methylation has been most commonly seen
on cytosine at position 5 (m5C) [10,12]. In bacteria the

4th or 5th positions of C can be methylated (m4C, m5C),
as well as the 6th position in Adenine bases (m6A)
[3,4,8,11].
Multiple methods around high-throughput sequencing

technologies have emerged for genome-wide detection of
epigenetic events, the most common being bisulfite
sequencing. There, DNA is treated with a bisulfite reagent
that converts unmethylated Cytosine to Uracil, but does
not affect m5C bases, and is then amplified. After amplifi-
cation, high-throughput sequencing (typically short-reads
generated on the Illumina platform) is performed on the
library to identify positions of m5C in the genome [13].
This method, while extremely high-throughput and cost-
effective, is limited in the scope of modifications it can
detect. Only specific forms of methylation, that can be
enzymatically converted and mapped to well-defined refer-
ences, are targeted.
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Single Molecule Real Time (SMRT) sequencing from
Pacific Biosciences is a third-generation sequencing tech-
nology that monitors a polymerase in real time as it
sequences a single fragment of DNA. It has the unique
capability to directly detect native epigenetic modifications
by monitoring the time between base incorporations (or
inter-pulse durations, IPDs). In short, a modification (such
as methylation) causes variation (termed “kinetic varia-
tion”) in the rate at which a polymerase reads the tem-
plate. Flusberg et al. were the first to use synthetic DNA to
demonstrate that kinetic variations, as recorded by SMRT
sequencing, are associated with distinct DNA methylations
[14]. In particular, m6A and hydroxymethyl-5-Cytosine
(hm5C) were shown to be associated with reliable, robust
kinetic signatures. Advanced statistical methods were also
proposed to more accurately detect DNA modifications
when including a conditional random field (CRF) based
framework [15] and a hierarchical Bayesian based frame-
work [16]. The latter also explored the dependency of IPD
on local sequence context. Several genome-wide studies
applied SMRT sequencing to real bacterial genomic DNA
and characterized the methylomes of multiple species and
strains [3,4].
These studies have revealed that regulatory roles of bac-

terial methylations on transcription were more extensive
than anticipated. Specifically, by comparing a wild type
E. Coli strain that caused 2011 German outbreak with a
mutant strain without a restriction modification system,
Fang et al. showed that more than one fifth of all genes
were significantly differentially expressed [3]. The connec-
tion between differential methylation and differential gene
expression was implicated in cell-cycle regulation [11].
Motivated by such findings, an increasing number of
SMRT sequencing epigenetic studies are now being per-
formed on a diverse collection of bacterial species.
Though the precise methods for detecting DNA modi-

fications at the motif level vary between studies, the fun-
damental process follows a regular pattern:
Sequence a genome to at least 10X coverage (usually

higher) [17]
Map reads to a reference genome and identify IPD

distributions at each position
At each position compare IPD distributions of native

sequence to modification free sequences (either whole
genome amplified (WGA) or in silico control sequences)
to characterize significant deviations from expectation
Rank-order modified positions by significance in the

genome
Pass sequences surrounding the highest ranking posi-

tions to a motif finding program (such as MEME [18])
to identify significantly overrepresented motifs
Iteratively remove significant motif sequences from

ranked list, and rerun Step 5 until no new significant
motif appears.

This methodology allows for high-fidelity detection of
motifs, but is limited in several ways. First, it entails at
least moderate sequencing depth across a clonal gen-
ome. Very low-coverage could lead to many missed
motifs given the exponential like distribution of IPDs,
and the high sequencing error rate of the platform [19].
Similarly, if the samples were mixed, background noise
could pollute the true signal and lead to false negatives.
Second, these studies employ reference genomes (or
construct reference sequences via deep sequencing).
However, in some species/strains, such references are
not readily available. Furthermore, in a metagenomics
context one may not even know a priori what strains
are being sequenced. Additionally, the relative coverage
of genomes in a sample may vary tremendously. Detect-
ing motifs in this less-controlled setting has, to date,
been avoided.
Here, we describe a novel approach for detecting epige-

netic motifs without the need for high-coverage, clonal
samples or complete references. We assess the accuracy
of our method by testing it on six published bacterial
genomes, with matched native and WGA SMRT sequen-
cing data. Our results show that we can recover pre-
viously discovered motifs, with N(6)-methyladenine
((m6)A) and N(4)-methylcytosine ((m4)C) modifications,
in both low-coverage and high-contamination scenarios.
Additionally, we show the potential for metagenomics
applications by synthetically mixing three strains and
recovering many motifs, even when the motif sequences
overlap heavily between the genomes of interest. Then, in
a paired short-read metagenomics simulation we indicate
our ability to not only recover motifs but, also, cluster
fragmented contigs (by species) without additional geno-
mic features. Lastly, we show that motif predictions can
be iteratively refined using these predicted clusters.

Methods
Figure 1 shows a schematic representation of the first
steps of our analysis. We show a reference genome
(black) with modified positions indicated by squares, cir-
cles and triangles. When a base is modified, one expects
native reads (red) to contain longer IPDs at that position
than WGA reads (blue). In this example, the distribution
of IPDs corresponding to the second ‘A’ of “ACCACC”
appears to be, on average, longer in native reads than
corresponding WGA reads. In order to reduce the high
variability of individual IPD reads at a given genomic (or
contig) position and improve computational efficiency,
we maintain only the median IPD at each position. The
median is selected in lieu of the mean because it is more
stable to outliers. Selecting a single value (median) at
each position also ensures that each occurrence of a
motif in the genome is equally weighted. Without this,
sampling artifacts between WGA and native sequences
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could lead to spurious calls when a given context is
sampled disproportionality, as often occurs in low-cover-
age situations.
The approach then consists of three distinct compo-

nents. First, we compute log likelihood ratios (LLRs) on
distributions of median IPDs for individual kmers between
native and WGA datasets. Next, we use these LLRs to pre-
dict motifs that are likely to be modified using a two-phase
algorithm. Finally, when dealing with metagenomic data-
sets with no reference, we perform an iterative motif pre-
diction/clustering approach to improve the sensitivity and
specificity of our motif predictions.

LLR distributions on Kmers
In the first step, we construct a kmer table representing
all existing kmers observed in the reference genome (or
contigs). To date, most modified motifs detected using
SMRT sequencing have sizes that ranged from 4-6 base
pairs [4]. Though longer motifs have been observed, they
often are in the form of dyad motifs that contain degen-
erate bases (’N’s) between two shorter conserved motifs
[3,4]. As such, we enforce that 4 ≤ k ≤ 7 , where k is the
length of a motif. This makes the maximal size of our

kmer table:
∑

4≤k≤7
k · 4k . Let X be the set of all motifs

in our sample, and the length k of a motif, Xi, be given
by |Xi| . Let Xi,S represent the set of observed median
native IPDs for sample S (corresponding to some set of
reference sequences), and Xi,S′ represent the set of med-
ian WGA IPDs in S. For each Xi,S we calculate the LLR
(Xi.LLR) using Xi,S′ as the null distribution. We assume
that the log transformed median IPDs roughly follow a

normal distribution, following the site-specific model
LLR statistic used in the E. coli dataset referred to in
Table 1 [3]. As context effects play a more dramatic role
when grouping values across sites, the normality assump-
tion may be less robust in this scenario.
After LLRs have been computed for each motif, a sig-

nificance cutoff is calculated. In principle, the LLR distri-
bution should follow a chi-squared distribution [20]
(χ2 ). However, the LLRs are not completely independent
from one another. For example, motifs of size k are sub-
strings of motifs of size k+1. We term these motifs of size

Figure 1 Overview of Kmer Grouping of Motifs. Sequences are mapped to a genome or contig set (black). The median native (red) and WGA
(blue) IPD is taken at each position. Sequences are then deconstructed into kmers corresponding to potential motifs (indicated by circles,
rectangles, and triangles). The distributions of native and WGA median IPDs for each motif are used to generate its LLR.

Table 1 Previously identified motifs

Species Motif % Modified Study

E. coli G m6ATC 94.1 Fang 2012

E. coli ACC m6ACC 93.2 Fang 2012

E. coli CTGCm6AG 96.3 Fang 2012

G. metallireducens G m6ATCC 99.2 Murray 2012

G. metallireducens GG m6ATC 98.7 Murray 2012

G. metallireducens TCC m6AGG 98.2 Murray 2012

B. Cereus ATCC 10987 CGA m6AG 93.3 Murray 2012

B. Cereus ATCC 10987 A m4CGGC 33.8 Murray 2012

B. Cereus ATCC 10987 TGC m4CG 47.5 Murray 2012

C. Jejuni 81-176 RA m6ATTY 99.0 Murray 2012

C. Jejuni 81-176 GCA m6AGG 97.7 Murray 2012

C. Jejuni 81-176 GGRC m6A 97.6 Murray 2012

C. Jejuni NCTC 11168 RA m6ATTY 99.2 Murray 2012

C. Jejuni NCTC 11168 GKA m6AYG 98.2 Murray 2012

C. Salexigens RG m6ATCY 76.5 Murray 2012

Motifs from previous studies [3,4] used to validate the new method. Degenerate
bases are identified via corresponding IUPAC symbols. The “RG m6ATCY” motif
consensus corresponds to 4 distinct motifs.
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k ’parents’, the corresponding motifs of size k+1 ’children’
and the set of parent and children for a given motif Xi as
‘neighbors’. To reduce the dependence between neigh-
bors, we evaluate separately LLR significance for each Xi

only with motifs Xj ∈ X such that |Xj| = |Xi| . Unfortu-
nately, this does not break all dependencies; for each k,
motifs may contain overlapping prefix or suffix strings.
Additional heuristics are employed to address this in the
next section.
In practice, it was observed that fitting LLR distribution

to a χ2 overestimated significance, leading to a large

number of false positives. Instead, we choose to fit LLRs
using a gamma distribution (�) , which, in addition to
being more flexible, permits chi-squared distribution fit-
ting, as all χ2 exist as a special case of � . Modifications

are believed to cause increases in observed IPDs, and
LLRs derived from motifs where the WGA IPD is larger
than the native IPD are considered noise. The max such
LLR value is determined; all motifs with LLRs less than
either this value (or less than 99% of all remaining LLRs)
are included in the gamma distribution fit, in order to
mitigate fitting of outliers. Outlier motifs are then identi-
fied by computing pXi = 1 − CDF(� (Xi)) , and compar-
ing to a Bonferroni corrected significance cutoff, pγ k ,

where pγ k =
tγ
k4k

. In practice, motifs can be compared

after adjusting the survival probabilities for each motif Xi,
for the correction factor (Xi.GammaCorr = pXi · k4k ).

Obtaining significant motifs
Given the complex neighborhood of each motif, one
cannot simply take all motifs that pass the Bonferroni
corrected cutoff as significant. Many motifs that are
simply parents or children of a true motif would appear
significant. However, we cannot simply ignore all neigh-
bors of a motif Xi because its parents, children, or
“shifts” (where the prefix or suffix is shared between
kmers of the same length) may be significant in their
own right. For example, in Table 1, the modified E. coli
“GATC” motif is parent of two modified motifs in G.
metallireducens ("GGATC” and “GATCC”) which are, in
turn, parents of four modified motifs in C. salexigens).
To address these considerations, we developed a two-

phase algorithm (Algorithm 1). To summarize, motifs are
first ranked by their LLRs and a set of independent motifs
that pass the significance threshold is created (Algorithm 2).
Neighbors of these significant motifs are then identified and
an additional significance evaluation is performed for neigh-
bors of Phase 1 motifs (Algorithm 3).
Algorithm 1 MotifDetector(X,tg,tN)
1: O = MotifDetectPhase1 (X, tγ , � 0)
2: for Xm ∈ O do
3: NXm = Neighbors(Xm)

4: μ = MeanLLR(NXm) # Mean LLR for neighbors
5: s = StDevLLR(NXm) # Standard Deviation of

LLR for neighbors
6: for Ni ∈ NXm do

7: Ni.NormalProb =
1

σ
√
2π

∫ ∞

x
e

−(t − μ)2

2σ 2 dt

8: end for
9: end for
10: return MotifDetectPhase2 (N,tN, tg,O)
Phase 1 is detailed by Algorithm 2. We begin by ranking

all motifs by their LLR. The motif with the largest LLR
score, Xm is tested to see if its adjusted probability passes
the gamma probability cutoff, tγ (set to 10−6). If Xm does
not pass the cutoff, the algorithm terminates. If Xm passes
this cutoff it attempts to evaluate the neighborhood of a
motif. First, it checks if a parent of Xm has a higher LLR
than Xm itself (suggesting that motif is not truly driving
the observed deviation). If no such parent exists then Xm

is added to the set of true motifs, O, and its neighbors are
eliminated from further evaluation in Phase 1. Whether or
not such a parent is found, the algorithm is recursively
called on a new set X′ = X \ Xm .
After Phase 1 is complete, the neighbors of motifs in O

are evaluated for significance. The underlying assumption
is that if a neighbor, Ni of a true motif, Xm, is truly sig-
nificant, then its LLR should not only be an outlier within
the distribution of all kmers (since this is expected given
that a subset of their observations are driven by Xm ) they
should also be significant relative to the set of all neigh-
bors of Xm , NXm , of the same kmer size (the set of neigh-
bors Nj ∈ NXm such that |Nj| = |Ni|). We make the naïve
assumption that this distribution of LLRs neighbors
should be roughly normal for any motif length k, and
thus calculate the probability that a motif Ni is an outlier
relative to this distribution, Ni.NormalProb . Once this
probability is computed, we pass the neighbors to the
Phase 2 algorithm described by Algorithm 3. The algo-
rithm recursively selects the most significant motif, Ni ,
based on Ni.NormalProb . Similar to Phase 1, if this value
does not pass a Bonferroni corrected significance cutoff
for neighbors, tN (set to 10 standard deviations), the
algorithm terminates. If the algorithm passes this cutoff
as well as the previous gamma probability cutoff it is
selected as a true motif. Independent of whether the
motif is designated as significant, the algorithm is recur-
sively called on the remaining set of neighbors. These
motifs are combined with those discovered in Phase 1 to
yield the final set of motif predictions.
Algorithm 2 MotifDetectPhase1 (X,tg,O)
1: m = arg maxi(Xi.LLR) # find most significant motif
2: if Xm.GammaCorr < tg then
3: return O # if Xm fails tg threshold, terminate
4: end if
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5: if Xm.LLR > maxj∈Parents(Xm)(Xj.LLR) then
6: X = X\ Neighbors(Xm) # remove neighbors of Xm

from X
7: O = O ∪ Xm # add Xm to significant motifs
8: end if
9: return MotifDetectPhase1 (X \ Xm,tg,O) # get next

most significant motif
Algorithm 3 MotifDetectPhase2 (N,tN,tg,O)
1: m = arg mini(Ni.NormalProb) # find most signifi-

cantly deviated neighbors
2: if Nm.NormalProb < tN then
3: return O # if Nm fails neighbor threshold,

terminate
4: end if
5: if Nm.GammaCorr < tg,then
6: O = O ∪ Nm # if Nm passes tg threshold, it is

significant
7: end if
8: return MotifDetectPhase2 (N \ Nm,tN, tg,O) # get

next most significant motif

Clustering contigs by significant Kmers and improving
motif resolution
Metagenomic datasets provide additional challenges that
necessitate extensions to the single genome algorithm pre-
sented above. In most metagenomic samples, one does not
know the constituent genomes a priori; instead one uses
the Metagenomic reads to assemble contigs derived from
the mix of bacterial genomes in the sample. Also, one
might expect that the genomes do not share (or only par-
tially share) motifs. Algorithm 1 would only be expected
to identify motifs that are significant across the entire mix-
ture. Though it could likely detect some motifs, it would
potentially miss many true motifs that were either in gen-
omes with low abundance or had low kinetic variation. In
principle, the initial set of significant motifs could be used
as a feature set for clustering contigs. If two contigs have
similar epigenetic profiles, one might expect that they are
likely to belong to the same (or similar) genome(s).
Consider our set O of significant motifs discovered by

the previous two algorithms. Let Xi,Sc be the set of med-

ian IPDs for motif Xi in contig c and Xi,S′
c be the corre-

sponding set of WGA IPDs. For each contig, c, we

create a vector, Vc of size |O| , where each value, Vc
j

corresponds to the mean ratio of the median IPD per

positions, Vc
j =

Oj,Sc

Oj,S′
c

, when available. We can now clus-

ter contigs by their distances between this representative
vector. Here, we use K-means (with K = 3) for cluster-
ing with Euclidean distance as our metric. After cluster-
ing, new LLR values are calculated for each cluster, C,
of contigs. The motif detection algorithm is then run

independently on each of the clustered contig sets. This
enables one to detect distinct, potentially non-overlap-
ping motifs, within each cluster, leading to improved
sensitivity and higher specificity within each cluster.

Results
We assessed our ability to detect methylation on pub-
lished SMRT sequencing data from six different genomes
showed in Table 1 [3,4]. Runtimes for the full datasets
are seen in Supplemental Table 1 (additional file 1)
These particular datasets were selected as they had
matched native and WGA sequencing data for each gen-
ome. Additionally, the similarity of motifs (specifically in
the overlap of “GATC” like motifs) in three of the gen-
omes presents a particularly challenging test case for our
method, given the complex neighborhood relationships
between kmers within and across the 6 genomes. We ran
two different types of simulations on the combined data-
set. First, we examined each genome independently
at differing coverages and levels of background noise.
Second, we examined mixtures of the three genomes that
share similar motifs at different ratios.

Single genome simulation
For each genome we varied coverage from 0.01X to the
entire available coverage and noise levels from 0% to 99%
contaminant reads. In each dataset, noise was introduced
by mixing a corresponding proportion of WGA reads
with the downsampled native reads to create the simu-
lated “native” dataset. Figure 2 (Supplemental Figure 1)
(additional file 1) shows the absolute rank of true motifs,
across the spectrum of sequencing depth and WGA
contamination.
Except for highly degenerate motifs, at 10X coverage

nearly every true motif is consistently observed within the
top 5 LLRs (when controlling for significant neighbors of
higher ranked motifs, Figure 2), even when 90% of the
total sequencing data is WGA contamination. Most motifs
are highly ranked even when 95% of the sequencing data
is non-native sequence (GATC is detectable at 10X cover-
age even in 99% background noise). Additionally, most
motifs can be detected well below 1X coverage in low
noise scenarios.
The ranking information is not sufficient to determine

whether a motif is real, given that different samples may
contain varying numbers of true motifs. Moreover, com-
plex relationships between neighbors further complicate
assessment of “true” motifs based purely on a ranking
scheme. To address this we applied our two-phase algo-
rithm on the same datasets across all kmer sizes (Figure 3).
In low noise scenarios we detect all (or nearly all) motifs
with few false positives with the exception of C. jejuni
strains, where only partial detection is observed.
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Even in low-coverage scenarios the methods are often
able to correctly recall true motifs. In the case of E.coli
and G. metallireducens, this stays true, at 1X coverage,
even when 75% of the sequencing data is contamination
(at 10X coverage they are able to maintain nearly all true
positives even at 90% contamination). Additionally, in
most cases where a true motif is detected, it is higher
ranked (in either Phase 2 or Phase 3) than any of the false
positive motifs (data not shown). Notably, in simulation,
greater or equal than 6X coverage was required to detect
our strongest motif, “GATC” using the MEME algorithm
[18] (Figure 2) even without any added noise.
The nature of the false positives is also interesting. In

the case of C. salexigens the false positive sets always
contain “GATC”, a parent motif for all four of the true
motifs. Notably, when it appears, it is always present with
a higher LLR than “AGATCT”, the weakest of the four

motifs. Additionally, the second “false positive” (when
present) is usually “CCAC” a portion of a known dyad
motif ("CC m6ACN6CTC”) in C. salexigens [4]. This sug-
gests that the method could be readily extended to dyads
by examining these near true hits. In addition, at lower
significance cutoffs E. coli sometimes reports false posi-
tives with respect to neighbors of “GATC”, suggesting
potential improvements to the neighborhood significance
calculation, though some of these may be accounted for
by the “GATC” like dyad motif “(A/G)TC m6AN8GTGG”
[3] (data not shown).

Metagenomics simulation
Metagenomic datasets were derived from simulated mix-
tures of three genomes, E. coli, G. metallireducens and
C. salexigens, by sampling reads at different levels of cov-
erage from each sample. In addition to having detectable

Figure 2 LLR ranking of true Kmers. Each kmer is ranked by its LLR score for multiple coverages and levels of “noise” (colors). The x-axis
represents the coverage after downsampling (where “all” represents the entire dataset) and the y-axis the rank of the associated LLR value. Each
point represents the median of 10 simulations, with upper and lower quartile bounds given by error-bars. Vertical black dashed lines correspond
to the lowest coverage in which a majority of MEME runs (5 iterations) detect any true motif for the corresponding genome. The modified
position per kmer is highlighted in each subplot title. Children of “GATC” have been removed from E. coli plots and children of “GGATC” and
“GATCC” have been removed from G. metallireducens plots.
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motifs (Figure 2), these genomes were selected given their
shared “GATC” motif root, which could prove confound-
ing in a metagenomics context. For consistency we fixed
the total absolute PacBio sequencing depth (across the
mixture) to be 20X. We then varied the proportion of one
of the genomes from 1-18X, while splitting the remaining
coverage evenly among the two other genomes. For each
dataset, we also simulated a set of Illumina reads
(2 × 100 bp reads with 500 bp inserts and 1% error, using
wgsim [21]) at 25 times the coverage of the corresponding
PacBio read. The reads were then assembled using Meta-
Velvet and Velvet (using a kmer of size 60 and setting
500 bp as the expected insert length) [22,23]. The higher
sequencing depth for Illumina was thought to be natural
given its substantially lower per-base cost and the neces-
sity of having reasonable depth of each genome to perform
any sort of metagenomic assembly.
Each simulated metagenomic dataset was then ana-

lyzed for significant motifs pre- and post-clustering. In

the pre-clustering phase the same motif detection algo-
rithm was run on the mixed samples as was run on the
single genomes, except using the union of all reads and
genomic sequences as input. Figure 4 (top) highlights
the true motifs that are detectable at differing mixing
levels, pre-clustering.
The pre-clustering results are surprisingly consistent

across coverage levels. As expected, certain motifs
(“ACCACC”, “CTGCAG”, and TCCAGG) are sometimes
missed when their corresponding genome occur at low
abundances. However, at all coverage levels none of the
C. salexigens motifs are detectable. This is perhaps, not
unexpected as all of its motifs are children of “GATC”,
“GGATC”, and “GATCC”. Given that they are all the
same size (6) they most likely broaden the neighborhood
distribution making it difficult to define them as out-
liers. This is problematic even when C. salexigens is at
high-coverage because the shorter “GATC”, “GATCC”
and “GGATC” (in addition to being parents of the

Figure 3 Significant motifs returned by two-phase algorithm. For each simulation in Figure 2, we applied the two-phase algorithm to
determine a set of significant motifs. The x-axis corresponds to the coverage after downsampling and the y-axis to the number of detected
motifs. True positives counts (red) correspond to detection of motifs as described in Table 1. The total (and consensus) motifs for each are: 3 (3)
for E. coli, 3 (3) for G. metallireducens, 4 (1) for C. salexigens, 3 (3) for B. cereus, 7 (3) for C. jejuni 81-176, 8 (2) for C.jejuni NCTC 11168). Parent false
positives counts (green) are the parents of true motifs all other false positives are denoted by blue. Each row of subplots corresponds to a
specific bacteria. Each column of subplots corresponds to the simulated WGA noise fraction. Error bars correspond to upper and lower quartiles.
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C. salexigens motifs) have more occurrences, thus allow-
ing small differences in their distributions to have high
LLRs. Additionally, as expected from the single genome
simulations, the number of false positives was low (and
often non-existent) across all simulations.
These issues are partially resolved post-clustering, as

shown in Figure 4 (bottom). In our simulation we com-
puted motif vectors for all contigs greater than 10 kb.
Figure 5 shows example PCA analysis (plotting for the
first two components) at different coverage combinations
of the contigs. Though contig separation is certainly clea-
ner at more even coverage levels, even at highly skewed
coverages the contigs are largely spatially separated
according to their constituent genomes. In most coverage
senarios, three out of the four true C. salexigens motifs are
able to be resolved, though “AGATCT” is consistently
missed (Figure 4). Additionally, nearly all other motifs for
the other two genomes are detectable in 100% of simu-
lated datasets, across the full spectrum of coverages.

Discussion
As single molecule sequencing becomes more common for
epigenetic and assembly applications, approaches which
take advantage of its unique features are increasingly

necessary. Our approach builds on earlier studies to allow
applications that were previously incompletely addressed:
low coverage sequencing and metagenomics. On clonal
genomes, we are able to detect most motifs at extremely
low-coverage (0.1X), enabling the potential for identifying
methylation motifs across a large number of genomes at
extremely low-cost. In metagenomic simulations, we
recover nearly all motifs at lower total coverage than is
typically used for a single genome (20X) even when the
genomes have highly disparate coverage profiles. Addition-
ally, we show that these motifs provide an unbiased feature
set for clustering contigs, potentially enabling further
improvement to current metagenomic assembly and anno-
tation approaches.
Some of the results shown are not immediately intui-

tive. For example, in Figure 4 post-clustering the metage-
nomics algorithm seemingly outperforms the single
genome (Figure 3) scenario at the corresponding levels of
coverage and contamination. The success of the two-step
metagenomics pipeline is contigent on there being rea-
sonable separation between contigs. This separation
means that the clusters provide inputs that are relatively
low in contamination when iterating the motif calling
algorithm on each cluster, leading to the high recall rate

Figure 4 True motifs observed from mixing genomes. Each subplot corresponds to results when varying the corresponding genome (and
keeping the remaining two genomes at equal coverage). The y-axis corresponds to different mixture levels, and the x-axis to each motif (with
motifs colored by their genome of origin). Gray-scale gradient corresponds to detection rate over 5 simulations. Top plot is Pre-clustering motif
detection, bottom Post-clustering motif detection.
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shown post-clustering in Figure 4 relative to Figure 3.
However, even in the ideal coverage scenario there is still
some contamination in each cluster. This small degree of
contamination potentially leads to missing the weaker
“AGATCT” motif as it is outcompeted by false positive
parental motifs. Iteratively running the clustering algo-
rithm on new sets of motifs, until convergence, could
potentially mitigate this issue.

Despite these benefits, the proposed method has limita-
tions over other kinetic variation approaches. First, it relies
on genome-wide motif signals, making it unable to directly
assess site-level epigenetic markers. Unlike previous stu-
dies we cannot indicate the fraction of motifs modified or
differential sites of modification between related samples
[3,4]; at best we can only return a confidence value for
a motif relative to other motifs in the sample. Moreover,

Figure 5 PCA plot of contig vectors. PCA plots for contig vectors representing the mean native vs. WGA IPD ratio for the set of significant motifs
returned pre-clustering. Representative PCAs were chosen across multiple coverage profiles. Contigs are colored by their top genomic mapping hit via
NUCmer [36].
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this approach cannot take advantage of the richer models
of kinetic variation that have been suggested, such as the
CRF [15]. Context effects beyond the kmer of interest
have been shown to greatly impact the variation in IPDs
[16]. For example, we do not highly rank the “GCAAGG”
in C. jejuni 81-176 at 10X or less coverage (Supplemental
Figure 1, additional file 1), and only moderately rank it at
full coverage. This suggests that specific motif contexts
still may require high depth even with this method. Nota-
bly, if we reduce the gamma distribution cutoff threshold
to 5% (pre-Bonferonni correction) this motif (along with 4
other true positives) are identified (with the addition of
3 false positives). Ideally, the kmer-based approach could
be used to identify candidate motifs to be rescored at each
positional occurrence using site-specific tests. This would
incur lower multiple hypothesis correction penalties than
typical site-specific tests while simultaneously reducing
false positives in both low-coverage and metagenomic set-
tings, especially since we are currently forced to employ
highly stringent significance cutoffs as empirical fittings of
data to gamma and normal distributions are not necessa-
rily well-calibrated.
Outside of the kinetic variation literature, there are far

more complex algorithms that could be employed in the
motif detection phase. There is a long history of motif
detection algorithms employing a diverse set of approaches,
including expectation maximization (MEME [24]), Gibbs
sampling (Consensus [25]), suffix and mismatch trees
(Weeder [26] and MITRA [27]), and graph-theoretic stra-
tegies (cWinnower [28]). These approaches typically look
for enrichment of sequence motifs, as opposed to evaluat-
ing windows around ranked (modified) positions as
one expects when presented with IPD data. Due to these
constraints most studies have followed the iterative IPD
sorting and enrichment procedure discussed in the intro-
duction. However, the recent MotifMaker tool has directly
integrated branch and bound search into the epigenetic
motif finding problem [29], which should permit very sen-
sitive searches, and if coupled with the suggested clustering
strategy, could potentially be applied in a metagenomic set-
ting. By attempting to integrate some of these previous
approaches, one could potentially eliminate many of the
false positive ‘parental’ signals we observe and better distin-
guish between neighboring signals. Additionally, these stra-
tegies appear necessary when confronting more complex
motifs, as discussed below.
Motifs employing degenerate bases are not directly

interrogated in the current implementation. In both
C. jejuni strains we struggle to detect most motifs. This
can be partially be explained by their degenerate
sequence motifs, leading us to pick up parental motifs
instead of the true children motifs. Explicitly, examining
motifs with degenerate bases could improve sensitivity
in low-coverage scenarios where few observations of

each constituent motif exist. Including all degenerate
kmers would substantially increase the number of tests;
accounting for all 15 possible IUPAC symbols creates

k · 15k new motifs - which may become intractable for
larger kmers. In the case of “RGATCY” shown in Table
1, the current implementation separately detects each of
the four cases: “AGATCC”, “GGATCT”, “GGATCC”,
and “AGATCT”. Interestingly, the “AGATCT” motif
typically does not pass our significance threshold (or is
preempted by the parent motif, “GATC”). This suggests
either a weaker signal for this motif or that this variant
of the consensus motif is not as frequently methylated.
The latter explanation could explain the rate of detec-
tion in the previous study (76.5% as shown in Table 1).
More statistical rigor could be applied to fitting the
neighborhood distributions. The normal distribution
may not adequately represent the tails of the neighbor
LLR distributions and other (chi-squared or gamma)
distributions should be considered. Additionally, a more
accurate approach for rescoring parents would be to
greedily remove IPDs present in higher-scoring children
motifs and recalculate LLRs. The improved specificity
would come at the cost of increased computation time.
Additionally, dyad motifs, such as “CACCN6CTC” and

“GAGN6GTGG” in C. salexigens [30], are not easily
detected via single kmer approaches. Creating degener-
ate motifs for all reasonable sized gaps is computation-
ally expensive. In practice, we observed that these motifs
sometimes occur as false positives within the current
study. Therefore, a two pass approach which flags short
kmers (from 3-6) passing a coarse significance threshold
and then examines such motifs for potential dyad sig-
nals if they do not pass the monad significance thresh-
old could dramatically reduce the number of dyad
comparisons and may improve our power to detect real
modifications.
Though the current approach relies on mapping to

known references (or de novo assembled contigs), these
are not strictly necessary to perform motif analysis on
metagenomic datasets. With perfect reads, kmer distribu-
tions could be constructed from the raw reads. In prac-
tice, high error-rates not only entail a mapping step but
we must also enforce a window of exact match to obtain
reliable IPDs. One alternative approach is to build a data-
base of long kmers, D, of length kD and align the reads
to these kmers (or a debruijn graph constructed on D)
instead of contigs. This tiered kmer strategy would elimi-
nate context effects (assuming kD is long enough) while
permitting more sensitive detection of low proportion
genomes that are not accurately assembled and allowing
for resolution of kmers at contig boundaries. Recently,
various error-correction approaches have arisen for Pac-
bio sequencing [31] that suggest that short reads could
be potentially eliminated from the process altogether.
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However, currently it is still not as cost-effective to per-
form the high-depth metagenomic sequencing necessary
to detect, and accurately define kmers for low proportion
genomes using solely SMRT sequencing. Thus, hybrid
assembly approaches seem more pragmatic [32-34].

Conclusion
Clear benefits exist for integrating this SMRT sequencing
data and the proposed analysis approaches into existing
metagenomics pipelines. Assembly from current metage-
nomics pipelines allows for a set of reference contigs to
map raw reads and enumerate motifs. Annotation pipe-
lines that provide phylogenetic information, such as
MEGAN [35], could aid in the clustering of contigs for
motif detection. Analogously, the long reads associated
with SMRT sequencing along with the motif detection
algorithm we present here, have the potential to substan-
tially reduce contig fragmentation and improve clustering
of contigs (especially in the case of novel genomes with
poor annotation). Beyond extending current pipelines,
our method provides a framework for using epigenetic
profiles as an alternative metric for metagenomics sample
comparison.
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