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Abstract

Background: Interest in de novo genome assembly has been renewed in the past decade due to rapid advances
in high-throughput sequencing (HTS) technologies which generate relatively short reads resulting in highly
fragmented assemblies consisting of contigs. Additional long-range linkage information is typically used to orient,
order, and link contigs into larger structures referred to as scaffolds. Due to library preparation artifacts and
erroneous mapping of reads originating from repeats, scaffolding remains a challenging problem. In this paper, we
provide a scalable scaffolding algorithm (SILP2) employing a maximum likelihood model capturing read mapping
uncertainty and/or non-uniformity of contig coverage which is solved using integer linear programming. A Non-
Serial Dynamic Programming (NSDP) paradigm is applied to render our algorithm useful in the processing of larger
mammalian genomes. To compare scaffolding tools, we employ novel quantitative metrics in addition to the
extant metrics in the field. We have also expanded the set of experiments to include scaffolding of low-complexity
metagenomic samples.

Results: SILP2 achieves better scalability throughg a more efficient NSDP algorithm than previous release of SILP.
The results show that SILP2 compares favorably to previous methods OPERA and MIP in both scalability and
accuracy for scaffolding single genomes of up to human size, and significantly outperforms them on scaffolding
low-complexity metagenomic samples.

Conclusions: Equipped with NSDP, SILP2 is able to scaffold large mammalian genomes, resulting in the longest
and most accurate scaffolds. The ILP formulation for the maximum likelihood model is shown to be flexible
enough to handle metagenomic samples.

Introduction
De novo genome assembly is one of the best studied
problems in bioinformatics. Interest in the problem has
been renewed in the past decade due to rapid advances
in high-throughput sequencing (HTS) technologies,
which have orders of magnitude higher throughput and
lower cost compared to classic Sanger sequencing.
Indeed, top-of-the-line instruments from Illumina and
Life Technologies are currently able to generate in a sin-
gle run billions of reads with an aggregate length of
hundreds of gigabases, at a cost of mere cents per

megabase. However, most HTS technologies generate
relatively short reads, significantly increasing the compu-
tational difficulty of the assembly problem. Despite
much work on improved assembly algorithms for HTS
shotgun reads [1-6], de novo assembly remains challen-
ging, often resulting in highly fragmented assemblies,
see [7-14] for recent reviews and benchmarking results.
For example, the recent Assemblathon 2 community
effort to benchmark de novo genome assemblers [7]
shows that the performance of evaluated assemblers is
highly variable from dataset to dataset and generally
degrades with the complexity of the sample.
To increase the utility of such fragmented assemblies,

additional long-range linkage information is typically
used to orient, order, and link contigs into larger
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structures referred to as scaffolds. Although long-range
linkage information can be generated using a variety of
technologies, including Sanger sequencing of both ends
of cloned DNA fragments of up to hundreds of kilo-
bases, Pacific Biosciences reads of up to tens of kilobases
[15], and optical maps [16], the most common type of
data used in scaffolding are HTS read pairs generated
from DNA fragments with length ranging between hun-
dreds of bases to tens of kilobases. While HTS read
pairs are relatively easy to generate, the linkage informa-
tion they provide is noisy due to library preparation arti-
facts and erroneous mapping of reads originating from
repeats. The general scaffolding problem is known to be
computationally NP-hard when linkage data contains
errors [17]. Moreover, the associated contig orientation
and contig ordering problems are intractable as well: the
orientation problem is equivalent to finding a maximum
bipartite subgraph, whereas the ordering problem is
similar to the Optimal Linear Arrangement problem,
both of which are NP-hard [18]. Due to the intractabil-
ity of the problem, greedy heuristics have been
employed in practical scaffolding methods such as
[17,19]. Scaffolding methods such as SOPRA [20] reduce
the size of the problem by iteratively removing inconsis-
tent links and contigs, while MIP [21] heuristically parti-
tions the biconnected components of the scaffolding
graph when they are too large to scaffold optimally by
mixed integer programming. In SLIQ [22], inequalities
are derived from the geometry of contigs to predict the
orientation and ordering of adjacent contigs. To find a
feasible solution with minimum read pair inconsistency,
OPERA [23] provides a novel dynamic programming
algorithm.
Algorithms based on explicit statistical models are cur-

rently gaining popularity in the area of genome assembly
[24], with notable advances in the use of maximum likeli-
hood (ML) methods for both contig assembly [25] and
assembly evaluation [26]. In this paper we introduce a
highly scalable algorithm based on likelihood maximiza-
tion for the scaffolding problem. The key step in our
algorithm is the selection of contig orientations and a set
of read pairs consistent with these orientations (and
locally consistent with each other) such that the overall
likelihood of selected pairs is maximized. As in previous
works [25,26], the likelihood model we employ assumes
independence of the HTS read pairs. The currently
implemented model takes into account read mapping
uncertainty due to overlap with annotated contig repeats
as well as variations in contig coverage. The model can
be easily extended to incorporate sequencing errors and
the distribution of insert lengths; currently we only use
the latter to eliminate read pairs with highly discordant
insert length lower-bounds and to compute ML estimates
for the final gap lengths. Likelihood maximization is

formulated as an integer linear program (ILP). Unlike
MIP [21], our ILP formulation selects contig orientations
and a set of locally consistent read pairs but neither
explicitly orders the contigs nor fully guarantees global
consistency of selected pairs. The latter are achieved by
decomposing the set of selected read pairs into linear
paths via bipartite matching.
Scalability of our algorithm, referred to as SILP2, is

achieved by adopting a non-serial dynamical program-
ming (NSDP) approach [27]. Rather than solving one
large ILP, several smaller ILPs can be solved seperately
and composed to find the complete and optimal solu-
tion. The order in which the smaller ILPs are solved
is determined by the 3-connected components of the
underlying scaffolding graph, which can be efficiently
identified in linear time via the SPQR-tree data structure
[28,29].
Compared to the preliminary version of the algorithm

published in [30], referred to as SILP1, SILP2 is based
on explicit formalization of likelihood maximization as
the optimization objective. We present experiments with
several likelihood models capturing read mapping
uncertainty and/or non-uniformity of contig coverage.
SILP2 also achieves higher scalability by using a more
efficient NSDP algorithm than SILP1. This greatly
reduces the need for heuristics such as the hierarchical
scaffolding approach of SILP1, whereby scaffolding is
performed by progressively decreasing the minimum
bound on the size of read pair bundles. We have also
expanded the set of experiments to include scaffolding
of low-complexity metagenomic samples. The results
show that SILP2 compares favorably to previous meth-
ods OPERA and MIP in both scalability and accuracy
for scaffolding single genomes of up to human size, and
significantly outperforms them on scaffolding low-com-
plexity metagenomic samples.

Methods
Given a set of contigs C and a set of read pairs R, the
scaffolding problem asks for the most likely orientation
of the contigs along with a partition of the contigs into
ordered sets connected by read pairs of R. The main
steps of the SILP2 algorithm are as follows (see Figure 1
for a high-level flowchart). We first map the read onto
contigs using Bowtie2 [31], disregarding pairing infor-
mation in the mapping process. Alignments are pro-
cessed to extract read pairs for which both reads have
unique alignments, and the alignments are onto distinct
contigs. A scaffolding graph is then constructed with
nodes corresponding to contigs and edges correspond-
ing to extracted read pairs. The scaffolding graph is
partitioned into 3-connected components using the
SPQR tree data structure [28,29] implemented in OGDF
[32]. The maximum-likelihood contig orientation is
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formulated as an ILP that is efficiently solved by apply-
ing non-serial dynamic programming based the SPQR
tree data structure. Next, scaffold chains are extracted
from the ILP solution by using bipartite matching and

breaking remaining cycles (see Section S1 in Additional
file 1). Finally, maximum likelihood estimates for the
gap lengths are obtained using quadratic programming
(see Section S2 of Additional file 1). Below we detail the
key steps of the algorithm, including scaffolding graph
construction, the maximum likelihood models used for
contig orientation and mapped read pair probability esti-
mation, then we briefly overview the orientation, the ILP
formulation and the improved NSDP algorithm for effi-
ciently solving the ILP.
Scaffolding graph. The scaffolding problem is mod-

eled with a scaffolding graph G = (V, E), where each
node i ε V represents a contig and each edge (i, j) ε E
represents all read pairs whose two individual reads are
mapped to the contigs i and j, respectively. Each read in a
pair is aligned either to the forward or reverse strand of
corresponding contig sequence, and this results in 4 pos-
sible configurations for a read pair (denoted A, B, C, or
D, see Figure S1 in Additional file 1) which can be mod-
eled as a bidirected edge [23,30,33]. Orientation of con-
tigs and the bidirected orientation of edges should agree
(be concordant) with each other and should not result in
any directed cycles for linear genomes (e.g. eukaryotes).
Maximum likelihood scaffold graph orientation. As

an intermediate step towards solving the scaffolding
problem, we consider the problem of determining an
orientation of the scaffolding graph, which includes
choosing one of the two possible orientations for each
node (contig) i ε V as well as choosing for each edge
(i, j) ε E one of the four bidirections that is concordant
with the orientations of i and j. A common way to
reduce an inference problem to an optimization pro-
blem is to seek a feasible solution with maximum likeli-
hood. Let each observation, i.e., aligned read pair r ε R,
have a probability pr of being correct. Any feasible con-
tig orientation O = O(C) either agrees or disagrees with
the read pair r. Let RO be the set of read pairs agreeing
with O. Assuming independence of observations, the
likelihood of an orientation O can be written as

∏
r∈RO

pr
∏

r∈R−RO

(1 − pr) =
∏
r∈R

(1 − pk)
∏
r∈RO

(
pr

1 − pr

)

and hence its log-likelihood is∑
rεR

ln(1 − pr)+
∑

rεRO
ln

(
pr

1−pr

)
. Since the first sum

does not depend on the orientation O, maximizing the
log-likelihood is equivalent to maximizing

∑
r∈RO

ln
(

pr
1 − pr

)
(1)

over all contig orientations O.

Figure 1 SILP2 Flowchart.
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Mapping probability estimation. If pr ’s are assumed
to be the same for all read pairs, then the objective (1)
reduces to maximization of the number of read pairs
that agree with the contig orientation O. We consider
the following factors that reduce the probability pr that
read pair r is aligned correctly:

1. Overlap with repeats. As noted above, only pairs
for which both reads map uniquely to the set of con-
tigs are used for scaffolding. Still, a read that fully or
partially overlaps a genomic repeat may be uniquely
mapped to the incorrect location in case repeat
copies are collapsed. We preprocess contigs to anno-
tate repeats from known repeat families and by
recording the location of multimapped reads. An
estimate of the repeat-based mapping probability

prepr is found by taking the percentage of bases of
r aligned to non-repetitive portions of the contigs.
2. Contig coverage dissimilarity. Although sequen-
cing coverage can have significant departures from
uniformity due to biases introduced in library pre-
paration and sequencing, the average coverage of
adjacent contigs is expected to be similarly affected
by such biases (all read alignments, including ran-
domly allocated non-unique alignments, are used for
estimating computing average contig coverages). If
the two reads of r map to contigs i, respectively j,
the coverage-based mapping probability of r, pcovr , is
defined as 1 − |coveragei − coveragej |/(coveragei +
coveragej).

Note that factors such as repeat content of the
sequenced genome and sequencing depth will determine
how informative repeat-based and coverage-based map-
ping probabilities are. Depending on these factors, either
pcovr , pcovr , or their product may provide the most accu-
rate estimate for pr. Mismatches and indels in read
alignments, that can be caused by sequencing errors or
polymorphisms in the sequenced sample, can easily be
incorporated in the estimation of mapping probabilities.
Integer linear program. Our integer linear program

maximizes the log-likelihood of scaffold orientation
using the following boolean variables:

- a binary variable Si for each contig i, with Si equal
to 0 if the contig’s orientation remains the same and
Si = 1 if the contig’s orientation is flipped w.r.t.
default orientation in the final scaffold.
- a binary variable Sij for each edge (i, j) ε E, which
equals 0 if none or both ith and jth contigs are
flipped, and equals 1 if only one of them is flipped.
- binary variables Aij (respectively, Bij , Cij , and Dij)
which are set to 1 if and only if an edge in state A

(respectively, B, C, or D) is used to connect contigs i
and j (see Figure S1 in Additional file 1). For any
contig pair i and j, at most one of these variables
can be one.

Let Ar
ij (respectively, B

r
ij , C

r
ij or Dr

ij ) denote the set of
read pairs supporting state A (respectively, B, C, or D),

between the ith and jth contig. Define the constant Aw
ij by

Aw
ij =

∑
r∈Ar

ij

ln
(

pr
1 − pr

)

with Bw
ij , C

w
ij and Dw

ij defined analogously.
We now ready to formulate the ILP for maximizing

the log-likelihood of a scaffold orientation:
∑
(i,j)∈E

(Aw
ij · Aij + Bw

ij · Bij + Cw
ij · Cij +Dw

ij · Dij) (2)

where

Sij ≤ Si + Sj Sij ≤ 2 − Si − Sj (3)

Sij ≥ Sj − Si Sij ≥ Si − Sj (4)

Aij +Dij ≤ 1 − Sij Bij + Cij ≤ Sij (5)

In this ILP, constraints (3-5) enforce agreement
between contig orientation variables Si’s and edge orien-
tation variables Sij’s, Aij’s, Bij’s, Cij’s, and Dij’s.
Since eukaryotic genomes are linear, a valid scaffold

orientation should not contain any cycles. The con-
straints (5) already forbid 2-cycles. Additionally, 3-cycles
are forbidden with the constraints shown in Figure S2
in Additional file 1. Larger cycles generated in the ILP
solution are broken heuristically because it is infeasible
to forbid all of them using explicit constraints.
Non-serial dynamic programming. For large mam-

malian genomes, the number of variables and con-
straints is too large for solving the ILP (2)-(5) via
standard solvers (SILP2 uses CPLEX [34] which is avail-
able free of charge for academic institutions). We adopt
the non-serial dynamic programming (NSDP) paradigm
to overcome this barrier and to optimally solve the pro-
blem. NSDP is based on the interaction graph with
nodes corresponding to ILP variables and edges corre-
sponding to the ILP constraints - two nodes are adja-
cent in the interaction graph if their associated variables
appear together in the same constraint. Through the
NSDP process, variables are removed in the way that
adjacent vertices can be merged together [27]. The first
step in NSDP is identifying weakly connected compo-
nents of the interaction graph. We find the 2- and 3-
connected components of the interaction graph with
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efficient algorithms and then we solve each component
independently in such a way that the solutions can be
merged together to find the global solution.
All constraints (3-5) as well 3-cycle constraints con-

nect Si’s following the edges of the scaffolding graph.
Therefore, the Si-nodes of the interaction graph for our
ILP will have the same connectivity structure as the
scaffolding graph G = (V, E). As it has been noticed in
[23], the scaffolding graph is a bounded-width graph
and should be well decomposable in 2- and 3-connected
components. The SPQR-tree data structure is employed
to determine the decomposition order for 3-connected
components the scaffolding graph [28]. The solution to
each component of the scaffolding graph is found using
a bottom up traversal through which each component is
solved 2 times: for similar and opposite orientations of
the common nodes. The objective value of each case is
then entered into the objective of the parental compo-
nent. Having the solution of all components, top down
DFS starting from the same root is performed to apply
the chosen solution for each component.
Below we illustrate the way how the solution is com-

puted in stages through each of which the results of the
previous stage are combined to dynamically solve the pro-
blem. Obviously, an isolated connected component will
not influence other components. Moreover, it has been
shown in [21] that 2-connected components can be solved
independently. As it can be seen in Figure 2(a), after
removing the articulation point (1-cut) to decompose the
graph into 2-connected components, each component is
solved with the same arbitrary direction assigned to the
common node, and then the resulting solutions are
collapsed into the parent solution. The pre-assigned direc-
tion will never affect the parent solution since all contigs
in the scaffold can be flipped at the same time.
Still, 2-connected components can be very large, so we

look for 2-cuts in order to decompose the graph into sig-
nificantly smaller 3-connected components. Figure 2(b)
shows that splitting the two 2-cut nodes i and j decom-
poses the graph into 3-connected components A and B.
The ILP for component A is solved twice to obtain

(1) the ILP solution sol00 in which the 2-cut
nodes i and j are constrained to both have default
orientations;
(2) the ILP solution sol01 in which the 2-cut nodes i
and j are constrained to have opposite orientations.

The two solutions are combined to solve the ILP for
component B. The ILP objective for component B
should be updated by adding the term of sol00+(sol01-
sol00) · Sij or, equivalently, the value sol00 should be

added to Aw
ij and Dw

ij and the value sol01 should be

added to Bw
ij and Cw

ij . The overall solution is obtained

by identifying the common nodes of the components. In
the example on Figure 2(b), the optimal solution hap-
pens when 2-cut nodes have opposite directions. The
corresponding solution of ILP for the component A
should be incorporated in the overall solution. When
the scaffolding graph has 3-connected components too
large to handle, 3-cuts could also be used for
decomposition.
The pseudo-code of the SILP2 NSDP algorithm for

processing 3-connected components is given in Figure 3
SILP2 is different from SILP1 in the else clause - instead
of solving ILP for each of four possible combinations of
assignments for Si and Sj as in SILP1, ILP is solved only
two times for combinations Si = 0 & Sj = 0 and Si = 0 &
Sj = 1.
Thinning heuristic. Unfortunately the largest tri-con-

nected component may still induce an ILP too large for
CPLEX to solve in a reasonable amount of time. In
order to address this problem a thinning heuristic is
applied to the scaffolding graph. This scenario can be
detected by setting a threshold on the maximum num-
ber of contigs allowed in a tri-connected component.
When a component exceeds the threshold the number
of read pairs necessary to induce an edge is increased by
one and decomposition recomputed until there is no
component above the threshold.

Results and discussion
Datasets and quality measures
In order to asses the quality and scalability of our scaf-
folding tool we developed a testing framework which
closely mimics real world scaffolding problems. We uti-
lized the Staphylococcus aureus (staph), Rhodobacter
sphaeroides (rhodo) genomes and chromosome 14 of
HapMap individual NA12878 (chr14) from the GAGE
[14] assembly comparison. Finally, in a test case
designed to stress scalability, contigs from a draft assem-
bly of individual NA12878 (NA) created by [35] were
scaffolded using short-read data.
In all test cases the read pairs used for scaffolding are

aligned against the contigs using bowtie2 [36]. Each
read in a pair was required to be aligned uniquely
according to the default scoring scheme, for the pair to
be considered valid. Each scaffolder was given the same
set of valid read pairs. Two of the leading external scaf-
folding tools MIP [21] and OPERA [37] are used in this
comparison. Although many other tools do exist, these
two are widely utilized and actively maintained.
The three small test cases are used to test both correct-

ness and scalability of the scaffolding tool. In order to
test correctness, contigs simulating a draft assembly were
created by placing gaps in the genome. The contig and
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Figure 2 Solving the maximum likelihood ILP via graph decomposition. (a) Graph decomposition into 2-connected components: Red
(1-cut) node splits the graph into two 2-connected components A and B. The ILP is solved for each component separately. If the direction of
the cut node in the ILP solution for B is opposite to the one in the solution for A, then the solution of B is inverted. Then ILP solutions for
A and B are collapsed into the parent solution. (b) Graph decomposition into two 3-connected components: Red and yellow (2-cut) nodes split
the graph into two 3-connected components A and B. The ILP is solved for component A twice - for the same and the opposite directions
assigned to two 2-cut nodes. Then these two solutions are used in the objective for the ILP of component B. Finally, ILP solutions for A and B
are collapsed into the parent solution.
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gap sizes were sampled uniformly at random from the
collection of all the assemblies used in the GAGE com-
parison. The procedure to generate the contigs was to
alternatively sample with replacement from the set of all
contig sizes, and gap sizes. In this way a simulated scaf-
fold can be generated so that the position and relative
orientation of all contigs and all gap sizes are known.
The orientation of the simulated contigs was randomized
to prevent biases.
For each genome 10 replicates were created, all subse-

quent results are the average of the 10 replicates. By
creating simulated contigs with no assembly error, the
accuracy of subsequent scaffolds can be evaluated exactly.
Although the contigs were simulated, real read pairs were
aligned against them and used as input. Table S1 in
Additional File 1 describes the characteristics of each
dataset.
The NA12878 test case was produced by simply using

the contigs created in the SGA [35] assembler publica-
tion. The read pairs were obtained from a different lab,
however they were generated using the same biological
source material (ERP002490). Although more read pairs
were available a random subset of approximately 2x cov-
erage was used.
Finally a simulated metagenomics test case was cre-

ated to explore the feasibility of utilizing SILP2 to scaf-
fold metagenomes. This was created by artificially
mixing the staph and rhodo contigs and reads at varying
proportions.
A natural and common parameter present in all scaf-

folding algorithms in the bundle size, or the number of
read pairs spanning two contigs. This parameter is a
natural control of sensitivity and specificity; requiring

more support increases specificity at the price of sensi-
tivity and vice-versa. It should be noted that every
scaffolding tool tested, including SILP2 does not abide
by the set parameter absolutely. Each method raises it in
order to ensure efficient operation. The simulated test
cases were evaluated at several bundle sizes to asses its
effect on accuracy and scalability. The NA12878 test
case was only evaluated at the minimum feasible value
due to resource constraints.

Accuracy
Calculating the accuracy of de novo assemblies or scaf-
folds is quite difficult. One of the key challenges is
deciding on the appropriate measure. In this comparison
we elect to present several metrics which will likely have
different weight depending on the background and
intention of the reader.
For the simulated contigs we treat scaffolding as a bin-

ary classification problem where methods attempt to pre-
dict true adjacencies in the test dataset. The accuracy
and sensitivity can be directly measured by computing
true positive, and false positive rates. One common sum-
mary is MCC, or Mathews Correlation coefficient. This
measure assess sensitivity and specificity simultaneously.
In the context of scaffolding, this measure illustrates how
many correctly ordered and oriented scaffolds were
created.
An alternative measure, commonly utilized in genome

assembly comparison publications [14,38] is the notion
of corrected N50. Where N50 is the weighted mean
scaffold size, the corrected N50 is the same statistic
after errors are removed. This can be computed exactly
on simulated data, however an alignment based approxi-
mation must be used on real test cases.
Finally the usefulness of a genome can also be mea-

sured by the number of identifiable biological features
captured. Here we capture this measure by recording
the percentage of known genes that are found contigu-
ous in the scaffolds.

MCC
The MCC metric, as seen in Figure 4, indicates that
SILP2 is able to correctly join the most contigs, followed
by OPERA and finally MIP. This order holds for all
three simulated test cases. Interestingly all three meth-
ods see a decrease in MCC on staph, but some have
increases on rhodo and chr14. This trend illustrates the
difficult to define variables such as genome uniqueness,
assembly and read error which can make smaller gen-
omes more challenging that larger genomes.
While MCC is natural to a computer scientist its use-

ful to a biologist is lacking because the content of the
contigs is ignored. A biologist typically asses a scaffold
by the N50, Unfortunately this measure does not reflect

Figure 3 SILP2’s NSDP algorithm for processing 3-connected
components.
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the accuracy of the scaffolds and rewards aggressive
merging. Using MCC or its constituent components as
metrics gives greater clarity to the researcher comparing
different tools.

N50
The most common metric found in genome assembly
and scaffolding is N50. The most recent iteration of
benchmark projects have transformed this descriptive
number into an accuracy measure by introducing align-
ment based corrections. Here the scaffolds are aligned
against a reference and miss-alignments are interpreted
as orientation, or placement errors. We have developed a
more efficient implementation of the correcting method
developed by [38]. This enables the tool to be utilized on
the NA12878 test case at the cost of accuracy.
The true N50 value can be determined when using

simulated contigs by breaking incorrect scaffolds, this
measure is denoted as TPN50. An analog to the TPN50
measure can be obtained by aligning the scaffolds
against the known reference. Scaffolds (and contigs) are
broken at mis-assembled or mis-scaffolded regions. This
post-alignment metrics can be obtained from the assem-
bly evaluation tool called QUAST [38] and it is denoted
as NA50.
Unfortunately the implementation of QUAST required

more than 128GB of RAM to evaluate the NA12878 test
case, and therefore could not be run. We wrote an alter-
native implementation of NA50 called ALN50 which is
more efficient, but follows a similar framework. Both
NA50 and ALN50 are found in Figure 5. Although
NA50 and ALN50 do not agree, they do indicate similar
trends between methods. Therefore ALN50 will be used
henceforth. In the staph genome, OPERA is clearly the
best performing tool, followed by SILP2 and then MIP.
However on the rhodo genome, SILP2 performs best,
followed by OPERA then MIP.

First the highest ALN50 is always found at bundle size
3 or 5. If the intent of the assembly is to maximize N50
then clearly no algorithm should be run with bundle
size less than 3. However, as it was pointed out in both
GAGE and QUAST [14,38], N50 is a misleading metric
and alternative measures may be a better judge.
Additionally it can be seen that both OPERA and

SILP2 have approximately the same TPN50 in the staph
and chr14 test cases, however in rhodo, SILP2 clearly
out-performs OPERA and MIP at all bundle sizes. It is
not clear why SILP2 performs much better on rhodo,
and approximately equivalent on the others. For the
complete genome SILP2, OPERA and MIP reported an
N50 of 26,235, 39,366, 26,235 respectively. This is con-
sistent with the observations from the synthetic
data sets.

Gene reconstruction
An alternative measure of the completeness of a scaffold
is the number of genes aligned against the scaffold. For
a given percentage of completeness the number of genes
found in the corrected scaffold is an indicator of the
usefulness of the genome.
As seen in Table 1, SILP2 almost consistently equals

or outperforms both OPERA and MIP at all bundle
sizes and for each genome. The difference between
SILP2 and MIP is often quite small.

Runtime
One key advantage of SILP2 over other scaffolding tools
is its speed and scalability. Table 2 gives the runtime of
SILP1, SILP2, OPERA and MIP on single-genome test-
cases. All experiments were conducted on a Dell Power-
Edge R815 server with quad 2.5GHz 16-core AMD
Opteron 6380 processors and 256Gb RAM running
under Ubuntu 12.04 LTS. IBM ILOG CPLEX 12.5.0.0
was used as ILP solver through the CPLEX Python API.
Reported runtimes are only for the scaffolding portion
of each program. Read alignment and pre-processing
steps are not included, but it was observed that all
methods had comparable pre-processing times.
On the staph, rhodo and chr14 datasets, it was

observed that SILP2 was quicker at higher bundle sizes
and no worse than OPERA or MIP at lower bundle
sizes. The NA12878 testcase was extremely challenging
for all methods and demonstrated the effect of heuristics
on large test cases. It is clear from the reduced runtimes
that all 3 methods activate some sort of heuristic at
lower bundle sizes. The difference between SILP1 and
SILP2 is evident at all bundle sizes.
The NA12878 genome was also scaffolded by SILP2

using 20x coverage reads, with a runtime of 18,205 sec-
onds at bundle size 1. Negligible improvement in accu-
racy over the 2x dataset was observed. From Table 2 it

Figure 4 MCC comparison. MCC of SILP2, OPERA, and MIP across
bundle sizes for staph, rhodo, and chr14 datasets. At bundle size 1
OPERA exceeded the allowed runtime of 2 days for the chr14
dataset.
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Figure 5 TPN50, ALN50 and NA50 as a function of bundle size for single-genome datasets. TPN50 is obtained by breaking incorrect
scaffolds, ALN50 is the post-alignment metric developed by us, and NA50 is the QUAST equivalent. The colors indicated in the legend
correspond to the bundle size 1 through 7. OPERA was unable to complete on bundle size 1 for chr14 dataset.
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is clear that runtime increases with the complexity of
the genome more so than the number of read pairs.

Metagenomics
Metagenomics is the study of genetic material recovered
from heterogeneous mixtures often found in nature. Just
like in the de novo assembly of a single genome, the
accuracy and size of the scaffolds is critical to subse-
quent analysis steps. Our ILP based solution is flexible
enough to include new constraints and objectives to bet-
ter serve this challenging scenario.
In order to test this hypothesis a simulated metage-

nomic dataset was created utilizing the staph and rhodo
genomes from the GAGE dataset. The simulated contigs
used previously were mixed, and both sets of reads were
aligned with varying fractions (1.0, 9.5 0.25, 0.0) of staph
reads present. Again all three of the major scaffolding
tools were tested, however additional weighting scenar-
ios were implemented in SILP2.
The runtime, MCC, SCFN50, TPN50 and ALN50

metrics are detailed for each of the compared methods
in Table 3. Also an additional scaffolding tool BAM-
BUS2 [39] was added to the comparison because it was
previously shown to work well in the metagenomic scaf-
folding context.
Interestingly all SILP2 variants fare much better than

both OPERA, MIP and BAMBUS2 even with no staph
reads present (this differs from results in Figure 5
because the rhodo reads were aligned to both staph and
rhodo contigs). It is unclear is the different methodology
used in SILP2 sets it apart, or if an implementation
quirk throws off the other scaffolders. However across
all metrics SILP2 variants perform the best.
In both SILP2 variants and MIP it is observed that the

TPN50 decreases as fewer staph reads are utilized. This
is expected since there are fewer opportunities to con-
nect staph contigs and both staph and rhodo contigs are
used in the calculation of N50. There is no major differ-
ences between the variants of SILP2. The coverage
based weight seems to improve MCC at the cost of a
slightly lowered TPN50 when compared to no weights.
This highly simplified test scenario is not designed to

fully explore metagenomic scaffolding, rather to point
out an opportunity to further external genome scaffold-
ing algorithms.

Conclusions
Scaffolding in an important step in the de novo assem-
bly pipeline. Biologists rely on an accurate scaffold to
perform many types of analysis. The larger the scaffold
the more useful it will be to them. Recent advances in
de novo assemblers has made it feasible to create draft

Table 1 The number of reconstructed genes found in the
corrected scaffolds for single-genome datasets.

genome bundle SILP2 OPERA MIP total

staph 1 1,727.70 1,168.50 1,545.00 2692

2 1,727.70 1,168.50 1,559.50

3 1,727.70 1,210.60 1,575.30

5 1,727.70 1,262.70 1,584.60

7 1,727.40 1,280.40 1,588.50

rhodo 1 2022.7 1618.6 1897.3 3067

2 2022.7 1618.6 1907

3 2022.6 1751.1 1894

5 2022.6 1834.2 1921.3

7 2022.6 1853.3 1933.3

chr14 1 350.9 - 349.6 529

2 352.00 330.10 350.40

3 352.40 336.90 350.40

5 352.40 337.50 351.70

7 352.40 337.60 3.00

NA12878 2x 1 30817 - 30817 34039

2 30850 30809 30849

In order for a gene to be considered reconstructed 90% of its sequence must
be found in a contiguous scaffold. Dashes (-) indicate the method was unable
to complete and therefore the gene count could not be computed.

Table 2 Runtime (in seconds) for scaffolding single-
genome datasets.

genome bundle SILP1 SILP2 OPERA MIP

staph 1 1237 6.4 2538.1 35.8

2 738 4.5 1456.5 17

3 305 4 878.5 12.834

5 142 3.9 386.9 10.54

7 51 4.3 241 10.115

rhodo 1 1134 10 2297 118.953

2 632 4.1 455.2 25.3

3 486 3.6 5.7 10.995

5 86 3.4 2 8.778

7 75 3 1.6 8.217

chr14 1 - 64.7 - 706.3

2 - 27.6 99.25 189.685

3 629 25.5 11 137.67

5 370 21.5 12 107.85

7 400 19.25 10.75 94.9875

NA12878 2x 1 - 55.2 - 89.3

2 - 1670 76.49 53.28

3 37751 3878 7875 121.61

5 27341 3183 4270 134.6

7 27470 3626 2180 125.66

All timing was captured only during the scaffolding phase of each tool, all
read alignment and formatting procedures were excluded from timing. The
number is the average of 10 runs for each genome. A dash (-) indicated the
tool was unable to complete in the allotted time of 2 days for staph,rhodo,
chr14 and 3 days for NA12878.
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assemblies for large mammalian genomes. We believe
the SILP2, coupled with the most recent scalable assem-
blers will produce the largest and most complete assem-
blies. This is made possible utilizing non-serial dynamic
programming approach to solve our robust ILP. The
ILP formulation for the maximum likelihood model is
shown to be flexible enough to handle metagenomic
samples.
The future work includes more thorough experimental

validation of SILP2 and comparison BAMBUS2 [39] on
metagenomic samples. Also we are going to validate
SILP2 using methodology and benchmarks from recent
paper [40].

Software and data availability
A reference implementation of SILP2 is provided at
https://github.com/jim-bo/silp2. This implementation
relies on the CPLEX optimization library. The code
used for generating most of the reported results, includ-
ing the implementation of the ALN50 metric, is avail-
able at https://github.com/jim-bo/scafathon. The SILP2
source code along with a small test dataset can also be
downloaded from http://dna.engr.uconn.edu/software/
SILP2.

Additional material

Additional file 1: Supplementary figures, methods, and tables are
supplied in PDF format.
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