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Abstract

Background: The identification of protein functional modules would be a great aid in furthering our knowledge of
the principles of cellular organization. Most existing algorithms for identifying protein functional modules have a
common defect — once a protein node is assigned to a functional module, there is no chance to move the protein
to the other functional modules during the follow-up processes, which lead the erroneous partitioning occurred at
previous step to accumulate till to the end.

Results: In this paper, we design a new algorithm ADM (Adaptive Density Modularity) to detect protein functional
modules based on adaptive density modularity. In ADM algorithm, according to the comparison between external

closely associated degree and internal closely associated degree, the partitioning of a protein-protein interaction
network into functional modules always evolves quickly to increase the density modularity of the network. The
integration of density modularity into the new algorithm not only overcomes the drawback mentioned above, but
also contributes to identifying protein functional modules more effectively.

Conclusions: The experimental result reveals that the performance of ADM algorithm is superior to many state-of-
the-art protein functional modules detection techniques in aspect of the accuracy of prediction. Moreover, the
identified protein functional modules are statistically significant in terms of “Biological Process” annotated in Gene
Ontology, which provides substantial support for revealing the principles of cellular organization.

Background

As proteins are responsible for driving biological
mechanisms and perform physiological functions within
the cell [1], investigating the modular structure in pro-
tein-protein interaction (PPI) network has been a central
content of proteomics studies in the post-genomic era.
PPI networks comprising of interconnected protein
functional modules dramatically reveals the feature of
modular structure — they have dense connections
between the nodes within modules but sparse connec-
tions between the nodes in different modules [2]. A
module is a fundamental unit formed with highly con-
nected proteins and often possesses specific biological
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functions [3]. Functional modules can help us to predict
the functions of proteins [4]. Accumulated evidences
suggest that functional modules are involved in many
disease mechanisms [5]. Tracking the functional mod-
ules could reveal important insights into modular
mechanisms and improve our understanding on the dis-
ease pathways etc [6,7]. Though many algorithms to
detect protein functional modules have been proposed,
yet how to measure the strength of the division of a net-
work into modules (also called communities) has not
been explicitly defined. So far the most widely used eva-
luation criterion for complex networks partitioning is
modularity measure Q by Newman and Girvan [8].
However, it has been shown that the Q suffers a resolu-
tion limit, that is to say, it performs poorly on identify-
ing small modules [9]. This is mainly because of the
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global characteristics of the network, which compels the
small modules to be concealed in large modules [10].
Using the definition of natural density in number the-
ory, Zhang et al. [11] defined network natural density,
which is designed to measure how closely the nodes
connecting within communities. Further, he introduced
the concept of density modularity, which overcomes
the resolution limit in Newman-Girvan algorithm, to
evaluate the validity of community partitioning.

Strategies for protein functional modules clustering
generally fall into two types - “bottom up” approach
proceeding in the form of agglomeration, such as New-
man-fast algorithm; and “top down” approach proceed-
ing in the form of division, such as GN algorithm.
However, one common drawback to both these two
types of approaches is that the protein nodes that have
assigned to functional modules have no chance to move
into other functional modules during the follow-up pro-
cesses; instead they are confined to their original mod-
ules and result in “module barrier”, which lead the
erroneous partitioning occurred at previous step to
accumulate till to the end.

In this paper, we propose a new algorithm ADM to
identify protein functional modules following the intro-
ducing of external closely associated degree and internal
closely associated degree. In ADM algorithm, a protein
opts adaptively whether to stay inside current functional
module or move to another module according to the
comparison between its internal closely associated
degree and external closely associated degree. Owing to
the fact that ADM algorithm avoids the shortcoming
aforementioned and allows the proteins to dynamically
rectify their locations in functional modules whenever
necessary, the effectiveness of detecting protein func-
tional modules got improved greatly. The experimental
result shows that ADM algorithm outperforms many
other state-of-the-art methods such as MCL [12],
MCODE [13] and ClusterONE [14] in terms of the
accuracy of prediction; moreover, it is capable to iden-
tify many protein functional modules with strong biolo-
gical significance.

Methods

Idea of closely associated degree

Functional modules are a cornerstone of many (if not all)
biological processes and together they form various types
of molecular machineries that perform a vast array of bio-
logical functions [15]. So far, the most widely used evalua-
tion criterion for the partitioning of a PPI network into
functional modules is global modularity measure Q by
Newman and Girvan, the maximum Q corresponds to the
optimal partitioning result. However, Q suffers a resolu-
tion limit that it cannot effectively identify small clusters,
even when these clusters are factions (complete graph).
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Preliminary observation on considerable amount of PPI
networks has indicated that speculating the connections
among local protein functional modules through the over-
all PPI network is the primary cause of the resolution
limit.

To overcome the limit of global modularity Q, a new
quantitative function (be named density modularity D)
was introduced to evaluate the validity of community
structure partitioning [11]. Density modularity, which
represents the degree of tightness inside a functional
module, is defined as follows:

12 a;it
b= |:—L B —nizp] W)

Where L and /; denote the number of edges in the
entire network and in module i, respectively; d; and #;
denote the sum of the nodes’ degree and the number of
nodes in module i, respectively. The value of D ranges
from O to 1, the same as Q. Density modularity can
effectively evaluate the partitioning of a network into
communities [11]. We get the optimally partitioning
when the density modularity is maximum. In this paper,
we introduce the definition of closely associated degree,
which represents the increment in density modularity
brought by assigning a node to a module. For each pro-
tein node, its internal closely associated degree is
defined as the closely associated degree between the
node and its host module, while its external closely
associated degree as the closely associated degree
between the node and an external module that con-
nected with it. We calculate the external closely asso-
ciated degree and internal closely associated degree for
each protein node according to the variation of the den-
sity modularity during its moving processes. If its exter-
nal closely associated degree is greater than internal
closely associated degree, the node will jump into the
corresponding external module; otherwise, it remains in
current module.

Definition of internal closely associated degree
Suppose that the clustering is in progress in a PPI net-
work (the number of its edges is denoted by L), M1 and
M2 are the modules to be merged, and the other mod-
ules in the network - denoted by MO - remain
unchanged. The density modularity corresponding to
the entire network is denoted by D, and that corre-
sponding to the module MO0 is denoted by DO. Let [, n;
and d; (i = 1, 2) represent the number of edges, nodes
and the sum of the nodes’ degree in Mi, respectively;
the number of the edges between MI and M2 is
denoted by e,.

Before the merging of M1 and M2, we define the den-
sity modularity of a PPI network as follows:
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After the merging of M1 and M2, we define the den-
sity modularity of the PPI network as follows:
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Therefore the variation of density modularity of the
PPI network can be formulated as follows:
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constants, which allowed to be omitted during the
deviation process of AD.

Obviously, the variation of density modularity mainly
depends on ej,, [1+/; and n;+n, during the merging pro-
cess of two modules. “Internal Closely Associated
Degree” (denoted as R;,) is defined as the incremental
modularity AD brought when merging a node into its
host module. Let s represent the module identifier to
which the single node originally belongs, then R;,*) can
be formulated as follows:

4 4 4
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Where e, represents the number of edges that con-
nect the node and all the other ones in module s.

Definition of external closely associated degree

“External Closely Associated Degree” (denoted as R,
1) is defined as the incremental modularity AD
brought when merging a node into its adjacent exter-
nal module. As there often exist more than one adja-
cent module trying to pull a node out from its original
module, the node tends to be merged into the module
that offers the greatest closely associated degree. Let ¢
mark the module that the node finally selects, then the
external closely associated degree can be formulated as
follows:
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Where e¥,,,, is the number of edges connecting the
current node and all the nodes within module ¢ /; and
n; represent the number of edges and nodes when the
node is viewed as a single module, respectively. [, and
n, denote the number of edges and nodes in the module
to which the node belongs to, respectively. {ngbs} repre-
sents a collection including all the adjacent external
modules that closely associated with the node. Among
{ngbs}, the node need to find one module that with the
greatest closely associated degree to merge into.

Studies show that it is unreasonable to speculate the
connections between local protein functional modules
through the overall PPI network. In our work, the loca-
tion of each protein node would be updated constantly
according to the comparison between its external closely
associated degree and internal closely associated degree.
Whether a protein node is to stay inside current module
or move to another module, it would contribute to the
improving and optimizing of the density modularity of
PPI network.

(1+n)? 12 n2

O )2 2 2
(0+L+eWe)” 02 1 ] ©)

The overview of ADM algorithm

During the identification of protein functional modules
in ADM algorithm, R;, and R, are directly proportional
to the increment of density modularity, which indicates
that the nodes’ ever move will contributes the greatest
increment of density modularity. When merging a pro-
tein node into a functional module, if R,,, is greater
than R;,, the node will move to the corresponding exter-
nal functional module; otherwise, it will remain inside
its original functional module. Therefor the density
modularity of a PPI network is variational in the process
of detecting functional modules - the value of R;, and
R, for each node need to be recalculated once a node
has moved. The nodes in the PPI network will not stop
moving until each of them has reached steady state,
when the PPI network has been divided into functional
modules correctly.

In the initial stage of ADM algorithm, we consider
each node as an initial functional module to calculate
the closely associated degree between the node and its
neighbor modules. Then the node is merged into a
neighbor module that with the greatest closely asso-
ciated degree, which is considered to be the belonging
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module of the node. When the module structures have
reach a stable state, considering all the modules in pairs,
we choose a pair to merge if doing this could produce
the maximum increment (or minimum reduction) of the
sum of density modularity, such a process is repeated
until to the end of ADM algorithm. Finally, we take the
partition result obtained when the density modularity D
is maximum as the collection of predicted functional
modules.

ADM algorithm is detailed as follows

(1) Initialize the network as n modules, namely, each
protein node is took as a separate module.

(2) For each node, the values of its R;,, and R,,; are
calculated respectively, if R;,<R,,;, the node moves to
the corresponding external functional module; other-
wise, it remains inside the original functional module.

(3) Repeat step 2 until all the nodes in PPI network
are stable, and record the density modularity D when
the modules have emerged.

(4) List all the pairs of modules gained from step 3
and suppose each of them has been merged, then we
separately calculate the increment of density modularity
brought by the merging.

(5) Select a pair of modules that brings to the network
the maximum increment (or minimum reduction) of
density modularity to merge.

(6) Repeat step 2 to step 5 until the positions of all
the nodes remain unchanged.

(7) Pick the partition result obtained when the density
modularity D gets the maximum value across step 2 to
step 6 as the final solution of ADM algorithm.

Results and discussions

As the yeast PPI network is a relatively credible and
complete dataset among the existing PPI networks, it is
often used to test the validity of methods for identifying
protein functional modules. Among the existing varies
versions of yeast PPI network datasets, we choose Gavin
dataset [16] and Krogan_extended dataset [17] to
compare the performance of ADM algorithm against the
following classic clustering algorithms: MCL, MCODE
and ClusterONE. Gavin dataset comprising of 7669
interactions among 1855 proteins, and Krogan_extended
dataset comprising of 14317 interactions among 3672
proteins, are both removed the self-loop and redundant
edges. The known yeast protein functional module set
obtained from MIPS contains 236 functional modules,
each of which contains at least 3 proteins.

Owing to the randomness inherent to ADM algo-
rithm, it runs 20 times on the above yeast PPI networks
and thereby generating 20 groups experimental partition
results, among which the one that corresponds to the
greatest density modularity is preserved as the final
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identified functional module set. Each of the identified
functional modules contains at least 3 proteins after fil-
tering. As a result, 227 and 442 functional modules are
identified, respectively, on Gavin dataset and Krogan_ex-
tended dataset. Accuracy metric and GO semantic simi-
larity measurement are employed to evaluate the
similarity between the identified protein functional mod-
ules and the reference known protein functional mod-
ules; besides, we use p-value to evaluate the biological
significance of the predicted functional modules.

Accuracy metric

The harmonic mean of Sn (Sensitivity) and PPV (Posi-
tive Predictive Value), also known as accuracy metric
(Acc), is typically used to assess the overall performances
of varies algorithms.

Sn and PPV are calculated based on the matching matrix
T between predicted functional modules and reference
functional modules. The number of rows and columns in
matrix T (denoted as n and m), represent the number of
reference functional modules and predicted functional
modules, respectively. The element #(i,j) in matrix T
denotes the number of proteins involved in both the ith
reference functional module and jth predicted protein
functional module; and n(i) denotes the number of pro-
teins involved in the ith reference functional modules.
Thus Sn, PPV and Acc can be defined as follows:

2 max, (i, )

Sn=2C_ 2 (7)
SR Y NFT0)

>0 maxi, t(i, j)

PPV = —
2o 2 (i)

(8)

Acc = v/Sn x PPV )

The comparison of ADM algorithm against the follow-
ing three existing state-of-the-art clustering algorithms
is performed by applying them to Gavin dataset and
Krogan_extended dataset: ClusterONE (clustering with
overlapping neighborhood expansion), MCL (Markov
Clustering) and MCODE (Molecular Complex Detec-
tion). In terms of accuracy metric, the larger Sn to some
extent indicates that the more reference protein func-
tional modules could be found, while the lower PPV
shows that there exist more predicted protein functional
modules that matched with none of reference protein
functional modules. As is shown in table 1, clusters is
the number of identified protein functional modules,
matched denotes the number of the identified protein
functional modules matched with at least one reference
functional module. On Gavin dataset, while ADM
obtains the second most clusters 227, it achieves the
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Table 1. Comparative results of varies algorithms on two yeast PPl networks
Dataset Method clusters matched Sn PPV Acc
Gavin ClusterONE 196 82 0.519 0479 0498
MCL 253 79 0.508 0497 0.502
MCODE 135 65 0426 0464 0444
ADM 227 94 0.508 0.660 0.579
Krogan_extended ClusterONE 530 90 0443 0402 0422
MCL 483 68 0411 0408 0409
MCODE 64 23 0.199 0369 0271
ADM 442 107 0.534 0.670 0.598

most matched 94 in contrast to other algorithms. In
addition, ADM obtains the greatest Acc 0.579, which is
15.3% higher than the second best Acc 0.502 achieved by
MCL. On Krogan_extended dataset, while ADM obtains
the third most clusters 442, it achieves the most matched
107 compared with other algorithms. Moreover, the Sn,
PPV and Acc obtained by ADM algorithm are 20.5%,
64.2% and 41.7% higher than the second most ones,
respectively. In short, ADM algorithm can detect func-
tional modules from PPI network more effectively than
all the other three algorithms. By the way, it can be seen
that MCODE algorithm performs worst both on these
two datasets, which incites us to use only MCL and Clus-
terONE algorithms for the following comparison.

GO semantic similarity measurement

Biologists often compelled to spend much time and a lot
of energy on searching biological information, which is
attributed to the confusion definitions on biology. Fortu-
nately, Gene ontology (GO) provides a platform to unify
the representations of gene and gene product attributes
across all species. The ontology covers three domains in
terms of cellular component, molecular function and bio-
logical process.

GO semantic similarity of a functional module refers to
the average associated degree of all the pair-wise proteins
within the module [18]. The semantic similarity of cellular
component, molecular function and biological process are
separately calculated and then the geometric mean of
them is took as the functional module’s GO semantic
similarity. We can obtain the GO semantic similarity by
calculating the average weight of all the functional mod-
ules. Generally speaking, the greater the GO semantic
similarity is, the greater the probability that the proteins
perform similar biological functions.

It is convenient for us to calculate the GO semantic
similarity of protein functional modules by the tool Pro-
Cope [19]. Owing to the poor performance of MCODE
algorithm in the above section, here we evaluate the
performance of ADM algorithm in terms of GO seman-
tic similarity by comparing it to MCL and ClusterONE
algorithms.

As is exhibited in table 2, where MIPS complexes - a
collection of protein complexes that has been curated
from the biomedical literature - is often used as bench-
mark for evaluation [20]. On Gavin dataset, despite of
the fact that the Biological Process achieved by ADM
algorithm is lower than that obtained by ClusterONE
algorithm, the Cellular Component and Molecular Func-
tion achieved by ADM algorithm, respectively, are 14.2%
and 8.9% higher than that obtained by ClusterONE algo-
rithm which has the second best performance here. On
Krogan_extended dataset, the Cellular Component and
Molecular Function achieved by ADM algorithm,
respectively, are 50.6% and 9.9% higher than that
achieved by ClusterONE which also has the second best
performance here. Therefore, we have reason to con-
clude that ADM algorithm not only can identify signifi-
cant protein functional modules from PPI network but
also has better performance than the other algorithms.

Analysis of P-values

To evaluate the statistical significance of the identified
functional modules, many researchers annotate their
mainly biological functions by using p-values [21]. Given
a predicted functional module with C proteins, p-value
denotes the probability of observing k or more proteins
from the functional module by chance in a biological
function shared by F proteins from a total genome size of
N proteins. P-values is formulated as follows:

< (1) (7))
h—1 . C—i
P—value=l—Z;

= ()

P-value measures the enrichment degree of a certain
function by a protein functional module. The smaller the
p-value is, the lower the probability that a biological func-
tion arises by chance in the predicted functional module,
thus the more significant the predicted functional module
is. Given that proteins within a protein functional module
are assembled to perform common biological functions,
they are expected to share common functions, among

(10)
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Table 2. The comparison of varies algorithms on GO semantic similarity

Dataset Method Biological Cellular Component Molecular Function
Process
Gavin ClusterONE 0913 0.769 0.638
MCL 0.668 0.591 0494
ADM 0.748 0.878 0.695
Krogan_extended ClusterONE 0.667 0.508 0.505
MCL 0493 0.349 0397
ADM 0.586 0.765 0.555
MIPS complexes 0.995 0.921 0.897

which we take the function that corresponding to the
minimum p-value as its annotation function. More impor-
tantly, the unknown proteins’ functions could be predicted
according to its belonging functional modules’ functions.
Here, we calculate the p-values of Biological Process by
GO:TermFinder for each identified protein functional
modules. GO:TermFinder takes a list of genes as input,
and determines whether there are enriched GO terms for
that list by searching the shared GO terms or their parents
[18]. In table 3, we list some shared GO terms in terms of
Gene Ontology term, Cluster frequency represents the ratio
of the number of proteins that with the corresponding
annotations to the total number of proteins in the module.
In most situations, the functional module that with
p-value<0.01 is considered to be significant. The
p-values of most protein functional modules identified
by ADM algorithm are lower than 0.01, which indicates

the occurrence of these predicted modules does not
happen merely by chance. As is exhibited in table 3, the
minimum p-value is 2.28E-63, explaining that our algo-
rithm is capable to detect the functional modules with
biological significance effectively.

Table 4 lists some examples of functional modules
that detected by applying ADM algorithm to Gavin
dataset and Krogan_extended dataset. ADM algorithm is
capable to detect many large functional modules both in
Gavin dataset and Krogan_extended dataset. As is
shown in table 4, a functional module that consists of
25 proteins is discovered in Gavin dataset, its clustering
frequency is 100%, namely match perfectly, which shows
that it enjoys significant biological significance and is
probably a real protein functional module. In summary,
our ADM algorithm is capable to detect many large
functional modules with strong biological significance.

Table 3. The P-values of some functional modules identified by ADM algorithm

Dataset ID  P-value Cluster frequency Gene Ontology term
1 2.28E-63 40 out of 62 genes, 64.5% ribosomal large subunit biogenesis

Gavin 2 6.73E-40 30 out of 46 genes, 65.2% mitochondrial translation
3 1.58E-37 16 out of 28 genes, 57.1% tRNA transcription from RNA polymerase Ill promoter
4 2.03E-35 26 out of 38 genes, 68.4% mitochondrial translation
5 242 E-33 14 out of 22 genes, 63.6% nuclear-transcribed mRNA catabolic process, exonucleolytic, 3'-5
6  445E-32 12 out of 15 genes, 80.0% proteasomal ubiquitin-independent protein catabolic process
7 489E-32 14 out of 21 genes, 66.7% mRNA polyadenylation
8 143 E -31 20 out of 24 genes, 83.3% mRNA splicing, via spliceosome
9 123 E-28 25 out of 25 genes, 100.0% transcription from RNA polymerase Il promoter
10 391 E-28 22 out of 24 genes, 91.7% mMRNA metabolic process

Krogan_extended 1 287 E -43 30 out of 40 genes, 75.0% mitochondrial translation

2 6.13 E -40 17 out of 28 genes, 60.7% chromatin disassembly
3 552 E-32 23 out of 36 genes, 63.9% mRNA splicing, via spliceosome
4 1.68 E -26 14 out of 32 genes, 43.8% rRNA catabolic process
5 281 E-26 16 out of 31 genes, 51.6% histone acetylation
6 338 E-23 40 out of 66 genes, 60.6% transcription, DNA-dependent
7  382E-23 40 out of 66 genes, 60.6% RNA biosynthetic process
8 1.24 E -21 11 out of 25 genes, 44.0% mRNA polyadenylation
9 131 E-21 22 out of 35 genes, 62.9% mRNA metabolic process
10 1.18E-18 9 out of 20 genes, 45.0% negative regulation of chromatin silencing at telomere
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Table 4. Examples of functional modules identified from Gavin dataset and Krogan_extended dataset by ADM

algorithm
Data P-value Cluster Gene Ontology term Predicted functional modules
set frequency
Gavin 1.23e-28 25 out of 25  transcription from RNA  ybr193c ybr253w ycr081w ydr308c ydr443c yer022w ygl025c¢ ygl127¢c
genes, polymerase Il promoter ygl151w ygri04c yhr041c yhr058c ykr095w ylr071c yml007w ymr112c
100.0% ynl025¢ ynl236w ynr010w yol051w yol135c¢ yor174w ypl042c ypr070w
ypri68w
391e-28 22 out of 24 mRNA metabolic ybl026w ybr055¢ ybr152w ycr077¢ ydl098c ydl160c ydr037w ydr378c
genes, 91.7%  process ydrd73c yer112w yer146w ygl173c ygr075c ygr091w yjl124c yjr022w
ylr438c-a ymr080c ymr268c ynl147w ynl256w yor308c ypr082c ypr178w
143e-31 20 out of 24 mRNA splicing, via ybr119w ydl087c ydr235w ydr240c yer029c yflo17w-a ygl049c ygrO13w
genes, 83.3%  spliceosome ygr074w yhr086w yilo61c yjrO84w ykl012w yki204w ylr147c ylr275w
yIr298c yml046w ymr125w yol139¢ yor276w ypl178w yprO57w ypr182w
Krogan_extended 2.87e-43 30 out of 40  mitochondrial q0140 yalo41w ybl090w ybr006w ybr146w ybr251w ydi045w-a ydr041w
genes, 75.0%  translation ydr124w ydr175¢ ydr337w ydr347w ydr494w yer050c yer073w ygl129¢
ygr165w ygr215w yhl004w yhr059w yil070c yil093c yjl063c yjrO60w
yjr101w yjr113c ykl003c ykl151c ykl155¢c ymr158w ymr188c ynl081c
ynl137¢ yni306w ynr036c ynr037c yol143c yor158w ypl013c ypl118w
552e-32 23 out of 36 mRNA splicing, via ybr119w ydl087c ydr020c ydr122w ydr235w ydr240c ydr243c ydr247w
genes, 63.9%  spliceosome ydr515w yer029c yflo18w-a ygrO13w ygr074w yhr086w yhr165c¢ yil061c
yir009w yjl188c ykl012w ykl095w ykrO19c¢ ylr147¢ yIr275w ylr298c ylr318w
yml046w ymr001c ymr132¢ ymr157¢ yor036w yor159c¢ yor305w yor359w
ypl213w yprO57w ypr182w
1.31e-21 22 out of 35 mRNA metabolic ybl026w ybl098w ybr055¢ ycr077¢ ydl085¢-a ydl121¢ ydl160c ydrO55w

genes, 629%  process

ydr378c ydr473c yel015w yer112w yer146w yer172c yglo68w ygl173c
ygr091w yhr019¢ yhr140w yjl013c yjl035¢ yjl124c yjr022w ykl173w ylr419w
ylr438c-a ymr268c ynl092w ynl118c ynl147w ynl240c ynr011c yor308c
ypr058w ypr178w

Conclusions

Protein functional module is a fundamental unit
formed with highly connected proteins and often pos-
sesses specific biological functions [3]. While many
algorithms have been developed to detect functional
modules, they have a common drawback in terms of
“module barrier”. In this paper, after thoroughly ana-
lyzing the changes in density modularity during the
merging process, first we defined the concepts of
external closely associated degree and internal closely
associated degree, then we proposed a new algorithm
to identify protein functional modules based on adap-
tive density modularity. In ADM algorithm, the parti-
tioning of a PPI network into functional modules
always evolves quickly to increase the density modular-
ity of the PPI network, thus ADM algorithm is capable
to detect protein functional modules dynamically.
Owing to the incorporation of density modularity into
the new algorithm ADM, we successfully surmounted
the defect of “module barrier” existed in most pre-
viously proposed algorithms; moreover, the prediction
of protein functional modules got dramatically
improved compared with many state-of-the-art algo-
rithms. Therefore, it has important implications for the
detection of protein functional modules and the under-
standing of the principles of cellular organization.

Funding

This research and publication is supported by the Self-
determined Research Funds of CCNU from the Col-
leges’ Basic Research and Operation of MOE (No.
CCNU14A02008, CCNU15ZD003), the International
Cooperation Project of Hubei Province (No.
2014BHEO0017) and the National Natural Science Foun-
dation of China (No. 61170305).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

XS designed the algorithm to identify protein functional modules based on
adaptive density modularity. YY implemented the protein functional
modules mining algorithm and run the experiments. LY and JY helped plan
the experimental analysis and contributed to writing the manuscript. TH and
XTH supervised and helped conceive the study. All authors read and
approved the final manuscript.

This article has been published as part of BMC Bioinformatics Volume 16
Supplement 12, 2015: Selected articles from the IEE International Conference
on Bioinformatics and Biomedicine (BIBM 2014): Bioinformatics. The full
contents of the supplement are available online at http://www.
biomedcentral.com/bmcbioinformatics/supplements/16/512.

Authors’ details
'School of Computer, Central China Normal University, Wuhan, China.
2Col\ege of Computing and Informatics, Drexel University, Philadelphia, USA.

Published: 25 August 2015


http://www.biomedcentral.com/bmcbioinformatics/supplements/16/S12
http://www.biomedcentral.com/bmcbioinformatics/supplements/16/S12

Shen et al. BMC Bioinformatics 2015, 16(Suppl 12):S5
http://www.biomedcentral.com/1471-2105/16/512/S5

References

1.

20.

21.

Li X, Wu M, Kwoh C, and Ng S: Computational approaches for detecting
protein complexes from protein interaction networks: a survey. BMC
Genomics 2010, 11:53.

Rives AW, Galitski T: Modular organization of cellular networks. Proc Natl
Acad Sci USA 2003, 100:1128-1133.

Lin CY, Lee TL, et al Module organization and variance in protein-protein
interaction networks. Sci Rep 2015, 5:9386, DOI: 10.1038.

Zhang XF, Dai DQ: A framework for incorporating functional
interrelationships into protein function prediction algorithms. /EEE-ACM
Transactions on Computational Biology and Bioinformatics 2012, 9(3):740.
Vanunu O, Magger O, Ruppin E, Shlomi T, Sharan R: Associating genes and
protein complexes with disease via network propagation. PLoS
Computational Biology 2010, 6:¢1000641.

Vinayagam A, Hu Y, Kulkarni M, Roesel C, Sopko R, Mohr SE, Perrimon N:
Protein complex-based analysis framework for high-throughput data
sets. Sci Signal 2013, 6(264):rs5.

Yu H, Lin CC, Li YY, Zhao Z: Dynamic protein interaction modules in
human hepatocellular carcinoma progression. BMC Systems Biology 2013,
7(Suppl 5):52.

Newman MEJ, Girvan M: Finding and evaluating community structure in
networks. Physical Review E 2004, 69(2):026113.

Fortunato Santo, Barthelemy Marc: Resolution limit in community
detection. Proceedings of the National Academy of Sciences of the United
States of America 2007, 104(1):36-41.

Lancichinetti A, Fortunato S: Limits of modularity maximization in community
detection 2011, 1107-1155, Eprint arXiv.

Zhang C, Shen HZ: Modularity Function for Community Structure Based
on Natural Density of Networks. Journal of University of Electronic Science
and Technology of China 2012, 41(2):185-191.

Venu S, Srinivasan P, and Duygu V: Markov clustering of protein
interaction networks with improved balance and scalability. Proceeding
BCB 10 Proceedings of the First ACM International Conference on
Bioinformatics and Computational Biology 2010, 247-256.

Bader D, Hogue C: An automated method for finding molecular
complexes in large protein interaction networks. BMC Bioinformatics 2003,
4(2).

Nepusz T, Yu H, Paccanaro A: Detecting overlapping protein complexes in
protein-protein interaction networks. Nat Methods 2012, 9(5):471-472.
Tang X, Wang J, Pan Y: Predicting protein complexes via the integration
of multiple biological information. Systems Biology IEEE 6th International
Conference; 2012.

Gavin A, et al: Proteome survey reveals modularity of the yeast cell
machinery. Nature 2006, 440:631-636.

Krogan N, et al: Global landscape of protein complexes in the yeast
Saccharomyces cerevisiae. Nature 2006, 440:637-643.

Boyle El, Weng S, Gollub J, Jin H, Botstein D, Cherry JM, Sherlock G: GO::
TermFinder-open source software for accessing Gene Ontology
information and finding significantly enriched Gene Ontology terms
associated with a list of genes. Bioinformatics 2004, 20(18):3710-3715.
Krumsiek J, Friedel CC, Zimmer R: ProCope-Protein complex Prediction
and evaluation. Bio-informatics 2008, 24(18):2115-2116.

Mewes HW, Frishman D, Mayer KF, et al: MIPS: analysis and annotation of
proteins from whole genomes. Nucl Acids Res 2004, 32(sup. 1):D41-D44.

Li M, Chen J, Wang J, et al- Modifying the DPClus algorithm for
identifying protein complexes based on new topological structures. BMC
Bioinformatics 2008, 9:398.

doi:10.1186/1471-2105-16-512-S5

Cite this article as: Shen et al: Dynamic identifying protein functional
modules based on adaptive density modularity in protein-protein
interaction networks. BMC Bioinformatics 2015 16(Suppl 12):S5.

Page 8 of 8

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

* Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BiolMed Central



http://www.ncbi.nlm.nih.gov/pubmed/12538875?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/25797237?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/25797237?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22084148?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22084148?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20090828?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20090828?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23443684?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23443684?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17190818?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17190818?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12525261?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12525261?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22426491?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22426491?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16429126?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16429126?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16554755?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16554755?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15297299?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15297299?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15297299?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15297299?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18635566?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18635566?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14681354?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14681354?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18816408?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18816408?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Idea of closely associated degree
	Definition of internal closely associated degree
	Definition of external closely associated degree
	The overview of ADM algorithm
	ADM algorithm is detailed as follows

	Results and discussions
	Accuracy metric
	GO semantic similarity measurement
	Analysis of P-values

	Conclusions
	Funding
	Competing interests
	Authors’ contributions
	Authors’ details
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 500
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 500
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


