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Abstract

an automated identification and classification technique.

85% for O. similis and T. forcipatus).

time to capture the copepod images.

Background: Copepods are planktonic organisms that play a major role in the marine food chain. Studying the
community structure and abundance of copepods in relation to the environment is essential to evaluate their
contribution to mangrove trophodynamics and coastal fisheries. The routine identification of copepods can be very
technical, requiring taxonomic expertise, experience and much effort which can be very time-consuming. Hence,
there is an urgent need to introduce novel methods and approaches to automate identification and classification
of copepod specimens. This study aims to apply digital image processing and machine learning methods to build

Results: We developed an automated technique to extract morphological features of copepods’ specimen from
captured images using digital image processing techniques. An Artificial Neural Network (ANN) was used to classify
the copepod specimens from species Acartia spinicauda, Bestiolina similis, Oithona aruensis, Oithona dissimilis,
Oithona simplex, Parvocalanus crassirostris, Tortanus barbatus and Tortanus forcipatus based on the extracted
features. 60% of the dataset was used for a two-layer feed-forward network training and the remaining 40% was
used as testing dataset for system evaluation. Our approach demonstrated an overall classification accuracy of
93.13% (100% for A. spinicauda, B. similis and O. aruensis, 95% for T. barbatus, 90% for O. dissimilis and P. crassirostris,

Conclusions: The methods presented in this study enable fast classification of copepods to the species level.
Future studies should include more classes in the model, improving the selection of features, and reducing the

Background

Copepods are the largest and most diversified group of
crustaceans [1]. They are ubiquitous and the most abun-
dant aquatic metazoans. Ecologically, copepods act as the
most important link between phytoplankton and higher
trophic levels in aquatic food webs. Copepods are sensitive
to environmental disturbance and they can be the bioindi-
cator for the changes in water quality [2]. Community
shifts of copepods also provide sensitive indicator of
climate change on marine biotopes [3]. Thus, copepods
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are one of the most studied microorganisms in marine
food webs and fisheries studies. The size of adult copepods
ranged from 200 pm to 2 mm in size, while their numbers
can range up to 60,000 individuals per m® of water [4].
Positive identification of these organisms and completion
of the work are thus hampered by their small size (mostly
<0.20 mm in total length) and sheer numbers.

The identification of copepod species requires informa-
tion of their morphology. Body shape is useful to charac-
terise the genera, but may not be useful to differentiate
closely related species. At the species and finer level, the
characters of specific appendages such as the fifth legs are
required [5]. Body shape and characteristics may however
be useful to predict species in specific locations or habitats
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where the species are known or are low in diversity.
Nevertheless, image capturing and processing tools for
rapid and objective digital recognition of copepods at the
familial or ordinal level are useful to non-specialists and
ecologists.

Existing techniques in real time plankton-imaging-
system are adequate for class/order-discriminations of
plankton into major components [6]. One of the estab-
lished studies known as ZOOSCAN digital imaging system
described the zooplankton image processing and the semi-
automatic recognition system using various machine
learning methods [7]. In this semi-automatic recognition
system, copepods were only covered in a few categories
from the entire zooplankton community [8]. Hitherto,
identification systems for calanoid copepods have been
described in a few studies by using diffraction patterns as
a tool [9-12] and the application of circular-harmonic
filters [13].

Several classification methods such as neural network,
structural, fuzzy and transform based techniques have
been used in biological image identification systems but
have not been employed for copepod classification. Artifi-
cial Neural Networks (ANN) [14] have shown satisfying
results in complex classifications of biological images such
as insects [15], microinvertebrates [16], algae [17,18], fish
[19,20], leaves [19], butterflies [19], protozoans and
metazoans [21], dinoflagellates [22] and human helminth
eggs [23]. An ANN is a mathematical model composed of
many processing units that communicate by intercon-
nected variables [24]. Multilayer structure of ANN enables
learning from complex input image features and generates
single output [25].

This study aims to automate identification techniques to
ultimately classify marine copepods down to the lowest or
species level using image processing techniques to extract
shape descriptors as features and the ANN algorithm as
the classification tool. This approach is novel in copepods
identification as previous studies only reported classifica-
tion using diffraction pattern [9-12] and circular harmonic
filter [13].

Methods

The study’s approach followed the methodology and
system flowchart illustrated in Figure 1 which are
detailed as follows.

Data collection

Five genera of marine copepods commonly encountered
in mangrove waters were examined: Acartia (A. spini-
cauda), Bestiolina (B. similis), Oithona (O. aruensis, O.
dissimilis and O. simplex), Parvocalanus (P. crassirostris)
and Tortanus (T. barbatus and T. forcipatus) (Additional
File 1). Copepods were sampled from four stations from
the upper estuary in the Matang Mangrove Forest
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Reserve (MMFR) to near shore waters on the west coast
of Peninsular Malaysia (4°50'N, 100°35’E) (Figure 2).
Horizontal plankton tows (0.5-1 m depth) using paired
45 cm-diameter bongo nets (180 pm) were made and
collected plankton were preserved in buffered 10% for-
maldehyde. In the laboratory, collected copepods were
then sieved through stacked Endecott sieves of 1,000
pum, 500 pm, 250 um and 125 pm mesh sizes, and the
sieved fractions were preserved in 80% alcohol in indivi-
dual vials for a long-term preservation.

Image acquisition

Specimens of copepod were randomly pipetted onto a
microscope slide from the preserved samples and each
identified to species level under a compound microscope
(Olympus BH2). To enable the dorsal aspect of the identi-
fied copepod to be imaged, often the copepod body had to
be rotated. Body rotation could be easily achieved by first
placing two short nylon fishing lines (0.36 mm diameter)
on either side of the specimen and gently moving a cover
slip placed over them by using the tip of the index finger.
The desired view of the copepod body was imaged by an
Olympus digital camera (DP26) connected to a computer
installed with an imaging software (Olympus cellSens
Standard ver. 1.12) [26] for real-time viewing, capturing
and storing of the images. The built-in function in cellSens
called Extended Focus Imaging (EFI) was used to create a
single plane image with sharp, in-focus details and high
contrast (Figure 3). The EFI function recorded the image
data as the sample was gradually focused through from
top to bottom to obtain single dorsal image of the cope-
pod with all body parts (Figure 4). Besides, the contrast
and brightness of the images were set to the best before
they were captured using cellSens software. The resolution
of the captured images was standardised (2448 x 1920 pix-
els) and all the images were saved in uncompressed
Tagged Image File Format (TIFF) by renaming them
according to the date when the images were captured.

Image database

A simple image database was established to store and
organise the captured images. Upon verification by cope-
pod experts, these images were indexed according to their
taxa. Thirty images for each species were stored as training
set whereas twenty images of each species were stored as
testing set.

Image processing

Image processing was done in three essential steps:
image pre-processing, image segmentation and feature
extraction. The Image Processing Toolbox in Matlab
R2013a [27] was installed on Intel(R) Xeon (R) CPU
E5345 @ 2.33GHz, 4.00GB RAM, Windows 7 Profes-
sional (32-bit) to conduct this study.
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Figure 1 System flowchart diagram.

The captured images were pre-processed in the fol-

lowing steps (Figure 5):

1) The images were first converted to 2-dimensional

grayscale images.

2) A median filtering with a 10-by-10 kernel was

used to suppress the noise found in the images which

water.

mainly consisted of salt-and-pepper noise from the
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Figure 2 Location of the sampling stations at Matang Mangrove Forest Reserve (MMFR).

Figure 3 Extended Focus Imaging (EFI). Image data at different
focus was recorded to produce a single plane image.

3) A 2-D order-statistic filtering algorithm with 10-by-10
domain was applied to detect the edge of the copepods. In
this basic gradient-based segmentation function, the edge
was derived from the difference between the first (ordfilt2
(1)) and the last order-statistic filter (ordfilt2(100)).

Once the edges in the images were detected, the follow-
ing steps were then taken for image segmentation where
copepods were identified and segmented from unwanted
particles in the images:

1) The images were converted to binary images with
appropriate threshold.

2) The borders in the images were cleared using the
imclearborder function and the holes that occurred

during the process of converting the grayscale image
into binary image were filled using the imfill function.

3) Small particles (<50000 pixels) were excluded to
ensure only the copepods are segmented for feature
extraction.

4) The orientation represented by the angle between
the x-axis and the major axis of the ellipse that has the
same second-moments as the region of interest (ROI)
was obtained using region properties function in Matlab.
Image rotation was done using the imrotate function so
that the ROI has an orientation of 90 degrees.

5) The ROI of the copepod was cropped by getting
the coordinates of the boundary of copepods.

6) Features were extracted from the shape descriptors
represented by the binary images of the ROI using
region properties function in Matlab. The measurements
taken were area, convex area, eccentricity, major axis
length, minor axis length, perimeter, solidity, equivdia-
meter (sqrt(4*area/pi)), extent and orientation.

7) As seen in the ROI images of copepod, the lower
part showed distinct shapes across the eight species. In
view of this distinct attribute, a secondary feature was
derived by assigning 60% of the ROI image height mea-
sured from the posterior end (end of urosome) to the
anterior end (head of copepod) of copepod body as the
lower part of ROI image. This ratio was selected after
conducting several tests using a set of ratios (90%, 80%,
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70%, 60% and 50%). This derived feature was calculated
as: (Figure 6)
Percentage of area of the lower part of ROI image

_Areaof q

= x 100%
Area of p

Where p is the total area of ROI image and g is the
area of the lower part of ROI image.

Feature selection

To avoid overfitting in the Neural Network training and to
increase performance, not all the 11 extracted features
were used. The extracted features were evaluated to make
sure that only significant features were selected to classify
the copepods into their respective taxa. Forward stepwise
discriminant analysis (FSDA) was used to aid the selection
of the most useful features (StatSoft Inc.). In order to
visualise how well a selected feature clustered the speci-
mens in the training set into the eight classes (species), 2D
and 3D scatter plots were graphed (see Figure 7) with
different combinations of features as the axes.

Neural Network training

An Artificial Neural Network (ANN) was used as the
pattern recognition tool to classify the extracted features
values into the eight classes (species). The architecture
of the ANN is a two-layer feed-forward network with

sigmoid hidden (ten nodes) and output (eight nodes)
neurons and the network was trained with scaled conju-
gate gradient backpropagation (Figure 8). A total of 240
sample images were used in the training set with 30
images from each class. The input data presented to the
input nodes of the network contained seven selected
features of each specimen from the training set, whereas
the target data defined eight desired output classes. The
240 samples were then divided into three sets, the train-
ing set (168 samples, or 70% of samples), validation set
(36 samples, 15%) and testing set (36 samples, 15%).
The data from the training set were used for network
training; the validation set for measuring network gener-
alisation and terminating training before overfitting; and
the testing set for independent measure of network per-
formance during and after training. The performance of
the network training was evaluated using Mean Square
Error (MSE) and confusion matrices. The training
stopped when the MSE of the samples in the validation
set started to increase indicating that the network gener-
alisation stopped improving. The network was trained
several times to get the trained network with best per-
formance. Another 160 independent samples (20 sam-
ples for each species) were used for system performance
evaluation. The trained network was simulated using the
testing data as input and the output was then compared
to the predicted data and recorded in a confusion
matrix.
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Results chosen to avoid overfitting in the neural network train-
Feature selection ing. The seven selected features were area, convex area,
A total of 11 copepod features were initially extracted major axis length, minor axis length, perimeter, equiva-
from the samples but only seven of them were finally lent diameter and percentage of lower ROI image.
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Although FSDA by default settings selected 10 features
(except “orientation”) as significant in the classification
model, the final seven features were selected based on
the F-value associated with their partial Wilks’ Lambda
(i.e. those that contributed most to the discriminatory
power of the model). These features when visualized on
the 2D and 3D plots gave clusters of species with little
overlaps (Figure 7). Interestingly, the secondary feature
(lower ROI) is seen to separate genus Oithona from
genus Parvocalanus (Figure 9).

Neural Network training

A two-layer feed-forward network was trained with back
propagation algorithm based on ten neurons at the hid-
den layer and eight neurons at the output layer. The
best trained network was obtained with 143 iterations.
The best validation performance in the trained network
had a MSE of 0.0067 at epoch 137 (Figure 10). Result
from the confusion matrix showed overall 97.90% of
correct classification of all 240 samples in the training,
validation and testing sets (Figure 11).

System evaluation

A Graphical User Interface (GUI) was created for the
automated identification system as shown in Figure 12.
The GUI allows users to perform loading of input
images, feature extraction, selection of network and spe-
cies identification. The performance of the system was
evaluated by comparing the output from the trained

network to the identification result of the copepodolo-
gists using the testing dataset as the input. The testing
dataset that was used to simulate the trained network
was a new independent dataset not used for the network
training. The results show that the technique presented
in this study was capable of identifying most of the
copepods correctly with an overall accuracy of 93.13%
(Table 1). All A. spinicauda, B. similis and O. aruensis
specimens were identified correctly; one specimen from
T. barbatus and three specimens of T. forcipatus were
misidentified as each other; two specimens from O. dis-
similis was misidentified as O. simplex; two specimens
from P. crassirostris were misidentified as O. aruensis
and O. simplex; three specimens of O. simplex were mis-
identified as O. dissimilis and P. crassirostris. Another
confusion matrix (Table 2) was prepared to show the
classification result to genus level. An overall accuracy
of 98.13% was achieved where only one specimen from
Oithona and two specimens from Parvocalanus were
misidentified as each other.

Discussion

The purpose of the study is to present an automated
identification and classification technique for copepods
based on the captured images to lighten and assist the
work of non-specialists or ecologists. Extended focus
imaging (EFI) technique was used to capture copepod
images under the microscope using cellSens software to
produce high quality images of copepods; in order to
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provide more information and features that could be
extracted. The antennae of specimens 7. barbatus and
T. forcipatus were removed as rotation to the desired
dorsal aspect could twist its bulky antennae to awkward
positions resulting in some feature values to deviate; this
may lead to misclassification. Although a desired dorsal-
up orientation was required for image acquisition, this
was not always perfect since the copepod body might
tilt slightly. Hence, image rotation was performed to
make sure the sagittal plane of the copepod was perpen-
dicular to the horizontal axis of the image. All captured
images were stored in a simple image database to ease
the retrieval of particular images for network training

and system evaluation. From the results, an overall accu-
racy of 93.13% was achieved for the testing set where
the identification of A. spinicauda, B. similis and O.
aruensis was 100% correct, while the identification of
other species achieved 85% to 95% accuracy. A. spini-
cauda, B. similis and O. aruensis are distinct in terms of
body size, shape and other features and are thus easily
identified. O. dissimilis tend to be misidentified as O.
simplex as they are from the same genus; same goes to
T. barbatus and T. forcipatus from genus Tortanus. O.
simplex and P. crassirostris tend to be misclassified as
the other because they have similar sizes and other fea-
tures despite the use of an additional feature (percentage
of the lower ROI image) to differentiate them. In terms
of classification at genus level, an accuracy of 98.13%
was achieved showing an increase in accuracy compared
to identification at species level. The seven features
selected for neural network training produced an overall
accuracy of 93.13%. Number of features for neural net-
work training does not guarantee increase in overall per-
formance. What matters most is the types of features
selected. It is crucial to select only features that are able
to cluster the specimens into distinct groups before the
network training.

The present copepod identification technique used
shape descriptors as distinguishing features and an ANN
as the pattern recognition tool to identify and classify
copepods. This technique differs from those used by
previous workers, such as Zavala-Hamz et al. (1996),
Castro-Longoria et al. (2001) and Alvarez-Borrego &
Castro-Longoria (2003) who used correlation analysis of
the diffraction pattern of digitised copepod images. In
this study, the time taken for digitising the copepod
images can be improved with the help of new technolo-
gies in plankton-imaging. Thus, development in hard-
ware technology will determine the future prospects and
application of automated identification systems in
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Table 1 Confusion matrix of testing dataset used for
system evaluation (identification to species level).

Species Results Accuracy %
As Bs Oa Od Os Pc Tb Tf

As 20 0 0 0 0 0 0 0 100
Bs 0 20 O 0 0 0 0 0 100
Oa 0 0 20 0 0 0 0 0 100
Od 0 0 0 18 2 0 0 0 90
Os 0 0 0 2 17 1 0 0 85
Pc 0 0 1 0 1 18 0 0 90
To 0 0 0 0 0 19 1 95
Tf 0 0 0 0 0 0 3 17 85

Overall 93.13

The data were classified into 8 species: Acartia spinicauda (As), Bestiolina
similis (Bs), Oithona aruensis (Oa), Oithona dissimilis (Od), Oithona simplex (Os),
Parvocalanus crassirostris (Pc), Tortanus barbatus (Tb) and Tortanus

forcipatus (Tf).

Table 2 Confusion matrix of testing dataset used for
system evaluation (identification to genus level).

Genus Results Accuracy %
Aca Bes Oit Par Tor

Aca 20 0 0 0 0 100

Bes 0 20 0 0 0 100

Oit 0 59 1 0 983

Par 0 2 18 0 90

Tor 0 0 0 40 100

Overall 98.13

The data were classified into five genera: Acartia (Aca), Bestiolina (Bes), Oithona
(Oit), Parvocalanus (Par) and Tortanus (Tor).

ecological studies. In the future, we plan to use more
genera including more species. Besides, other aspects
like gender and life cycle stages of copepods could be
taken into consideration.

Conclusions

The present technique of automated identification of
copepods to species level based on dorsal images of
copepods under the microscope achieved an overall
accuracy of 93.13%. The approach used image proces-
sing technique to extract features from microscope
images and an ANN as the classifier. Aquatic ecologists
will find the automated identification method useful
since samples processing time will be reduced and effort
can be spent on other ecological related works. Future
work should focus on the enhancement of image acqui-
sition and feature extraction techniques to accommo-
date large datasets covering more taxa. Ultimately, the
aim is to develop a fully automated identification system
capable of identifying copepod specimens down to the
lowest taxonomic level.
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Additional material

Additional file 1: Sample images of copepods from eight species
used in the study. The eight species included A. spinicauda, B. similis,
O. aruensis, O. dissimilis, O. simplex, P. crassirostris, T. barbatus and T.
forcipatus.
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