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Abstract

combination for prediction of the progression to AD.

reported in literature.

progression.

Background: Alzheimer's disease is a multifactorial disorder that may be diagnosed earlier using a combination of
tests rather than any single test. Search algorithms and optimization techniques in combination with model
evaluation techniques have been used previously to perform the selection of suitable feature sets. Previously we
successfully applied GA with LR to neuropsychological data contained within the The Australian Imaging,
Biomarkers and Lifestyle (AIBL) study of aging, to select cognitive tests for prediction of progression of AD. This
research addresses an Adaptive Genetic Algorithm (AGA) in combination with LR for identifying the best biomarker

Results: The model has been explored in terms of parameter optimization to predict conversion from healthy
stage to AD with high accuracy. Several feature sets were selected - the resulting prediction moddels showed
higher area under the ROC values (0.83-0.89). The results has shown consistency with some of the medical research

Conclusion: The AGA has proven useful in selecting the best combination of biomarkers for prediction of AD
progression. The algorithm presented here is generic and can be extended to other data sets generated in projects
that seek to identify combination of biomarkers or other features that are predictive of disease onset or

Introduction

Alzheimer’s disease (AD), is the major cause of dementia
(present in 50-70% of people with dementia). The world-
wide number of cases of AD is expected to rise dramati-
cally, from an estimated 35.6 million in 2012 to over 115
million by 2050 [1,2]. Currently there is no effective cure
for AD. AD is a progressive and irreversible disease. The
growing prevalence, high cost, and an overwhelming
impact of AD to the patients, their families, and caregivers
increases the urgency of developing treatment that delays
the onset and slows the progression of disease.
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The identification of risk or benefit factors in pre-clinical
AD or in individuals with mild cognitive impairment (MCI)
may provide targets for early diagnosis of AD-related
dementia. This knowledge, in turn, will help research
aimed at prevention or slowing the progression of the dis-
ease. Identification of diagnostic features helps targeting of
therapeutic trials and appropriate identification of subjects
suitable for enrollment into clinical trials. Focusing on sui-
table diagnostic markers increases chances for success of
the trials, and provides the basis for developing population
screening tools [3]. The Australian Imaging, Biomarkers
and Lifestyle (AIBL) study of aging [4] focuses on periodic
collection of feature-rich data from over 1,100 elderly parti-
cipants classified as healthy controls (HC), MCI or AD.
This study includes factors from well-established cognitive
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tests, emerging biomarker features, and other health and
lifestyle factors. This rich dataset enables the use of statisti-
cal and machine learning methods for prediction of the
onset and progression of AD. It also enables building
advanced diagnostic and prognostic tools and contributes
to the study of mechanisms of disease development.

The AD is a multifactorial disorder that may be diag-
nosed earlier using a combination of tests rather than any
single test [5]. Because of the diversity of relevant features
and their complex relatedness the traditional statistical
model building techniques, such as stepwise selection, are
limited in their ability to determine high-quality feature
sets [6]. Search algorithms and optimization techniques in
combination with model evaluation techniques have been
used previously to perform the selection of suitable feature
sets. Examples include genetic algorithms (GA) [7],
LASSO shrinkage [8], particle swarm optimisation and
simulated annealing [9]. Logistic regression is commonly
used in the field of medical research. The combination of
GA with logistic regression (LR) has been proposed for
prediction treatment outcome in lung injury [7] and pre-
diction of myocardial infarction in patients with chest pain
[10]. It has been shown to perform feature selection signif-
icantly better than sequential variable selection methods
or random subset selection. Previously we successfully
applied GA with LR to neuropsychological data contained
within the AIBL study to select cognitive tests important
in the progression of AD [11].

Cognitive tests are widely used for diagnosis and predict-
ing the progression of AD as key clinical criteria [5]. Recent
research aims to enhance the diagnostic toolkit by adding
brain imaging, cerebrospinal fluid (CSF) biomarkers, and
plasma biomarkers to provide earlier and more certain
diagnostic tools [3,5]. Doecke et al. [6] applied regression
models to the AIBL cohort baseline measures data for
identification of plasma biomarkers that distinguish HC
from AD patients with high sensitivity and specificity.
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Willette et al [12] identified a group of markers including
some cognitive performance measures and structural MR
image features for classifying normal cases from MCI or
AD patients. They also built a model that predicted the
conversion from MCI to AD. Our work focuses on predic-
tion of AD development using advanced machine learning
methods. The current report focuses on the development
and optimization of an algorithm for feature selection and
finding the best combination of biomarkers and demo-
graphic features that predict the progression from HC to
MCI or AD within 54 months. The dataset used for this
study contains 181 biomarker and demographic features
presenting a combinatorial solution space of 2181
instances. GA is efficient for searching huge combinatorial
spaces and finding combination of variables that can be
used for classification problems. Adaptive genetic algo-
rithm (AGA) was shown to improve performance relative
to the standard GA when the fitness function is highly epi-
static (e.g. the effects of combined genetic mutation are dif-
ferent from their individual effects) [13]. The combination
of AGA and LR, is, therefore, suitable for use with large-
scale feature selection problem of the complex solution
landscape, and was chosen for this study. The algorithm
presented here is generic and can be extended to other
data sets generated in projects, that seek to identify bio-
markers or their combinations that are predictive of disease
onset or progression.

Materials and methodology

We deployed an AGA for selection of one or more combi-
nations of candidate biomarkers (features) to predict the
AD progression with high accuracy. The prediction
method deployed the AGA as a search method with a LR
algorithm as a fitness function. The overall methodology
of the prediction system is depicted in Figure 1. In our
algorithm the results from LR with multiple variable sets
serve as inputs into the AGA for searching the best
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Figure 1 Diagram of methodology. Each set of features selected by AGA were fed to LR models, and the output from LR models are used to
measure the fitness level of each of the feature combinations. This process is iteratively repeated until the goal solutions are found.
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combination of features. The features selected by the AGA
search are then returned to the LR for iterative identifica-
tion of the best feature set. A similar method was used
earlier in the study of heart disease [7], and for selection of
features from cognitive tests that are predictive of AD
progression [11].

Data

We used the data from the Australian Imaging, Biomar-
kers and Lifestyle (AIBL) study of aging, a prospective
longitudinal study of cognition relating to dementia and
AD [4]. This collection of data has been collected from
more than 1000 participants that are over 60 years old.
The AIBL study contained data collected at baseline, 18,
36, and 54 months from the commencement of study. The
subset of the data used in this study is from a panel of
plasma biomarkers recorded as baseline measures. This
panel was used to predict the conversions from HC to
MCI/AD within 54 months.

To ensure the completeness of the data we performed
data cleaning of biomarker measurements including
missing value imputation [6]. The features used in this
study included:

« 53 clinical pathology measures (blood analytes)

« 7 measures of circulating metals (plasma analytes)
+ 111 protein measures from 151-analyte multiplex
panel immunoassay (Human DiscoveryMAP, version
1.0; Myriad RBM, Myriad Genetics, Inc. Austin, Tx)
+ 7 plasma measures (plasma levels in pg/mL,
including Apolipoprotein E (APOE) levels, Innoge-
netics and Mehta based ELISAs)

« 3 demographics features: age, sex, and apolipopro-
tein E allele E4 presence

The details of 181 features are listed in Additional File
1 (Table S1) including the descriptions and ID numbers
used throughout the report. The initial cohort included
754 healthy subjects. 170 subjects were excluded from
this study: 151 unavailable, 17 deceased, and two that
converted to other form of dementia in 54 months. The
data set used in this study included 40 HC who con-
verted to either MCI or to AD, and 544 who remained
healthy over 54 months. These baseline data were used
for building the models for prediction of HC to AD
conversion.

The Algorithm

Logistic Regression

Logistic regression is used for probabilistic classification,
where a dataset of one or more independent predictors
(features) has a dichotomous dependent variable. LR pre-
dicts the outcome (typically represented as binary ‘0" and
‘1", indicating an absence or presence of a condition) of a
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set of feature values. The logistic function takes the form
(Formula 1):

m(x)=1/(1+ e—(ﬂo+ﬂ1x1+---+ﬁmxm)) (1)

Where x,, relates to the explanatory variables, f is an

estimated parameter, and 7z(x) is the probability of the
dependent variable taking value of ‘1’. The LR is used to
classify each observation of a set of features, and the prob-
abilities used to determine the suitability of the model and,
by extension, the feature set. For the AD progression pro-
blem, the dependent variable was encoded on a ‘conversion’
basis - ‘0’ for an HC participant remaining cognitively
healthy during the 54 month period and ‘1’ for a participant
who converted to MCI or AD within the 54 month period.
The Adaptive Genetic Algorithm (AGA)
A typical GA, depicted in Figure 2, is an evolutionary pro-
cess wherein a population of solutions evolves over a
sequence of generations. Each individual in the population
(called genome or chromosome) represents a candidate
solution to the problem. The potential solutions compete
and mate with each other to produce increasingly fitter
individuals over subsequent generations of solutions. Dur-
ing the reproduction of the next generation, selected indi-
viduals are transformed using operations of crossover or
mutation under a certain crossover probability p,, and
mutation probability p,,. For feature selection, the initial
population is a set of strings (individuals) of length 181
encoding each studied feature by a given position in the
strings. The values for each position in each individual
was generated randomly using binary encoding (where ‘1’
signifies the inclusion of a feature in the LR). The indivi-
duals were assessed for fitness using a cross-validated
model. The individuals with highest fitness were passed
onto the next generation. The operation was repeated in
each generation. The genome with the highest fitness after
a number of generations represents the “best” feature set.

The AGA differs from a typical GA in implementation
of crossover and mutation operators. In the AGA, the
probabilities of crossover and mutation change (adapt)
depending on the relative fitness of a solution. This
strategy protects high-fitness solutions and disrupts low
fitness solutions [13]. The complete disruption of sub-
average solutions results in a greater diversity of the
solution population and therefore provides for broader
exploration of the search space. In addition, it promotes
high convergence rates towards globally optimal solu-
tions. In AGA, the probability of crossover is defined by
an appropriate function. In this study, the probability of
crossover was defined as (Formula 2):

fmax_f/ / r
pc = klfmax_]?,f EJj 2)
k1, f<f
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Figure 2 A diagram representing a typical GA. Each solution (individual) within a generation is evaluated until the target solution is found.
New generation of the population is produced using selection, crossover, and mutation operators that create new solutions. The “best” solution
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Where f.x is the population maximum fitness, f is
the maximum fitness of the two parents of the cross-
over, fis the population mean fitness, and k; is the
adaptive crossover rate (typically 1). We defined the
probability of mutation as (Formula 3):

fmax — f z
pm = szmax _]?,f zjj ®)
ka, f<f

Where fis the fitness of the prospective genome to
undergo mutation and k, is the adaptive mutation rate
(usually 0.5).

ROC and Fitness Function

To use the LR in a GA, a single number that can be used
for ‘fitness’ judgment is required. In our study, this value
was defined by the area under the curve (AUC) of a
receiver operating characteristic (ROC) produced by the
LR model. The AUC value is a measure of the predictive
power of a classifier, where 1 is a perfect prediction,
0.5 is equal to random guessing. For majority of classifi-
cation systems values of AUC>0.9 indicate excellent pre-
dictions, AUC>0.8 are good predictions, while AUC<0.7
indicate poor predictions [14].

The fitness function implements the cross-validated
AUC method and returns a fitness value f. To facilitate
identification of small feature sets that are highly predic-
tive, we introduced a penalty assigned to the larger variable
sets in the fitness function. A maximum number of fea-
tures to be included in the feature set for prediction was
defined as a constraint for the function (Formula 4).

0, Nsubset > Mmax

I= AUC+p><(1— @

Nsybset
Nsubset < MNmax
Nitotal

AUC is the mean AUC value from n-fold cross-valida-
tion, p is an adjustable penalty factor, 7,5, is the num-
ber of features selected, 7.« is a specified maximum
feature number, and #,,.,; is the number of features in

the dataset. The penalty factor p pushes the AGA towards
selecting a smaller feature subset by improving the appar-
ent fitness of such genomes on a sliding scale. The penalty
parameter 71,,,,, allows complete rejection of genomes over
a specified size, thus reducing the computation involving
meaningless genomes. The analysis of this “parameter
sweep” can produce insight into effects of feature set size,
solution quality, and noise.

Model optimization

Model optimization included cross-validation, feature set
size optimization, random immigration, and feature sub-
setting. Cross-validation was performed to ensure high
accuracy of predictions. The feature set size optimization
ensured that the sets of selected features are sufficiently
small so that they can be interpreted for their biological
and clinical meaning. Random immigration feature of the
AGA was implemented to prevent convergence towards
local minima. Given the large number of potential indivi-
dual biomarkers (181 features) and their possible combina-
tions, the feature sub-setting was implemented to prevent
requirement for excessive computational time.
Cross-validation

Repeated n-fold balanced and stratified cross-validation [15]
was used in this study to assess the performance of classifi-
cation models. In 5-fold cross-validation 10 times repeated,
the available dataset is split randomly into 5 groups (folds),
with the same proportion of each class in each group as the
entire dataset. One group is held out as a validation set,
while the remaining four groups are combined to form a
set on which the regression model is trained. Prediction
probabilities are formed with the validation set, and an
AUC value is determined. The training-testing procedure is
carried out on each fold combination in turn, and a mean
of AUC values for five validation groups is taken. The
5-fold cross-validation is repeated 10 times, with the mean
of AUC values of each repeat taken to arrive to the final
number. Increasing the number of repeats of cross-valida-
tion tends to provide better estimate of the accuracy of the
method, but it requires more computation time. Therefore,
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in a GA search, a trade-off needs to be made with a typical
choice of 5- to 10-fold validation (depending on dataset
size). At the completion of the GA, a Monte-Carlo post-
evaluation on the final feature subset of 1000 repeats was
made for this study. In the post-evaluation, for each selected
feature set, the data were randomly split into 80% for LR
model training and 20% for validation. This was repeated
for 1000 runs and the AUC was averaged to give the final
assessment of accuracy.

Computational experiments and results

In this study, the LR models were built with ‘glm.fit" in the
‘stats’ R package, using a ‘logit’ link function [16]. The
AGA algorithm was implemented in R whereby we made
modifications to the standard GA package code [17]. The
crossover and mutation probabilities were calculated for
each candidate based on Formulas (2) and (3). They were
included in the custom genetic operator functions and
supplied to the ‘GA’ package in R. This modification pre-
vented the re-evaluation of fitness for non-mutated gen-
omes (See Additional File 2 for the code snippets).

The AGA fitness function performed repeated n-fold
cross-validation to obtain an averaged AUC value from
the validation of a trained LR model. In this study, the
AUC values were calculated with the ‘HandTill2001" R
package [18,19]. By using averaged AUC measures as
the fitness values, genetic operations tend to produce a
globally optimal feature subset. A variety of model features
were utilised to push the AGA towards selection of smal-
ler feature sets, including fitness penalty and size- reduced
feature subsets. The well-performing subsets of the overall
feature set were empirically defined and provided as the
inputs to the AGA.

For search runs, 181 features (Additional File 1: Table
S1) were utilized, and the AGA parameters were explored
to determine optimized search conditions. Because of their
good performance on binary GA problems, a two-point
crossover function and a single-bit random mutation func-
tion were used. Uniform crossover and two-bit mutation
were investigated but they did not provide notable
improvements. The initial population creation was random,
with a skew of 1/4 to 1/8 ‘1’s in order to bias the algorithm
towards selecting smaller feature subsets. A tournament

Table 1 Fixed or Default AGA parameters.
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selection operator was used (with n = 2 genomes partici-
pating) to promote convergence.

The AGA was executed over 100 ‘runs’ to produce a
large number of solution feature sets for a given parameter
setup, and the final MC 1000-repeat post-evaluation AUC
cross-validation technique was used to compare solutions.
Due to the variable quality of cross-validation, the root-
mean-square (RMS) error between fitness reported by the
AGA runs and the post-evaluation AUC was examined for
preliminary runs to select an acceptable number of cross-
validation repeats implemented in the fitness function. This
was done because more accurate fitness judgment allows
the AGA to evolve the best features. Additionally, p, 7.
and initial population skew were adjusted to move the
AGA quickly toward suitably small feature subsets. The set
of parameters common to all results are listed in Table 1.

The effect of varying feature set size was explored by
examination of the maximum values of AUC, while the
frequencies of feature selection were checked using his-
tograms. Feature sets were later compared to the step-
wise model results to demonstrate the advantages of the
AGA approach.

Cross-validation optimization

The number of cross-validation repeats number and the
folds count were varied to assess the resulting accuracy of
the cross-validated fitness function, quality of overall
results, and computational time. Figure 3a depicts the
mean AGA run-times approximately as a linear function
of the product of cross-validation repeats and folds. Figure
3b shows a decreasing trend in RMS error between the
AUC results from the final 1000-repeated post validation
and the AGA fitness calculation. To achieve a reasonable
balance between computation time and solution quality,
we have chosen the parameter set “10-repeated, 5-fold
cross-validation” as the “best” to use for our experiments,
with “5 repeated, 10 fold cross-validation” parameter set as
an alternative choice which produced similar results with
slightly increased computation time.

Feature set size penalty optimisation
Penalty parameter p was investigated to determine the
effects of the size of feature sets. With a coarse parametric

Parameter Value

Notes

Adaptive cross-over rate (k;) 1

Adaptive mutation rate (k,) 0.5
Generations 300*
Population size 50
Tournament size 2

Empirically optimal value [11]

Empirically optimal value [11]

Computation time and solution quality trade-off

Balance between diversity capacity and computation time
Low selective pressure

* Unless specified otherwise
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Figure 3 Cross-validation parameters assessment. a) Mean time from each set of AGA runs, the AGA was run 100 times with each set of the
parameters listed in table 2 respectively, Y axis is the average time of the 100 runs for each run ID. b) RMS errors between the AUC reported by
AGA runs (100 for each run ID) and the 1000-repeated post validation (mean of the 1000 AUC). The number of repeats and number of fold for
Run ID 1 to 7 are: 1*5, 3*5, 5*5, 3%¥10,5%10,10*5 and 15*5 respectively. For all these runs, other AGA parameters were: p = 0, no penalty to size of
feature set; Nmax = 50, reduce computational impact; and skew = 1/6, random initial population skewed toward 1/6 features selected.
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sweep (p = 0-0.6, 1., = 75, skew = 1/6, 10 repeats 5 folds
validation), a wide feature set size vs. AUC plot can be elu-
cidated. For experiments, 100 AGA runs for each penalty
of 0 to 0.6 with increments of 0.2 were performed (i.e. 100
runs for penalty 0, 0.2, 0.4 and 0.6, respectively). These 400
runs will be named as “full-set runs” in the rest of the
paper. The results demonstrated that well-chosen penalty
can help select a small number of features. A histogram
depiction of feature selection rates in 100 AGA runs for a
penalty of 0.6 compared to aggregate feature selection rates
across all penalties was supplied in Figure S1 (Additional
File 3). It shows similar distributions of the feature selection
rates from the runs, with the different sizes of the final
selected feature sets. Since smaller sets of features may be
more useful in real-life diagnostic applications than larger
feature sets, the penalty parameter becomes a useful tool.

The results from the experiments showed a parabolic
relationship between the size and classification perfor-
mance measured by AUC, see Figure 4 (red line created
from these experiments) that was created with the
results from the feature subsets of size of 9 to 46. The
best performing feature set that contained 26 features
provided an AUC of 0.87 (Set_26 in Additional File 4:
Table S2). A smaller set of 20 features provided an AUC
of 0.86 (Set_20 in Additional File 4: Table S2). The fea-
ture sets that had sizes greater than 26 or smaller than
20 did not produce better results.

To check the effect of feature set size penalty parameter,
we selected a set of 26 features (Set_26.1 in Additional
File 4: Table S2) by choosing all features with the fre-
quency greater than 32% in the result from the experi-
ments with p = 0. The model built from this set of
features provided an AUC of 0.85, compared to the 0.87
from the set of 26 features selected by the AGA with a

penalty parameter. By selecting the features with the selec-
tion frequency over 41%, 20 features were found (Set_20.1
in Additional File 4: Table S2), providing an AUC of 0.84,
again worse than the result from the set of 20 features
selected by the AGA with a feature size penalty in the fit-
ness function. 30 features were found with a 27% selection
frequency threshold (Set_30 in Additional File 4: Table S2)
providing an AUC of 0.86, which is lower than the result
produced by a smaller feature set selected by AGA with a

AUC values amone the AGA runs
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Figure 4 Comparison of AUC values among the AGA run. with
no subsetting (red), “best half" subsetting (green), “best quartile”
subsetting (blue), and random immigrants (cyan), demonstrating
that subsetting approach performed the best in terms of the AUC
values produced.
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penalty parameter. These results have shown that AGA is
sensitive to the effects of the combination of the features,
and the penalty parameter is useful in model fitness
evaluation.

Random immigration performance

To lessen population stagnation and increase diversity, a
random immigration feature in the AGA was implemen-
ted. The ‘age’ (measured in generations number) of each
genome was tracked, and any modifications to an indivi-
dual in crossover or mutation would result in a reset of its
age. After reaching a pre-defined ‘lifespan’ (maximum
age), the genome was removed from the population and
replaced by a new randomly-created genome. The lifespan
implemented was 30 generations providing genomes with
sufficient time to produce offspring. A protection feature
was implemented as a form of elitism, allowing the highest
fitness genome to age beyond its lifespan indefinitely (if
there were multiple genomes with the same best fitness,
50% were protected).

Figure 5 shows a typical example of the AGA with ran-
dom immigration run - the current best genome (blue),
population mean AUC (red), and points of immigrant
influx (green triangles). The early convergence patterns
typical of a GA were visible until approximately generation
64, after which the population lost diversity and stagnated.
At this point, adaptive crossover and mutation rates were
mildly effective at creating diversity in the population
(seen as the small ‘dips’); however the selective pressure of
tournament selection negated the impact. The first influx
of random immigrants over generations 95-125 triggered a
large amount of diversity in the population, powering the
adaptive crossover and mutation to lead to an increase in
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the best solution. This process repeated until the termina-
tion at 300 generations. We speculate that longer compu-
tation may provide better results but the convergence
pattern shows that future gains are likely to be small.

The experiments results comparing the AGA with
immigration and without immigration are shown in
Table 2. The AUC values were from the 400 AGA runs
(named as “full set runs”, 100 runs for each of the penalty
values 0, 0.2, 0.4 and 0.6). Given the convergence proper-
ties of the immigrants trials (Figure 5), it is feasible that
running the AGA with immigrants for more generations
may provide better results. Our experimental result
(Table 2) indicated that added generations provides the
AGA with more scope to improve the solutions, however,
the trade-off is computation time. We can see that only
slightly improved results come with the doubling of com-
putation time.

Sub-setting features for AGA by selection frequency
approach

While the penalty parameter p is able to push the AGA
selection toward smaller feature sets, a more intuitive
approach of feature reduction is providing the AGA with
only a selected set of features. This selection feature sub-
set was chosen from the most commonly selected half
(90 total) of the features in the full sweep result from the
AGA runs with no immigrants and penalty parameter
p value from 0 to 0.6 ("full-set runs” as shown in Section
“Feature set size penalty optimization”). This subset of
the features will be stated as “best half” in the rest of the
paper. A ‘top quartile’ subset was taken by choosing the
top half of the previous runs (45 total features), named as
“best quartile” later. The subsets were then used for the

0 50 100 150

AGA with Random Immigration

Generation

Figure 5 An AGA run with random immigration (lifespan of 30) demonstrating the convergence properties.

——Best
——Mean
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Table 2 Comparison of statistics for AGA runs with immigration and without immigration.

Run ID  Generation Lifespan Immigration Max Median AUC Lower Quartile Upper Quartile  Mean Time (minutes)
AUC
1 300 300 No 0.87 0.82 0.81 0.84 116
2 300 30 Yes 0.88 0.84 0.83 0.85 226
3 600 30 Yes 0.89 0.86 0.85 0.87 436

Other parameters used in the AGA:p = 0 - 0.6, in 0.2 steps; Nmax = 50; Skew = 1/6; 10 repeats and 5 fold cross validation.

new AGA runs swept through penalties p of 0, 0.1, and 0.2.
The results were compared with previous results (see
Figure 4).

The “best quartile” approach chose a best model of 30
features (Set_30.1 in Table S2, Additional File 4) with an
AUC of 0.89. The random immigrant strategy let the
AGA choose a few bigger feature sets that produced the
equivalent AUC values, however the computation time
was much higher.

Sub-setting features for AGA by best model combination
approach

The approach of feature reduction by selection rate from
the full set runs introduced to the new AGA has been
shown to work well in accuracy of predictions, however it
may lose features that are important in combination
effects. To mitigate this, the sub-setting was performed by
selecting features that were present in the top 5% of mod-
els by AUC from “full-set runs” (named as “top 5% by
AUC”), in addition to the “best half” by selection frequency.
This feature set contains 126 out of the full 181 features.
Our experimental result did not show an appreciable dif-
ference with the sub-setting runs with the “best half” and
“best quarter” feature sets (Additional File 5: Figure S2).

Overall model performance and experimental results
Combining the results from the experiments with penalty
sweeps, immigration trials, and sub- setting approaches
introduced to the AGA, the overall comparison of the
prediction models from the feature set with different
sizes demonstrated that the optimal or near optimal fea-
ture set sizes were between 22 and 34 features (Table 3).
The feature sets with a length of 30 features built the pre-
diction models that produced the highest AUC of 0.89.
The corresponding parameters used in the AGA that
selected feature sets are also listed the in Table 4. The
corresponding features included in the feature sets
selected by the AGA can be found in Additional File 4.

The results from the AGA were compared with those
from randomly generated models and from stepwise
algorithm selected models. One hundred different fea-
ture sets per size were chosen at random, with a 100-
repeated 5-fold AUC value taken, and a stepwise model
(’stepAIC’ in the MASS package [20]) was paused at
specific steps to calculate the 1000-repeated 5-fold AUC
value. The result (Table 3) showed significant difference
between the models selected by AGA and stepwise or
randomly chosen (p < 0.001).

To assess the contribution of each variable to the predic-
tion accuracy, we built models using the whole set of data
and the selected variable sets. Table 4 shows the coeffi-
cient and the p_value of each variable in the logistic
regression model built with the set of 10 features (#1 in
Table 3). The result indicated that the individuals who
have higher values of variables 83, 117, 140, and 180
(RBM_CEA, RBM_IL-13, RBM_Myoglobin and Age), and
lower values of variables 21, 106, 111, 123, 172 and 177
(Pathology_K, RBM_HB-EGF, RBM_IgA, RBM_IL-3,
Plasma_ApoE and Plasma_Mehta_AB42) have higher risk
of getting into MCI/AD within 54 months. For more infor-
mation about the variables, see Additional File 1 Table S1

Conclusion and discussion

An AGA with LR approach has been explored in terms of
parameter optimization, to find the best biomarker com-
binations for prediction of AD progression with high
accuracy. The conversion of HC to MCI or AD in
54 months was predicted well by the AGA with LR
approach, with a best model of 30 features producing a
cross-validated AUC of 0.89. The feature sets with smal-
ler sizes that produced high AUC values had big overlaps
in composition, but were not the subsets of the bigger
sets. For example, a smaller feature set of 22 features that
produced result with AUC = 0.87, excluded 12 features
from the 30 feature set, while it added additional four
features, showing the combination selective ability of the

Table 4 Logistic regression model built with the selected 10 features.

Variable # 21 83 106 111 117 123 140 172 177 180
Coefficient -0.56 1.03 -1.73 -1.75 357 -9.76 1.84 -3.20 -1.18 0.09
P_value 0.086 0.046 0.025 0014 0.003 0.007 <0.001 0.001 0.015 0.002

Variable details are included in Additional File 1: Table S1.
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Table 3 Best performing models for feature set sizes ranging from 10 to 38.

AGA Run Parameters and Result Random Stepwise
# Size Rho Subset Immi- grants Generations Feature set** AUC AUC AUC

1 10 0.6 None 30 300 Set_10 083 0.59 0.76

2 14 0.1% Quartile N/A 300 Set_14 0.85 0.60 0.78

3 18 0.1* Quartile N/A 300 Set_18 0.86 0.59 0.79

4 22 0.1% Quartile N/A 300 Set_22 0.87 0.59 0.80

5 26 0* Quartile N/A 300 Set_26 0.88 0.60 0.81

6 30 0* Quartile N/A 300 Set_30 0.89 0.59 0.82

7 34 0.2 None 30 600 Set_34 0.88 0.59 0.82

8 38 0 None 30 300 Set_38 0.85 0.60 0.82

* Penalty applied to the AGA started with only “best quartile” subset.
** Included features can be found in Additional File 4: Table S2.

The results were compared with models from the randomly selected feature sets (same sizes) and stepwise selected models

AGA. Additionally, the selection of features purely by selec-
tion frequency >27% from the full set runs, as highlighted
earlier, produced a set of 30 features giving an AUC of
0.86, suggesting that the AGA for selection of the combina-
tion effects improve the predictive power of the model.

The best models were produced by the feature sets with
sizes between 22 and 34, where smaller sets have slightly
lower predictive accuracy, and larger sets increase the
model noise. These factors clearly demonstrated the
power of the AGA approach for feature selection that
apply to modelling of prediction of AD progression. The
found solutions were not sensitive to noise due to set size.

The selection of best quartile subsets applied to the
AGA worked well with this particular set of features, indi-
cating that we can run the AGA with the full set of fea-
tures in less generations and then use the subset selection
approach to reduce computation time without compro-
mise the quality of models. While it may be argued that
the sub-setting approach may reduce the power of the
AGA to determine quality feature combinations from a
whole set, we found that the results based on selection of
the top 5% features did not produce better results. This
also might be related to the particular set of features that
we used in this study. For example most of the biomarkers
might have independent biological functions. The random
immigration approach with a lifespan of 30 generations
was able to better explore the larger search space on non-
subset problems to preserve the best solutions. Providing
AGA with more generations before termination increased
result quality, however computation time was far too large
to prefer this method to the sub-setting.

The combined AGA was applied to feature selection,
and we showed that it is useful in selecting the best com-
bination of biomarkers for prediction of AD progression.
The selected features were compared with the literature
reports, and we found that our highly selected biomarkers,
for example blood levels of folate and vitamin B12, were
reported to be associated with AD [21,22]. A few

biomarkers that associated with immune system and Cho-
lesterol metabolism (e.g. IL-13, IL-3, CRP, I-309, IgA, IgE,
PARC and Lipoprotein(a) ) were also very frequently
selected by our algorithm. Our results are consistent with
some recent research reports [23-25]. Our algorithm iden-
tified a possible role of Myoglobin (a single-chain globular
protein) and CEA (a glycoprotein involved in cell adhe-
sion) in AD progression prediction as part of the combina-
tion of the feature sets. APoE_ECU that is total APoE and
Mehta_AB42, Plasma AB42 levels in pg/mL (MEHTA),
also appeared as possible important plasma biomarkers as
part of the combined feature sets. These results encourage
us for further analysis of the feature sets to determine the
biological context and to find the smallest set of biomar-
kers for prediction of AD progression. To integrate the
biological interpretation into the algorithm and under-
stand the biological meaningful application will be the
next step of the work.

The developed model and the general model optimization
methods presented here can be used for studies of other
diseases. Further work may also involve applying the algo-
rithm for prediction of the multi-classes of the progression
(e.g., converted at the different time points) and prediction
of the rate/speed of progression. Additionally, investigation
into over-fitting issues within the AIBL dataset should be
made (by use of another dataset to validate for example
ADNI). We expect that the cross- validation method
employed here will preserve the generality of the results.

Additional material

Additional file 1: Table S1: Whole set of the features used for this
research. This excel file includes 5 tables displayed in 5 seperate sheets.
Table S1.1 lists the pathology features used in this research. Table S1.2 is
the list of Metals features. Table S1.3 is the set of protein measures from
151-analyte multiplex panel immunoassay (RBM features). Table S14 a nd
Table S1.5 list the plasma features and demographic feature used for this
researh respectively.
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Additional file 2: R code shows the modification of “GA” package.

Additional file 3: Figure S1: Histograms demonstrating feature
selection frequencies from the AGA runs. The feature selection
frequencies are from 100 AGA runs at 0.6 penalty versus 400 AGA runs
with penalties 0-0.6 (100 runs for each of the penalties 0, 0.2, 04,06 ). It
shows similar distributions of the feature selection rates from the runs,
with the different sizes of the final selected feature sets.

Additional file 4: Table S2: Feature sets selected by Genetic
Algorithm from the experiments corresponding to the description
in the paper.

Additional file 5: Figure S2: Comparison of AUC with best 5%, best

half and best quartile subsetting.
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