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Background
High throughput methods such as microarray and
DNA-methylation are used to measure the transcrip-
tional variation due to exposures, treatments, pheno-
types or clinical outcomes in whole blood, which could
be confounded by the cellular heterogeneity [1,2].
Several algorithms have been developed to measure this
cellular heterogeneity. However, it is unknown whether
these approaches are consistent, and if not, which
method(s) perform better.

Materials and methods
The data implemented in this study were from a Taiwan
Maternal and Infant Cohort Study [3,4]. We compared
five cell-type correction methods, including four meth-
ods recently proposed: the method implemented in the
minfi R package [5], the method by Houseman et al. [6],
FaST-LMM-EWASher [7], RefFreeEWAS [8]) and one
method using surrogate variables [9] (SVAs). The asso-
ciation of DNA methylation at each CpG site across the
whole genome with maternal arsenic exposure levels
was assessed adjusting for the estimated cell-types. To
further demonstrate and evaluate the methods that do
not require reference cell types, we first simulated DNA
methylation data at 150 CpG sites across 600 samples
based on an association of DNA methylation with a
variable of interest (e.g., level of arsenic exposure) and a
set of latent variables representing “cell types”. We then
simulated DNA methylation at additional CpG sites
only showing association with the latent variables.

Results
Only 3 CpG sites showed significant associations with
maternal arsenic exposure at a false discovery rate (FDR)
level of 0.05, without adjusting for cell types. Adjustment
by FaST-LMM-EWASher did not identify any CpG sites.
For other methods, Figure 1 illustrates the overlap of
identified CpG sites. Further simulation studies on meth-
ods free of reference data (i.e., FaST-LMM-EWASher,
RefFreeEWAS, and SVA) revealed that RefFreeEWAS
and SVA provided good and comparable sensitivities and
specificities, and FaST-LMM-EWASher gave the lowest
sensitivity but highest specificity (Table 1).

Conclusions
The results from real data indicated RefFreeEWAS and
SVA were able to identify a large number of CpG sites,
and results from SVA showed the highest agreement
with all other approaches. Simulation studies further
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Figure 1 Venn diagram illustrating the overlap of significant CpG
sites at FDR level of 0.05 after adjusting for cell types by different
methods for the association study of maternal arsenic exposure
with DNA-methylation.
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confirmed that RefFreeEWAS and SVA are comparable
and perform better than FaST-LMM-EWASher. Overall,
the findings support a recommendation of using SVA to
adjust for cell types due to its highest agreement with
other methods and appealing findings from simulation
studies.
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Table 1 Sensitivity and specificity with respect to truly
identified variables using 100 simulated data; CI:
confidence interval

Sensitivity: Median
(95% CI)

Specificity: Median
(95% CI)

FaST-LMM-EWASher 0.00 (0.00, 0.52) 1.00 (0.99, 1.00)

RefFreeEWAS 0.98 (0.00, 1.00) 0.94 (0.93, 1.00)

SVA 1.00 (0.98, 1.00) 0.94 (0.93, 0.94)
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