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Abstract

Background: Drug resistance is one of the most important causes for failure of anti-AIDS treatment. During
therapy, multiple mutations accumulate in the HIV genome, eventually rendering the drugs ineffective in blocking
replication of the mutant virus. The huge number of possible mutants precludes experimental analysis to explore
the molecular mechanisms of resistance and develop improved antiviral drugs.

Results: In order to solve this problem, we have developed a new algorithm to reveal the most representative
mutants from the whole drug resistant mutant database based on our newly proposed unified protein sequence
and 3D structure encoding method. Mean shift clustering and multiple regression analysis were applied on
genotype-resistance data for mutants of HIV protease and reverse transcriptase. This approach successfully chooses
less than 100 mutants with the highest resistance to each drug out of about 10K in the whole database. When
considering high level resistance to multiple drugs, the numbers reduce to one or two representative mutants.

Conclusion: This approach for predicting the most representative mutants for each drug has major importance for
experimental verification since the results provide a small number of representative sequences, which will be
amenable for in vitro testing and characterization of the expressed mutant proteins.

Background
AIDS (Acquired Immunodeficiency Syndrome) is one of
the most severe pandemic diseases, and approximately
35.5 million people were infected in the year 2012 [1]. It
has been almost three decades since the first case of
AIDS was found in US and the cause of AIDS was iden-
tified as HIV (Human Immunodeficiency Virus) [2].
Currently, a total of 26 licensed drugs are used in anti-
AIDS therapy [3]. These drugs target different steps dur-
ing the HIV life cycle, including viral entry, reverse tran-
scription, integration and maturation. HIV protease (PR)
is the enzyme responsible for processing viral precursor
proteins after budding of virus from the host cell during
the maturation stage of the viral life cycle [4]. PR inhibi-
tors block the proteolytic activity, preventing formation

of the infectious virus [5,6]. HIV reverse transcriptase
(RT) converts the viral RNA genome into DNA during
the early stages of the HIV life cycle. The nucleoside ana-
log zidovudine (AZT), which inhibits RT, was the first
FDA approved anti-AIDS drug [7,8]. The HIV RT inhibi-
tors can be categorized into two classes: Nucleotide
analog reverse transcriptase inhibitors (NRTIs) and non-
nucleoside reverse transcriptase inhibitors (NNRTIs).
NRTIs are structural analogs of nucleotides, and compete
with the enzyme’s natural substrates during the reverse
transcription step. NNRTIs specifically target a separate
site on HIV-1 RT to decrease its enzymatic activities [9].
During typical anti-AIDS treatment, which is often

referred to as highly active antiretroviral therapy
(HAART), three or more antiretroviral drugs chosen
from different categories are given to patients. Such
treatment extends the lifespan of the patients [10].
However, since HIV is a member of the retrovirus

family [11], its genomic information is carried by RNA
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[11,12]. Due to the lack of proofreading by RT [13] and
the high replication rate of as many as 109 viral particles
daily [14], drug resistance is one of the most severe chal-
lenges for successful long-term AIDS therapy [15,16].
Drug pressure causes the selection of resistant viral
strains, which can replicate in the presence of drugs
[17,18]. This drug resistance can cause the failure of anti-
viral therapy. Two strategies have been pursued to over-
come the challenge of drug resistance. First, in the clinic,
genotyping of the infecting virus is used to guide the
choice of effective drugs for therapy. Drug resistance can
be predicted from genotype data by a variety of algo-
rithms [19-22], including our approach of applying a
structure vector from Delaunay triangulation [23,24].
Second, research to understand the molecular mechan-
isms of drug resistance is important and could help in
the design of new drugs for improved anti-AIDS therapy.
Several possible mechanisms have been described for

drug resistance [25,26]. Laboratory studies can only be
performed on a small number of mutants. However, a
huge number of possible mutants can occur, since HIV
has a high mutation rate of about 10-4 to 10-5 mutations
per nucleotide and cycle of replication [26] and a naturally
polymorphic genome. Taking HIV PR as an example,
mutations of more than thirty different residues have been
associated with PR inhibitors [16]. Moreover, multiple
mutations accumulate as the virus evolves higher levels of
resistance [27,28]. For instance, we have studied a PR
mutant with 20 substitutions, which shows more than
1000-fold worse binding to inhibitors darunavir (DRV)
and saquinavir (SQV) compared to wild-type PR [29].
Therefore, considering the huge number of possible
mutants, can a tractably small number of mutants be iden-
tified as the most representative of high level resistance?
Answering this question could save both time and money,
and facilitate the study of drug resistant mechanisms.
One approach to selecting a small number of meaning-

ful mutants uses the Mean shift clustering, which was
first introduced in 1975 by Fukunaga and Hostetler [30]
for the purpose of seeking the mode of a density function
in the given sample set. Fukunaga and Hostetler [30] also
suggested that mean shift clustering is an instance of gra-
dient ascent by using decreasing distance functions,
which often referred as a kernel, from a given point to a
point in the sample set. This algorithm became more
widely used after 1995 when Cheng [31] developed a
more generalized formulation. By clarifying the relation-
ship between mean shift and the optimization, the algo-
rithm could potentially be applied on clustering and
global optimization problems by declaring each mode as
representative of one cluster and assigning each data
point to the mode it converges to. Applications of the
mean shift algorithm range over image/video segmen-
tation, image representation/retrieval, discontinuity-

preserving smoothing [32,33], higher level tasks like
appearance-based clustering [34,35], tracking including
blob tracking [36] and face tracking [37], shape detec-
tion and recognition [38]. Subsequently, applications of
this algorithm were extended to other fields like biol-
ogy. These applications include analysis of structural
variation in genomes [39], DNA microarray analysis
[40], and time-warped gene expression analysis [41].
In this paper, we have proposed a new algorithm

based on the non-parametric iterative mean shift and
our recently reported protein encoding method to
extract the most representative drug resistant mutants
from the Stanford HIV database [42].

Results
Mean shift clustering, multiple regression and quantile
analysis were performed on the data for both HIV-1 PR
and RT mutants whose sequences and structures were
encoded by Delaunay triangulation.

Mean shift clustering on HIV protease inhibitor resistance
After each of the mutated sequences was represented by a
210-dimensional vector, we performed the mean shift
clustering on the drug resistance data to select the most
representative mutants. Data were analyzed for the PR
inhibitors atazanavir (ATV), nelfinavir (NFV), ritonavir
(RTV), indinavir (IDV), lopinavir (LPV), tipranvir (TPV)
and saquinavir (SQV). The results show that the larger the
bandwidth, the smaller number of mutants was selected.
The plot for the PR inhibitor ATV is given as a represen-
tative example in Figure 1.

Mean shift clustering on HIV reverse transcriptase
inhibitor resistance
Similarly, mean shift clustering was performed on the
drug resistance data for HIV-1 RT inhibitors. The
bandwidth and the selected numbers of mutants are

Figure 1 The relationship between the bandwidths and the
number of selected mutants for PIs. The bandwidth is plotted
against the number of selected mutants. The trend line is shown in
blue. Plots show regression for drug resistance to ATV.
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compared for the RT inhibitors, including the NRTIs lami-
vudine (3TC) (Figure 2), abacavir (ABC), zidovudine
(AZT), stavudine (D4T), didanosine (DDI) and tenofovir
(TDF) (Figure 2), and the NNRTIs nevirapine (NPV)
(Figure 3), delaviridine (DLV), and efavirenz (EFV).

Multiple regression on HIV protease inhibitor resistance
Afterwards, a multiple regression was applied to the
selected mutants to evaluate the selected results. The R2

values for relative resistance were plotted against the
number of selected mutants as shown in (Figure 4) for
the PR inhibitors ATV, NFV, RTV, IDV, LPV, TPV and
SQV. The x-axis is the number of selected mutants,
while the y-axis is the R2 value after applying multiple
linear regression on selected protein sequences with
their drug resistant values.

Multiple regression on HIV reverse transcriptase inhibitor
resistance
Multiple regression analysis was performed similarly on
genotype-phenotype data for drugs inhibiting HIV-1 RT.
The R2 values for relative resistance were plotted against
the number of selected mutants as shown in for the RT
inhibitors including NRTIs 3TC, ABC, D4T, DDI, TDF
and AZT (Figure 5), and NPV, DLV and EFV for
NNRTIs (Figure 6).

Bandwidth selection and multiple regression on HIV-1 PR
and RT inhibitor resistance
The following experiments were performed to test the
accuracy of the selected mutants with different R2

results. According to the results of the above experi-
ments, it could be inferred that the larger the bandwidth
is, the fewer representative mutants are selected, and
therefore the R2 would be lowered. Moreover, with dif-
ferent R2 values, the selected mutants of lower R2 need

to be a subset or have a large intersection with
the selected mutants of the higher R2. Based on the
above results, in this experiment, the higher R2 was set
to be above 0.80 while the lower R2 was set to be 0.60.
With this goal, the overlap group was then calculated.
The overlap group of mutants is a significant fraction of

those selected for the lower R2, which suggests the proce-
dure selects meaningful representative mutants correctly.
The fractional overlap ranges from 0.79 to 0.94 for HIV
PR inhibitors, and 0.89-0.94 for NNRIs (Tables 1, 2). For
NRTIs, the results in Figure 5 show that when the number
of resistant mutants increases, the R2 value does not
increase smoothly. There are many ripples in the plots,
making it difficult to select the R2 cutoff in this experi-
ment. Therefore, analysis of NRTIs was not possible.

Quantile information analysis on HIV-1 protease inhibitor
resistance
In order to further analyze the mutants selected by
mean shift, quantile information analysis was performed
and the result indicates that the proposed algorithm
could successfully cluster the datasets, and pick the
potentially most drug resistant mutants from the cluster
centers (Tables 3, 4). In the tables, the numbers are
given for selected/total number in each bin, and R2 used
here is around 0.70.
Bin I includes the mutants with least resistance to each

inhibitors, while Bin × has the mutants with the highest
resistance to the inhibitors. As shown in Table 4, the
selected ratio in bin × is larger than that of bin I. This
result suggests that the mutants vary more in the drug
resistant category than in the non-drug resistant one.

Quantile information analysis on HIV-1 reverse
transcriptase inhibitor resistance (NRTIs)
In order to further analyse the mutants selected by
mean shift, all the drug resistant mutants were grouped

Figure 2 The relationship between the bandwidths and the
number of selected mutants for NRTIs. The bandwidth is plotted
against the number of selected mutants. The trend line is shown in
blue. Plots show regression for drug resistance to 3TC.

Figure 3 The relationship between the bandwidths and the
number of selected mutants for NNRTIs. The bandwidth is
plotted against the number of selected mutants. The trend line is
shown in blue. Plots show regression for drug resistance to NPV.
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Figure 4 The relationship between the multiple regression results and the number of selected mutants. The R2 value is plotted against
the number of selected mutants. The trend line is shown in blue. Plots show regression for resistance to drugs: (A) ATV, (B) NFV, (C) RTV, (D) IDV,
(E) LPV, (F) TPV, and (G) SQV.
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and separated into 10 bins based on their drug resis-
tance value. Both the total number of mutants and the
selected number of mutants were counted and recorded
in each corresponding table (Tables 5, 6). In the tables,
the numbers are selected/total number in each bin, and
R2 used here is around 0.70. Similar to PIs results, as
shown in Table 6, the selected ration in bin × is larger
than that of bin I.

Quantile information analysis on HIV-1 reverse
transcriptase inhibitor resistance (NNRTIs)
In order to further analyze the mutants selected by
mean shift, all the drug resistant mutants were
grouped and separated into × bins based on their drug
resistance value. Both the total number of mutants and
the selected number of mutants are counted and
recorded in each corresponding table. In the tables,

Figure 5 The relationship between the multiple regression results and the number of selected mutants. The R2 value is plotted against
the number of selected mutants. The trend line is shown in blue. Plots show regression for resistance to drugs: (A) 3TC, (B) ABC, (C) D4T, (D)
DDI, (E) TDF and (F) AZT.
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the numbers are selected/total number in each bin,
and R2 used here is around 0.70. The Tables 7, 8 show
the total number of mutants in the bin before and
after selection.

Analysis of multi-drug resistance information for the most
highly resistant mutants of HIV-1 PR to NRTIs
In order to further analyze the mutants selected by
mean shift in the most drug resistant category (bin X),

Figure 6 The relationship between the multiple regression results and the number of selected mutants. The R2 is plotted against the
number of selected mutants. The trend line is shown in blue. Plots show regression for resistance to drugs: (A) NPV, (B) DLV and (C) EFV.

Table 1. The number of selected mutants and R2 for HIV-1 PR Inhibitors

Selected for higher R2 Higher R2 Selected for lower R2 Lower R2 Overlap Overlap Ratio (%)

ATV 412 0.8089 289 0.6004 260 89.97

NFV 353 0.8085 253 0.6246 235 92.89

RTV 281 0.8027 243 0.5915 228 93.83

IDV 420 0.8018 252 0.5749 217 86.11

LPV 307 0.8006 258 0.6073 242 93.80

TPV 826 0.8080 288 0.5837 227 78.82

SQV 453 0.8151 243 0.6188 215 88.48

Table 2. The number of selected mutants and R2 for HIV-1 RT NNRTIs

Selected for higher R2 Higher R2 Selected for lower R2 Lower R2 Overlap Overlap Ratio (%)

NPV 429 0.8067 273 0.6050 242 88.64

DLV 337 0.8162 257 0.6047 242 95.16

EFV 337 0.8073 243 0.6449 222 91.36
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those mutants having resistance to multiple drugs were
picked and compared. The results show that the more
inhibitors a mutant is resistant to, the fewer representa-
tive mutants appear (Figure 7). The number of mutants
representing high resistance to three or more PIs falls to
low values of one to three, which becomes eminently
verifiable by in vitro experiments.

Analysis of multi-drug resistant information for the most
highly resistant mutants of HIV-1 reverse transcriptase
Similar results are also obtained for NNRTIs. As shown
in Figure 8, the number of mutants representing high
resistance to two NNRTIs falls to values of 9-12, and
when all three drugs are considered, only four mutants
are representative of multidrug resistance. These
low numbers of mutants can be verified by in vitro
experiments.

Table 3. Number of selected mutants in each bin for PIs

ATV NFV RTV IDV LPV TPV SQV

I 189/9454 183/13711 151/12220 246/14885 152/11630 366/9921 223/14746

II 36/1179 55/2126 34/1589 35/1101 62/2087 16/87 19/910

III 18/844 22/540 11/918 10/511 31/1393 0/0 0/107

IV 9/200 7/357 6/300 14/216 13/200 0/0 3/28

V 10/39 4/21 7/304 4/14 8/333 1/1 2/94

VI 1/3 1/256 0/0 0/0 1/26 0/0 2/132

VII 3/34 0/2 2/22 1/8 3/153 0/0 0/0

VIII 1/129 0/0 0/0 1/12 2/3 0/0 1/1

IX 0/0 1/9 0/0 0/0 0/0 0/0 0/0

X 24/202 15/523 59/1299 10/99 12/444 29/219 28/1100

Table 4. Selected ratios in each bin for PIs (%)

ATV NFV RTV IDV LPV TPV SQV

I 2.00 1.33 1.24 1.65 1.31 3.69 1.51

II 3.05 2.59 2.14 3.18 2.97 18.4 2.09

III 2.13 4.07 1.20 1.96 2.23 N/A 0.00

IV 4.50 1.96 2.00 6.48 6.50 N/A 10.7

V 25.6 19.1 2.30 28.6 2.40 100 2.13

VI 33.3 0.391 N/A N/A 3.85 N/A 1.52

VII 8.82 0.00 9.09 12.5 1.96 N/A N/A

VIII 0.775 N/A N/A 8.33 66.7 N/A 100

IX N/A 11.1 N/A N/A N/A N/A N/A

X 11.9 2.87 4.54 10.1 2.70 13.2 2.55

Table 5. Number of selected mutants in each bin for
NRTIs

3TC ABC D4T DDI TDF AZT

I 11/2711 241/4780 188/3791 314/4603 265/2001 142/4079

II 0/14 13/65 51/948 17/194 1/1 19/94

III 0/1 0/0 10/23 5/25 0/0 13/253

IV 0/1 0/0 7/14 1/4 0/0 4/27

V 0/73 0/0 4/37 2/7 0/0 3/7

VI 0/57 0/0 2/17 2/9 0/0 5/30

VII 1/54 0/0 1/1 0/2 0/0 5/19

VIII 0/45 0/0 2/4 0/1 0/0 3/164

IX 0/88 0/0 1/8 1/3 0/0 0/6

X 14/1806 1/1 0/2 1/1 1/2 35/168

Table 6. Selected ratios in each bin for NRTIs (%)

3TC ABC D4T DDI TDF AZT

I 0.406 5.04 4.50 6.82 13.24 3.48

II 0.00 20.0 5.38 8.76 100 20.2

III 0.00 N/A 43.5 20.0 N/A 5.14

IV 0.00 N/A 50.0 25.0 N/A 14.8

V 0.00 N/A 10.8 28.6 N/A 42.9

VI 0.00 N/A 11.77 22.2 N/A 16.7

VII 1.85 N/A 100 0.00 N/A 26.32

VIII 0.00 N/A 50.0 0.00 N/A 1.83

IX 0.00 N/A 12.5 33.3 N/A 0.00

X 0.775 100 0.00 100 50.0 20.8

Table 7. Number of selected mutants in each bin for NNRTIs

Bin NPV DLV EFV

I 157/9898 198/9476 172/9907

II 17/157 24/241 14/116

III 9/114 12/587 10/166

IV 7/56 7/35 1/24

V 9/94 4/155 2/42

VI 7/169 3/20 2/132

VII 1/1 0/0 4/26

VIII 30/293 3/73 6/48

IX 0/1 3/9 1/2

X 66/584 43/703 32/891
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Discussion
The serious problem of drug resistance arising during
therapy of HIV-infected individuals can cause failure of
the treatment. Many scientists are working on revealing
the drug resistance mechanisms using a variety of experi-
mental techniques. However, since there are an extremely
large number of mutants, it is difficult to choose represen-
tative mutants for detailed research in the laboratory.
In this experiment, we have developed new selection

algorithm based on a simple graph representation of pro-
tein structure to solve this problem. The protein structure
is 3-D and can be efficiently represented by Delaunay tri-
angulation [44]. Based on this encoding method, a mean
shift was applied to select the most representative
mutants. Multiple linear regression was performed to eval-
uate the selection results.
This selection algorithm works well on selecting drug

resistant mutants from both HIV PR and RT inhibitor
genotype/phenotype data. Among all the mutants,
around 250 most representative mutants were selected
with numbers in the range of 215 to 360 [PIs+NNRTIs]

mutants selected for the different drugs. Such selection
was based on the kernel bandwidth, and the goal R2

value. In this experiment, the R2 value was set to be
above 0.60 to be considered as a successful selection.
During the experiments, after selection, the multiple lin-
ear regression was applied on these selected mutants’
drug resistance values, and the R2 values fall in the range
of 0.65 to 0.83, indicating excellent correlation. This high
correlation suggests that the selected number of mutants
can be further decreased if a lower target R2 value was
applied.
Identifying a small number of representative mutants

will enable laboratory studies of the molecular mechan-
isms of resistance, which is currently impossible due to
the huge number of possible mutants.

Materials and methods
Datasets and data preparation
All the genotype-phenotype datasets were downloaded
from the Stanford HIV drug resistance database [42]
(http://hivdb.stanford.edu/pages/genopheno.dataset.
html). The proposed algorithm was tested on both HIV-
1 PR and HIV-1 RT resistance data sets. For HIV-1 PR,
the inhibitors atazanavir (ATV), nelfinavir (NFV), rito-
navir (RTV), indinavir (IDV), lopinavir (LPV), tipranvir
(TPV) and saquinavir (SQV) were tested. While for HIV
RT, NNRTIs nelfinavir (NPV), delaviridine (DLV), efa-
virenz (EFV), and NRTIs lamivudine (3TC), abacavir
(ABC), zidovudine (AZT), stavudine (D4T), didanosine
(DDI) and tenofovir (TDF) were tested.
All the datasets were pre-processed using the methods

and the cutoff values described previously in[24]. The
results of the expansion for each of the HIV-1 PR inhi-
bitors were: a total of 16846 sequences were obtained
from 1622 isolates with assays for IDV resistance; a total
of 16269 sequences from 1322 isolates for LPV; a total

Table 8. Selected ratios in each bin for NNRTIs (%)

NPV DLV EFV

I 1.59 2.09 1.74

II 10.8 10.0 12.0

III 7.90 2.04 6.02

IV 12.5 20.0 4.17

V 9.57 2.58 4.76

VI 4.14 15.0 1.52

VII 100 N/A 15.4

VIII 10.2 4.11 12.5

IX 0.00 33.3 50.0

X 11.3 6.12 3.59

Figure 7 The relation between total number of mutants and
number of resistant inhibitors for PIs. The red line shows the
result for the original data in bin X; while the blue line shows the
result for the selected mutants in bin X.

Figure 8 The relation between total number of mutants and
number of resistant inhibitors for NNRTIs. The red line shows
the result for the original data in bin X; while the blue line shows
the result for selected mutants in bin X.
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of 10228 sequences from 744 isolates for TPV; a total of
17118 sequences from 1640 isolates for SQV; a total of
12084 sequences from 1012 isolates for ATV; a total of
17545 sequences from 1674 isolates for NFV; and a
total of 16652 sequences from 1589 isolates for RTV.
For each of the HIV-1 RT inhibitors the expansion

resulted in: a total of 11367 sequences were obtained
from 746 isolates with assays for NPV resistance; a total
of 11299 sequences from 732 isolates for DLV; a total of
11354 sequences from 734 isolates for EFV; a total of
4850 sequences from 633 isolates for 3TC; a total of 4846
sequences from 628 isolates for ABC; a total of
4847 sequences from 630 isolates for AZT; a total of
4845 sequences from 630 isolates for D4T; a total
of 4849 sequences from 632 isolates for DDI; and a total
of 2004 sequences from 353 isolates for inhibitor TDF.

Encoding structure and sequence with Delaunay
triangulation
The sequence and structure of the protein were repre-
sented using a graph-based encoding as described in
[43]. Delaunay triangulation was used to define a graph
which spanned the protein structure and defined struc-
turally adjacent pairs of amino acid residues. Adjacent
pairs of amino acids were summarized into a vector of
the 210 unique pairs of the 20 standard amino acids by
calculating the distance for each adjacent pair in the
structure and tabulating by the types of amino acids in
that adjacent pair. Only the sequences of the mutated
proteins are needed and only one protein structure is
necessary. As a result, all mutants are represented as
vectors of the same dimensionality, which is a desired
property for most of the pattern recognition algorithms.
The X-ray crystal structures 3OXC for HIV-1 PR, and
2WOM for HIV-1 RT (from http://www.pdb.org) were
used as templates for Delaunay triangulation.

Regression analysis for drug resistance prediction
The genotype-phenotype datasets provide an experimen-
tally measured drug resistance value, with respect to a
certain type of drug, with each genotype. The mutations
relative to a standard sequence are denoted as
x1 , x2, ...xN; xi ∈ �210 where N is the total number of
mutations and R210 is the structure vector. Also the cor-
responding drug resistance values are denoted as the
real numbers y1 , y2 , ..., yN; y ∈ � including 0 for the resis-
tance value of the wild type virus. We then seek a linear
model between the xi ’s and yi’s by minimizing the cost
function E:

E: =
N∑

i=1

(yi − A · xi − b)2 (1)

with respect to the 210 dimensional vector A and sca-
lar b.
Furthermore, in order to better utilize the available

data set, we performed a k-fold cross-validation (in this
work, k = 5). Specifically, the training set of size N is
randomly divided into k groups. Among them, k-1
groups are utilized for constructing the linear model as
in Equation (1). Then, the linear model is used to pre-
dict the drug resistance for the remaining group with N/
kmutations. The predicted resistances are compared
with the measured ones and the R2 values are recorded.
Finally, the average and standard deviation of the k R2

values are computed.

Mean shift clustering and bandwidth selection
The mathematical deviation of mean shift algorithm was
first introduced by Fukunaga and Hostetler [30], then
adapted by Cheng [31], and later extended by Comani-
ciu, Meer, and Ramesh [45]. The procedure of the mean
shift is that, for each data point in the feature space, a
gradient ascent procedure is performed until conver-
gence. The stop points of the procedure are the local
maxima of the kernal density function, which could also
be considered as the center of the clustering.
Given N data points {x1, x2, ..., xN} ∈ �210, which could

be considered as the kernel density function with Gaus-
sian kernel K(t) = e−t/2 for t ≥ 0:

p(x) =
N∑

i=1

πi
1
Zi
K(d(x, xi;

∑
i
)),

Where πi ∈ (0, 1) is the mixing proportion of point i

(satisfying
∑N

i=1
πi = 1),

∑
i
is its covariance matrix

(positive definite), Zi =
∣∣∣2π

∑
i

∣∣∣
1/2

is a normalization

constant and d(x, xi;
∑

i
) = (x − xi)T

∑−1

i
(x − xi) is

the Mahalanobis distance.
Among all the data points, the dense regions of these

could be treated as the local maxima of p(x) and could

be found by seeking stationary points
∂p(x)
∂x

= 0. The

mean-shift update is applied with the rule:

p(n|x) =
exp(−1

2
||(x − xn)/σ ||2)

∑N
n′=1 exp(−

1
2

||(x − xn′)/σ ||2)
, x ← f (x) =

N∑

n=1

p(n|x)xn

This rule corresponds to a fixed point iteration to find
the expected value for the centre of a Gaussian kernel,
and is computationally more efficient than a gradient
based numerical optimization for this problem. The rule
maps any point x ∈ �210 to a weighted mean of the
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points in the dataset denoted as f(x). The difference f(x)-
x is the mean shift vector and is clearly of zero magni-
tude at convergence.
The mean shift algorithm is non-parametric and the reso-

lution of the clustering is determined by the kernel band-
width s. The initial step is to find the range of the
bandwidth. Following that, by choosing different band-
widths, different numbers of mutants were selected. Amulti-
ple regression was performed to evaluate the selected results.

Quantile information analysis
All the drug resistant mutants were grouped and sepa-
rated into 10 bins based on their drug resistance value.
For example, about ATV, their resistance values range
from 0 to 700. Therefore, those mutants with resistance
value between 0 and 70 were put into bin I, those with
resistance value between above 70 and below 140 were
put into bin II, and so on.
After splitting all the data into ten bins, both the total

number of mutants and the selected number of mutants
were counted and recorded in each corresponding table.
For each bin, the number of mutants before and after
the selection was calculated and compared. Moreover,
the selected ratio is also calculated.

k-fold validation
In order to fully use all the data, a k-fold cross-validation
was performed in all the experiments for all the drugs. Spe-
cifically, we randomly choose (k-1)/k of all the sequences
(some are drug resistant, while others are non-drug resis-
tant) for training the classifier and the remaining 1/k data
are used for testing. These tests used k = 5. Independent
randomly selected k-folds were chosen throughout the
study to avoid bias in the results. The apparent polymorph-
ism in the original sequence data requires extra care when
generating k-fold data sets for testing or training. When a
sequence was removed from a k-fold in generating a test-
ing or training dataset, all derived instances of that
sequence were removed as well. This ensures that the indi-
vidual k-fold datasets are truly independent from each
other and thus ensures that the estimated accuracies are
meaningful. The R2 values were averaged over the k-folds.
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