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Abstract

Background: The potential utility of the Burrows-Wheeler transform (BWT) of a large amount of short-read data
("reads”) has not been fully studied. The BWT basically serves as a lossless dictionary of reads, unlike the heuristic
and lossy reads-to-genome mapping results conventionally obtained in the first step of sequence analysis. Thus, it
is naturally expected to lead to development of sensitive methods for analysis of short-read data. Recently, one of
the most active areas of research in sequence analysis is sensitive detection of rare genomic rearrangements from
whole-genome sequencing (WGS) data of heterogeneous cancer samples. The application the BWT of reads to the
analysis of genomic rearrangements is addressed in this study.

Results: A new method for sensitive detection of genomic rearrangements by using the BWT of reads in the
following three steps is proposed: first, breakpoint regions, which contain breakpoints and are joined together by
rearrangement, are predicted from the distribution of so-called discordant pairs by using a kind of the conjugate
gradient method; second, reads partially matching the breakpoint regions are collected from the BWT of reads; and
third, breakpoints are detected as branching points among the collected reads, and their precise positions are
determined. The method was experimentally implemented, and its performance (i.e, sensitivity and specificity) was
evaluated by using simulated data with known artificial rearrangements. It was applied to publicly available real
biological WGS data of cancer patients, and the detection results were compared with published results.

Conclusions: Serving as a lossless dictionary of reads, the BWT of short reads enables sensitive analysis of genomic
rearrangements in heterogeneous cancer-genome samples when used in conjunction with breakpoint-region
predictions based on a conjugate gradient method.

Background
Burrow-Wheeler transform

Recently, the advent of so-called next-generation
sequencers (NGS) has posed a challenging problem for

Suffix trees, suffix arrays, and their variants have long been
studied, over the past quarter of a century, in relation to
diverse text-search problems. In particular, the Burrows-
Wheeler transform (BWT) [1], aka FM index [2], is one of
the most memory-efficient variations with rich order-
preserving (a kind of homomorphic) properties in various
situations.
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developing ultrafast genome-mapping tools that can cope
with the unprecedented flood of short-read data [3].
Today, the problem has already been almost solved satis-
factorily by popular short-read mapping tools, many of
which owe their superior performance to the BWT of
reference genomes [4,5]. In other words, the great useful-
ness of the BWT of reference genomes has been undoubt-
edly demonstrated.

In contrast, except for some pioneering works, the utility
of the BWT of a large amount of short-read data remains
largely unexplored. Efficient methods for computing the
BWT of a large amount of short-read data, typically larger
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than 100 Gbp (giga base pairs), were presented in [6,7].
Simpson et al. [8] proposed an efficient de novo assembler
using the compressed BWT of reads. Cox et al. [9] pro-
posed large-scale compression (using the BWT of reads)
of genomic sequence data. Janin et al. [10] proposed adap-
tive large-scale reference-free compression (also using the
BWT of reads) of base-calling quality scores. In our pre-
vious studies, the authors showed that the BWT of reads
enables ultrafast analysis of single nucleotide polymorph-
isms (SNPs) [7].

The BWT of short-read data basically serves as a lossless
dictionary of the read data, unlike the heuristic and lossy
reads-to-genome mapping results conventionally obtained
in the first step of sequence analysis. Thus, it is naturally
expected to lead to development of sensitive analysis
methods, as will be demonstrated in this study.

Genomic rearrangements and breakpoints

Genomic rearrangements are variations of genomic
sequence on a large scale, typically 1 Kbp (kilo base pairs)
or more, as opposed to single nucleotide variations (SNV)
and small indels (insertions or deletions). Inherited and
acquired rearrangements are referred to as “structural var-
iations” and “structural alterations”, respectively. Structural
alterations are often found in many cancers and have a
great influence on various disease states.

In cancer studies, matched tumor and normal samples
are comparatively analyzed because somatic (acquired)
structural alterations are only found in the cancer samples,
while germline (inherited) structural variations are simi-
larly found in both samples. However, tumor samples are
usually heterogeneous due to instability of genomic DNA,
and partially contain normal cells. Therefore, their analysis
requires high sensitivity. Furthermore, recent studies have
revealed that some cancer genomes harbor very compli-
cated rearrangements resulting from discontinuous steps
of carcinogenesis processes known as chromothripsis [11]
and chromoplexy [12,13].

Genomic rearrangements basically occur as follows:
genomic DNA sequences are split into fragments at cer-
tain breakpoints, and the fragments are re-joined across
the breakpoints in different orders and in different orienta-
tions from those before the splitting. These events occur
on a large scale, typically larger than 1 Kbp, namely, much
longer than 100 bp, a typical length of short reads.

Analysis of breakpoints from short-read data

Breakpoints associated with large-scale genomic rearran-
gements can be indirectly detected from paired-end short-
read whole-genome sequencing (WGS) data. Paired-end
reads are obtained by sequencing both ends of a genomic
DNA fragment, customarily called an insert. The inserts
are typically obtained by sonication of a DNA sample, and
they have approximately the same length, which is usually
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somewhat larger than twice the read length, but much
smaller than the scale of the genomic rearrangement.

When an insert does not contain any breakpoints, the
paired-end reads satisfy the paired-end mapping condition,
namely, they are mapped onto the reference genome in an
inward orientation and apart from each other by a dis-
tance equal to the insert length. Such a pair of reads is
referred to as an accordant pair. On the other hand, when
an insert contains a breakpoint at which distant parts of
the genome are concatenated, the paired-end reads are
mapped to the corresponding parts, and the paired-end
mapping condition is violated. Such a pair of reads is
referred to as a discordant pair.

Discordant pairs are easily found from short-read data
by using standard paired-end mapping tools such as BWA
[4]. Subsequently, the existence of breakpoints and their
approximate positions can be predicted from the discor-
dant pairs [14-17]. However, their precise positions, at sin-
gle-base-level resolution, cannot be determined.

Split reads are reads that contains breakpoints. They are
so called because they can be split into separate parts that
are mapped onto different parts of the genome. The pre-
cise positions of breakpoints are immediately given by the
positions of the splits. It is possible to find split reads by
using standard mapping tools — for example, collecting
reads that can be mapped onto the genome only partially
with significant unmapped overhangs, and mapping the
overhangs onto the genome. However, the overhangs are
often too short to be mapped unambiguously. Moreover,
the number of split reads is much smaller than the num-
ber of discordant pairs because these numbers are roughly
proportional to read length and insert length. Therefore, it
is difficult to sensitively detect breakpoints on the basis of
split reads.

Recent tools for analyzing genomic rearrangement can
sensitively detect breakpoints and precisely determine the
positions on the basis of integrated analysis of discordant
pairs, split reads, and others [15-17]. In this study, a
method for sensitively detecting break-points and precisely
determining their positions, by using the discordant pairs
and the dictionary of reads but without using the split
reads, is proposed.

Methods

Conceptual method for confirming known breakpoints
Confirming the existence of known breakpoints by using
a dictionary of reads is conceptually simple and straight-
forward on the assumption that the exact breakpoint
positions are precisely known. Namely, it is only neces-
sary to confirm the existence of read fragments going
through the breakpoints. This confirmation can be done
immediately by using a query given by a concatenation of
genomic subsequences that are to be concatenated by
rearrangement.
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More specifically, let G = ... a|b ... ¢|d ... be a genomic
sequence with a pair of known breakpoints (indicated by
“I*), where a, b, c and d denote subsequences adjacent to
the breakpoints, and “..."s denote the remaining sequences.
For simplicity, assume that there are no other breakpoints.
The known breakpoints can relate to four different rear-
rangements corresponding to four different concatena-
tions, namely, ad, ac’, ¢b, and d’b, or their reverse
complements, d'a’, ca’, b’c’, and b’'d, where a’ denotes the
reverse complement of 4 and so on. Existence of these
concatenations can be checked immediately by using exact
matching with backward search [4] (essentially, by using
so-called LF functions [2] or rank functions [18]). The
chosen length of the adjacent subsequence should be large
enough so as to avoid ambiguous false detection.

In practice, however, most of known breakpoints are not
given in terms of exact base positions but in terms of
approximate positions relative to nearby genes or exons.
In fact, even if similar disease-related fused genes are
found in patients with the same cancer subtype, the pre-
cise breakpoint positions differ from patient to patient
[13]. It is therefore necessary to make a number of queries
according to a varying combination of possible precise
breakpoint positions. Specifically, ad differs according to
the chosen ends of a and chosen heads of d. Moreover, as
is often the case, if an unknown short sequence is inter-
vened between the breakpoints in the rearrangement, for
example, asd instead of ad for some unknown short
sequence s, it is necessary to make a number of queries,
asd, according to varieties of the intervening s. Thus, it is
not practical to make a large number of queries directly
corresponding to all possible cases.

Overview of the proposed method in practical use

To exploit the dictionary of reads in practice, it is
important to make a limited number of effective queries
that are likely to extract useful information from the
dictionary. In particular, effective queries should be cho-
sen from genomic regions where breakpoints are likely
to exist. Additionally, breakpoint-containing queries
should be avoided because they have a combinatorially
increasing and unaffordable number of variations.
Accordingly, the proposed method is composed of the
following three steps.

1 Predict breakpoint regions that are likely to contain
breakpoints and be joined by rearrangement.

2 Scan the breakpoint regions with a sliding window
from right to left, collect all the read fragments exactly
matching the window, and subsequently collect all possi-
ble leftward extensions of the fragments.

3 Identify breakpoints as branching points among the
extensions.

The dictionary of reads is effectively used in the second
step. The most time-consuming steps are the last two
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steps; therefore, it is important to reduce the size of the
breakpoint regions as much as possible. The first step
further consists of the following three sub-steps:

1la Collect discordant pairs by using a standard paired-
end mapping tool.

1b Get rough breakpoint regions by means of clustering
the discordant pairs.

1c Narrow down the breakpoint region in each cluster
on the basis of a detailed analysis of the distribution of
discordant pairs.

The first two sub-steps are basically similar to known
methods in previous studies [14-17], while the third sub-
step is first introduced in this study. These sub-steps and
the following main steps are described in the following
subsections.

Collection of discordant pairs

The paired-end short reads are mapped onto a reference
genome by using a standard paired-end mapping tool,
BWA [4]. Discordant pairs are extracted from the results
in the SAM (sequence alignment/map) format [19] by
reference to bitwise flags indicating whether paired-end
mappings are accordant or discordant. Only unambiguous
mapping results with Phred-scaled mapping-quality score
not less than 30 are employed.

Two-dimensional clustering of discordant pairs

A global coordinate system is defined on the whole refer-
ence genome sequence. Namely, DNA sequences from all
chromosomes are concatenated into a single DNA
sequence, G, with a punctuation symbol “$” in between
them; and each base position in each chromosome is spe-
cified by a global coordinate indicating the position in the
concatenated sequence. Thus, all chromosomal positions
are mutually comparable according to the global
coordinates.

Each discordant pair of reads is represented by a point,
(%, ¥), in a two-dimensional region, GxG, where x and y
are the global coordinates of the mapped positions of the
first bases of the reads, and, for disambiguation, x < y is
assumed because x and y can be swapped otherwise. Thus,
discordant pairs are identified with the corresponding
points in G x G.

The discordant pairs are scattered very sparsely as a
whole in G x G because it is vast, and those associated
with the same breakpoint are clustered together within a
distance of the insert length. Therefore, it is easy and
straightforward to extract such clusters.

As an example of extraction procedure, sort the points
(discordant pairs) according to the first coordinates, and
classify them into groups so that the differences between
the first coordinates in the same (different) groups are less
(larger) than the insert length; subsequently, sort the
points in each group according to the second coordinates,
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and further classify them into subgroups so that the differ-
ences between the second coordinates in the same (differ-
ent) subgroups are less (larger) than the insert length;
repeat such classification several times, and obtain the
desired clusters.

As for matched tumor and normal samples, clusters of
discordant pairs associated with somatic breakpoints, sim-
ply referred to as somatic clusters here-after, exclusively
consist of those from the tumor sample, while clusters of
discordant pairs associated with germline breakpoints,
simply referred to as germline clusters, are mixtures of
those from both tumor and normal samples. Therefore,
clusters are judged to be somatic if the rate of discordant
pairs from the tumor is high, e.g., 90% or more, and
judged to be germline otherwise.

Prediction of breakpoint regions

Breakpoints are also represented by points in G x G in a
natural way. Namely, when x and y, are breakpoints ori-
ginally apart from each other on G and are joined together
by rearrangement, the pair of breakpoints is represented
by point (xo, o), where, for disambiguation, xy < ¥ is
again assumed. Thus, breakpoints are identified with the
corresponding points in G x G.

When discordant pairs associated with the same break-
point are clustered together, the breakpoint is within the
insert length in G x G from the cluster. Therefore, the
cluster of discordant pairs roughly indicates the breakpoint
region. Furthermore, the region can be reduced drastically
on the basis of detailed analysis of the relationship
between the distribution of breakpoints and that of discor-
dant pairs.

Forward relationship - from breakpoints to discordant pairs
Assume that discordant pairs (x1, y1), (X2, ¥2), «r (X V)
are associated with breakpoint (xo, yo). As explained ear-
lier, in disregard of possible short intervening sequences,
there are four essentially different rearrangements
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associated with breakpoint (xo, yo). They correspond to
four different conditions on the ordering of coordinates: x;
< X9 < Yo < Y Ko < X; < Yo < Yo X < X9 < ¥;i < Yo, and xg <
x; < y; < yo for 1 < i < p. Here, only the first case is consid-
ered, since other cases can be treated similarly. Then, the
discordant pairs are distributed in a belt in GxG extended
in the diagonal direction and located in the anti-diagonal
direction from the breakpoint (Figure 1).

In particular, when the inserts are obtained by sonica-
tion of a DNA sample, the distribution of the insert length
is well-approximated by a Gaussian distribution, N (L, 0),
where L and o denote the mean and standard deviation.
Then, discordant pair (x, y) associated with given break-
point (x, o) is distributed such that

12 =(x0 - %)+ (¥ - y) is distributed according to N
(L, o).

2 xg - x is uniformly distributed in interval (0, £) on
the condition that (xy — x) + (y — yo) = £.

The first condition refers to the distribution of insert
length, and the second condition reflects an ideal condi-
tion that there is no sonication bias around the breakpoint.

Distribution of breakpoints is represented by vector x =
(x;) indexed by j, j € G with i < j, where x;; = 1 if a break-
point exists at (i, /) € G x G, and x;; = 0 otherwise. Then,
distribution of the discordant pairs associated with these
breakpoints is given by y = Ax, where A is a stochastic
matrix determined by the distribution of the insert length.
More precisely, given a discordant pair, the probability
that it is found at (i, j) € G x G is given by y,/n, a compo-
nent of y = (y;) divided by the number of breakpoints, 7.

A represents a linear transformation of a distribution of
breakpoints into a distribution of discordant pairs. In par-
ticular, when the insert length is distributed according to a
Gaussian distribution, it is given by a composition of three
basic linear transformations:

A=G,U.T; 1)

Discordant pair
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Figure 1 Distribution of discordant pairs associated with a breakpoint. For each breakpoint, associated discordant pairs are distributed in a
belt extended in the diagonal direction (at an angle of 45 degrees) located in the anti-diagonal direction (at an angle of 135 degrees) from the
breakpoint. This corresponds to one of the four different conditions on the ordering of coordinates; namely, x; < xo < yo < y; for 1 < i < p. As for
three remaining conditions, relative positions of the associated discordant pairs are rotated 90, 180, or 270 degrees around the breakpoint.
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where G4 represents a two-dimensional Gaussian dif-
fusion with standard deviation o, U} represents a one-
dimensional uniform diffusion in finite length +1//2
in the diagonal direction, and T} represents a parallel
translation in the upper-left anti-diagonal direction by
distance L/+/2. These basic linear transformations are
mutually commutative. In practice, these linear transfor-
mations are discretized so that they work on grid points
in G x G.
Backward relationship - from discordant pairs to
breakpoints
An empirical distribution of discordant pairs found by
analysis of short-read data is represented by vector y = (y;)
indexed by i, j € G with i < j, where y;; is the number of
discordant pairs found at (;, /) € G x G. Note that it is not
normalized as a probability distribution. Since only a lim-
ited number of discordant pairs can be obtained from a
finite amount of short-read data, the empirical distribution
varies from sequencing to sequencing even for the
same sample, and approximates to the unknown true
distribution.

In principle, the distribution of breakpoints can be
obtained by solving the following equation:

Ax = ¢y 2)

where c is a normalizing constant. However, the equa-
tion can be solved more easily by a kind of conjugate gra-
dient method. Namely, by multiplying both sides of the
equation by A, the conjugate linear transformation (trans-
posed matrix) of A, from the left,

A*Ax = cA*y (3)

is obtained. The obtained equation is conventionally
referred to as normal equation. It is noteworthy that the
composite transformation on the leftside is positive
semi-definite and self-adjoint: x - A*Ax = ||Ax||> > 0 for
any x and (A'A)" = A"A. Intuitively, A'A is a “blurring”
transformation.

In particular, when the insert length is distributed
according to a Gaussian distribution, the composite
transformation is given by

A*A = (G, UL TL)* G, UL Ty, = Gy, Ur 2. (4)

This is a two-dimensional diffusion symmetric both in
the diagonal and anti-diagonal directions.
Prediction of breakpoint regions by using the conjugate
The breakpoint regions, where x;; is significantly large, are
blurred by A’A and expanded to wider regions in which
z;;, where z;; is a component of z = Ay, is significantly
large. Therefore, a prediction of breakpoint regions is
given by regions where z;; is significantly large. Since the
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blurrings occur locally, z = A’y in each cluster can be com-
puted independently.

Incidentally, A’y can be interpreted intuitively as fol-
lows. If there is only a single discordant pair associated
with an unknown breakpoint, A’y indicates a region
where the breakpoint is likely to occur (Figure 2); more
precisely, z;;, a component of z = Ay, is the likelihood
that the breakpoint occurs at position (i, j)) € G x G.
Thus, the breakpoint is most likely to occur at the maxi-
mum component of A’y. If there are multiple discordant
pairs associated with the same unknown breakpoint, the
breakpoint is most likely to occur in the overlap among
the regions indicated by the discordant pairs (Figure 2).

Collecting relevant read fragments and their extensions
To find breakpoints in the breakpoint regions, relevant
read fragments that partially match with the regions are
collected. If the matching length is too small, irrelevant
read fragments are also collected with the desired ones.
Therefore, the matching length is chosen to be some-
what (e.g., by three bases) larger than MLU (minimum
length for uniqueness). MLU is defined on the reference
genome as the minimum length of the subsequence
starting from a given position and extending in a given
direction such that the subsequence appears only once
in both strands of the genome [7]. MLUs over the
whole reference genome are efficiently computed, and
the results are compactly represented [7].

Figure 3 illustrates how the relevant read fragments
and their subsequent extensions are collected. Regions
A and B are the projections of a two-dimensional break-
point region onto each dimension (Figure 3(a)).

4y

Region B Discordant pairs

¥ % Conjugate transformation

%, \\\ A*
\\

Breakpoint regions indicated
by each discordant pair

Predicted breakpoint region
as a result of the consensus
at the maximum overlap

Region A

Figure 2 Conjugate transformation of an empirical distribution
of discordant pairs. When discordant pairs are associated with an
unknown breakpoint, each discordant pair indicates, through the
conjugate transformation, a region where the breakpoint likely to
exist. A prediction of breakpoint region is therefore given by a result
of consensus among them at the maximum overlap.
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Figure 3 Collecting partially matching read fragments and their extensions. (a) regions A and B (projections of a two-dimensional
breakpoint region along each dimension); (b) read fragments exactly matching a query in region A; (c) leftward extensions from the read
fragments; and (d) comparison of an extension with each of regions A and B.
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The reference genome sequence around one of the pro-
jected regions, say, region A, is scanned from right to left,
and a query is taken as a genomic subsequence of length
MLU+(x) + o with the left end at x, where MLU™" (x)
denotes MLU at x in the positive (right-ward) direction,
and o is a small positive constant (Figure 3(b)). All of the
read fragments exactly matching the query are collected
from the dictionary of reads by exact matching with back-
ward search [1].

Similarly, all of the possible leftward extensions of the
collected read fragments are obtained by exact matching
with backward search (by recursive examinations of all
four possible extensions with A, C, G, and T at each
extended base position) (Figure 3(c)). The extensions are
performed until the length of extension reaches a fixed
value, e.g., 20.

Generally, the extensions are diverse as a result of SNPs,
breakpoints, sequencing errors, and other events. In parti-
cular, when some of the extensions contain breakpoints
joining regions A and B, they can be detected by aligning
them with the reference genome sequences in each of
regions A and B (Figure 3(d)).

Detection of breakpoints from the extensions

The extensions can be aligned efficiently with the regions
A and B by a very fast dynamic programming algorithm
based on bit-level parallelism [20]. Since the minimum
edit distance attained at the optimal local alignment can
be computed much faster than the optimal local align-
ment, which requires backtracking computations, it is
advantageous to detect breakpoints only from the

minimum edit distances. Figure 4 intuitively illustrates this
detection.

While the left end of the query, %, scans from right to
left a neighborhood of region A, the minimum edit dis-
tances between extensions (from the query in region A)
and region A (B) are computed. In the simplest case
where there is only a unique extension with a single break-
point, they are given by the length of unaligned part of the
extension in the optimal alignment (Figure 4(a)). Specifi-
cally, when at most d % of the extension can be aligned
somewhere in region A (B), they are given by (1 - d/100)e,
where e is the extension length. They are functions of x
(Figure 4(b)), more precisely, multivalued functions of x
because of the multiplicity of extensions. They are thus
hereafter referred to as a multivalued edit-distance func-
tion concerning region A and that concerning region B.

When x, the left end of the query in region A, passes
though a breakpoint, the edit-distance function changes
drastically as shown in Figure 4(b). On the other hand,
when breakpoints do not exist, such a drastic change
never happens — the multivalued editdistance function
concerning region A remains zero, and that concerning
region B remains large. Thus, breakpoints are detected
from the multivalued editdistance function, and their
precise positions are also obtained. To provide more
confidence in the detection, similar analysis is per-
formed once again with regions A and B swapped.

As for the analysis of matched tumor and normal
samples, breakpoints are somatic if such a drastic
change is found only in the tumor sample but not in
the normal sample.
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Computation of the BWT of short-read data

The BWT of a large amount of short-read data, typically
larger than 100 Gbp, is efficiently calculated by the
BWT/WT algorithm [7], which basically follows the
BCRext algorithm [6] with DNA sequences represented
by wavelet trees [21].

Results and discussion
Examples of analysis of real biological data
The proposed method was experimentally implemented
for proof of concept. To demonstrate how the method
actually works for real biological data, several examples
of analysis are presented here. The data are publicly
available WGS data of matched tumor and normal sam-
ples, SRR559219 and SRR550170 in the NCBI Sequence
Read Archive (SRA). The samples were taken from
excised tumor tissue and blood from the same patient
with gastric cancer [22].
Two-dimensional clusters of discordant pairs
Figure 5 shows examples of two-dimensional clusters of
discordant pairs (represented by + and x) along with
the associated breakpoints (represented by A and V).
Clusters (a) to (c) consist of discordant pairs only from
the tumor tissue, namely, not from the normal tissue, and
they are therefore somatic. Clusters (a) and (b) are asso-
ciated with a single breakpoint; the discordant pairs are
distributed in a belt as described in the previous section.
Cluster (a) is dense, seemingly resulting from copy-num-
ber amplification, and cluster (b) is sparse, indicating low

concentration in the heterogeneous tumor sample. Cluster
(c) is composite, associated with two nearby breakpoints;
the discordant pairs are distributed along two belts corre-
sponding to the breakpoints. Cluster (d) is not associated
with any breakpoints. Discordant pairs from the tumor
and normal tissues are mixed; and they are distributed not
in belts in the diagonal or anti-diagonal direction but in
indefinite shapes. It seems to stem from two reasons: (i)
variations and resulting accidental hits to similar
sequences far apart, and (ii) fluctuations of the sonicated
positions and the insert lengths.

Multivalued edit-distance function around a breakpoint
Figure 6 shows an example of the multivalued edit-
distance function around a breakpoint in the case of real
biological data. The edit distance is normalized by the
length of extension. The edit distance for the tumor
sample shows a characteristic change as described in the
previous section. It indicates the existence of a breakpoint
as well as its precise position. However, the edit distance
for the normal sample does not show any such character-
istic change. Therefore, the breakpoint is surely somatic.

Performance of breakpoint detection
To examine the performance of breakpoint detection,
simulation data with known artificial rearrangements
were employed. They were generated as follows.

An artificial normal genome sequence was obtained by
introducing random SNPs at 0.1% rate into the human
reference genome, hgl9. An artificial cancer genome
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sequence was obtained from the artificial normal gen-
ome sequence by randomly introducing 40 rearrange-
ments of each of six types: insertion, deletion, inversion,
tandem duplication, and intra-chromosomal and inter-
chromosomal translocations. In total, 480 breakpoints
were introduced by these rearrangements. For each type
of rearrangement, the lengths of affected subsequences
were chosen uniformly ranging from 300 bp to 30 Kbp.

Artificial paired-end short-read WGS data sets were
randomly generated from the artificial normal and can-
cer genome sequences approximately at 40-times (or
20-times) coverage; each data set amounted to about
115 Gbp (or 58 Gbp). The read lengths were set to 90
bp, and the insert lengths were chosen so that they were
distributed according to the Gaussian distribution with
mean 760 bp and standard deviation 45 bp. These
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Figure 6 Example of multivalued edit-distance functions.
Existence of a somatic breakpoint as well as its precise position are
indicated by the multivalued edit-distance functions.

parameters for generating WGS data sets were chosen
according to real biological data [23]. The WGS data
sets of artificial heterogeneous cancer samples at differ-
ent cancer purities and of the same size were generated
by mixing the artificial WGS data sets from the artificial
normal and cancer genome sequences.

Table 1 shows the sensitivity of breakpoint detection
for different cancer purities at 40-times coverage. Sensi-
tivity begins to decrease significantly when the tumor
purity drops below around 20%. The numbers of false
detections in these data sets are 0, 2, 1, 1, and 2 (not
shown in the table); thus, the false detection rates are
very low (less than 1%).

The sensitivity of breakpoint detection is somewhat
different for different types of rearrangement (Table 2).
The sensitivity is lowest (90%) in the case of tandem
duplications. The same copies of a sequence generated
by a tandem duplication tend to mislead the mapping
tools, resulting in loss of discordant pairs.

Table 3 compares the performance of breakpoint
detection on simulated WGS data with that of other
tools. The proposed method is comparable in terms of
sensitivity and has much smaller false-detection rate.

Application to real biological data

The proposed method was applied to real biological data,
and the results were compared with published known
results [23]. The real biological data were taken from pub-
licly available WGS data of patients with HBV (Hepatitis
B virus)-associated HCC (hepatocellular carcinoma) in a
study ERP001196 in the NCBI SRA. The matched tumor
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Table 1 Sensitivity of breakpoint detection at 40-times
coverage.

Data set  Cancer purity = Number of breakpoints  Sensitivity
Predicted Detected

sim10 100% 457 455 95%

sim05 50% 455 452 94%

sim03 30% 456 446 93%

sim02 20% 454 433 90%

sim01 10% 445 356 74%

Simulation data with known artificial rearrangements are employed for
evaluation of the proposed method. The third and fourth columns indicate
the number of predicted breakpoint regions and the number of detected
breakpoints, respectively. The last column is the ratio of the fourth column to
all (480) breakpoints.

Table 2 Performance of breakpoint detection for
different types of rearrangement in sim10 at 40-times
coverage.

Type Number of breakpoints Sensitivity
Total Detected
Insertions 80 76 95%
Deletions 40 38 95%
Inversions 80 78 98%
Intra-chrom. trans. 120 114 95%
Inter-chrom. trans. 120 13 94%
Tandem dup. 40 36 90%

The second column is the number of breakpoints associated with each type
of rearrangement. The third column is the number of detected breakpoints

corresponding to each type. The last column is the ratio of the third column
to the second column. Intra-chrom. trans.: intra-chromosomal translocations,
Inter-chrom. trans.: inter-chromosomal translocations, Tandem dup.: tandem

duplications.

Table 3 Comparisons of performance of proposed
method and other tools.

Method Target Depth Purity Sensitivity FDR
This study Misc x40 20% 90% <1%
%20 20% 74% <1%
PRISM[15] D %20 100% 80% 5%
LUMPY[17] D x40 20% 96% 4%
%20 20% 77% 4%
CREST[16] DT x40 50% 73-78% 3%

Targeted types of rearrangement and features of simulated WGS data
(including the sequencing depth) differ from tool to tool. D: deletions, T:
tandem duplications, Misc: insertions, deletions, inversions, tandem
duplications, and intra-chromosomal and inter-chromosomal translocations,
FDR: false-detection rate.

and normal samples were taken from excised tumor liver
tissues and surrounding normal liver tissues. These nor-
mal tissues did not seem to be truly normal, unlike blood
samples, because they were likely to be exposed to HBV
infection for a long time with potential damage to the
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genomic DNA. Two kinds of libraries with long and short
insert lengths (approximately, 800 and 200 bp) were used,
and the read lengths were 90 bp. Total amount of data in
each sample ranged approximately from 100 to 120 Gbp.

Tables 4(a) and (b) show the numbers of somatic break-
points in different patients detected by the proposed
method and those reported by Banet et al. [23]
using CREST [16]. The intra-chromosomal and inter-
chromosomal somatic breakpoints are separately counted
in Tables (a) and (b), respectively. Detailed lists of detected
somatic breakpoints are given in Additional file 1.

As for the intra-chromosomal events, the agreement rate
between the breakpoints detected by the proposed method
and those reported by Banet et al. is generally much smal-
ler than the sensitivity of the proposed method evaluated
above. Accordingly, the case (patient ID 71) with the low-
est agreement rate was further investigated.

Among nine somatic breakpoints reported by Banet et
al., only two were detected by the proposed method;
five were actually found in both the tumor and normal
samples, and they were therefore not tumor-specific;
one was a rearrangement in a small distance (90 bp)
and was actually missed by the proposed method; and
one remained unclear, and no clues were found. The
evidential materials are given in Additional file 2. Like-
wise, in other cases, many of the somatic breakpoints
reported by Banet et al. but not detected by the pro-
posed method were in fact not tumor-specific.

On the other hand, somatic breakpoints not reported
by Banet et al. were detected by the proposed method.
They are roughly 0.5 times more abundant than ones in
agreement. If the low false-detection rate evaluated
above is applicable in these cases, the extra breakpoints
are new findings not reported previously. As for the
same patient ID 71 as above, evidential materials for
extra somatic breakpoints are given in Additional file 3.

The top four patients with the largest numbers of
detected intra-chromosomal somatic breakpoints, namely,
those with ID 117, 172, 64, and 39, are reported to have
chromothripsis [23], which is known to induce hundreds
of very complicated intra-chromosomal genomic rearran-
gements [11].

As for the inter-chromosomal events, the agreement
rate between the breakpoints detected by the proposed
method and those reported by Banet et al. is even
lower. The difference in the agreement rate between the
intra-chromosomal and inter-chromosomal events are
far larger than the difference between the evaluated sen-
sitivity of the intra-chromosomal and interchromosomal
translocations (Table 2). The somatic breakpoints
detected by the proposed method but not reported by
Banet et al. are roughly three times as many as the ones
in agreement. They are likely to be new findings not
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Table 4 Comparison of detected somatic breakpoints
with those reported by Banet et al.

(@) Number of intra-chromosomal somatic breakpoints

patient ID predicted detected known agree rate
22 51 17 13 6 46%
23 67 49 43 27 63%
39 113 92 91 72 79%
43 94 89 77 58 75%
45 48 42 30 21 70%
64 123 13 91 70 77%
71 11 10 9 2 22%
81 8 7 12 6 50%
90 44 39 29 19 66%
117 242 219 158 146 92%
126 55 17 " 7 64%
145 83 72 55 50 91%
172 179 139 135 91 67%
198 88 53 65 37 57%
207 72 65 58 49 84%
268 75 49 41 31 76%
Total 1353 1072 918 692 75%
(b) Number of inter-chromosomal somatic breakpoints

patient ID predicted  detected known  agree rate
22 10 8 1 0 0%
23 14 12 5 2 40%
39 34 30 14 8 57%
43 19 18 9 5 56%
45 15 12 12 9 75%
64 14 " 9 3 33%
71 12 8 7 0 0%
81 5 4 4 0 0%
90 7 6 6 1 17%
117 17 15 6 3 50%
126 4 4 3 0 0%
145 41 37 20 14 70%
172 33 25 8 3 38%
198 8 7 1 0 0%
207 6 6 7 1 14%
208 9 9 7 3 43%
Total 248 212 119 52 44%
[23].

The second and third columns are the number of predicted somatic
breakpoint regions and the number of detected somatic breakpoints,
respectively, for each patient. The fourth column is the number somatic
breakpoints reported by [23]. The fifth column is the number of breakpoints
that are counted in the third column and in the forth column (i.e., the
intersection of both columns). The last column is the ratio of the fifth column
to the fourth column. The intra-chromosomal and inter-chromosomal somatic
breakpoints are separately counted in Tables (a) and (b), respectively. Detailed
lists of detected somatic breakpoints are given in Additional file 1. As for
patient ID 71, evidential materials for detected somatic intra-chromosomal
breakpoints are given in Additional file 3.
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reported previously, if the evaluated low false-detection
rate of the proposed method is also applicable in these
cases.

Although the inter-chromosomal events were gener-
ally much fewer than the intra-chromosomal events,
tens of inter-chromosomal events were detected in some
patients. These events correspond to a feature of chro-
moplexy that are known to induce tens of very compli-
cated inter-chromosomal rearrangements [12,13].

Computational time and memory usage

A dual-CPU PC server (Intel Xeon, E5-2680, 256 GB
memory) was used in the above computational experi-
ments, prior to which the following data were prepared:
Burrows-Wheeler transforms of WGS data [7] and dis-
cordant pairs extracted from BAM files (mapping results
onto the human reference genome) obtained by using
BWA [4] and SAMtools [19].

The method for predicting breakpoint regions and that
for detecting breakpoints therein were implemented in
Perl and C++, respectively. Their computational times
were roughly proportional to the number of discordant
pairs and the number of predicted regions, respectively.
The maximum memory usage was dominated by the size
of the Burrows-Wheeler transform data and was roughly
proportional to the number of base pairs in the WGS data.

As for the case of patient ID 64, with about 13 million
(the largest number among the above-mentioned
patients) discordant pairs, the time for predicting break-
point regions was 448 seconds, and the time for detect-
ing breakpoints was 375 seconds (including 201 seconds
for loading the Burrows-Wheeler transform data into
memory); the maximum memory usage for the WGS
data of 234 Gbp (i.e., total size for matched tumor and
normal samples) was 73 GB.

Conclusions

The BWT of short-read data, serving as a lossless dic-
tionary of reads, enables sensitive analysis of genomic
rearrangements in heterogeneous cancer-genome sam-
ples when used in conjunction with breakpoint-region
predictions. Breakpoint regions are predicted by means
of a conjugate transformation of an empirical distribu-
tion of discordant pairs. The breakpoint regions are effi-
ciently examined by using the BWT of reads and a fast
dynamic programming method, and the break-points
are detected by using the multivalued edit-distance
functions, and their precise positions are determined.
The proposed method was demonstrated to actually
work on real biological data by using publicly available
WGS data of cancer patients. It achieved comparable
sensitivity to existing tools and much lower false-detec-
tion rate when applied to simulation data with known
artificial rearrangements. Moreover when applied to
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publicly available WGS data of cancer patients, it
detected many somatic breakpoints that were not
reported previously in the literature.

Additional material

Additional file 1: Detailed list of breakpoint detection for real
biological WGS data. The data are publicly available WGS data of
patients with HBV (hepatitis B virus)-associated HCC (hepatocellular
carcinoma) in a study ERPO01196 in the NCBI SRA [23].

Additional file 2: Evidential materials (1) in the analysis of Patient ID 71.
The disagreement between the results by the proposed method and
those reported by Banet et al. [23] is the greatest in case of patient ID
71. Evidential material is given for each event reported by Banet et al.

Additional file 3: Evidential materials (2) in the analysis of Patient

ID 71. For the same patient, evidential materials for detected somatic
intra-chromosomal breakpoints are given.
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