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Abstract

Progressive sequence alignment is one of the most commonly used method for multiple sequence alignment.
Roughly speaking, the method first builds a guide tree, and then aligns the sequences progressively according to
the topology of the tree. It is believed that guide trees are very important to progressive alignment; a better guide
tree will give an alignment with higher accuracy. Recently, we have proposed an adaptive method for constructing
guide trees. This paper studies the quality of the guide trees constructed by such method. Our study showed that
our adaptive method can be used to improve the accuracy of many different progressive MSA tools. In fact, we
give evidences showing that the guide trees constructed by the adaptive method are among the best.

Introduction

Multiple sequence alignment is a basic task in Bioinfor-
matics and has many applications in biological analyses
such as phylogenetic inferencing and protein 3D structure
prediction. The progressive alignment method [1] is one of
the most commonly used methods for multiple sequence
alignment. Roughly speaking, the method first constructs a
guide tree that is supposed to capture the phylogenetic rela-
tionship of the input sequences, and then aligns the
sequences progressively according to the topology of the
guide tree such that more related sequences are aligned first
and the less related ones are aligned later.

Recently, we have proposed an adaptive approach for
progressive multiple sequence alignment[2]. We observed
that for different sequence families with different similari-
ties, their alignments usually have different characteristics
and structural properties, and by using some reliable mea-
sure to estimate the similarity of the inputs, we may
exploit the corresponding properties to help generate bet-
ter alignments. To estimate the similarity, we proposed to
use the average percent identity, which is defined as

* Correspondence: hfting@cs.hku.hk

t Contributed equally

'School of Computer Science and Technology, Harbin Institute of
Technology, Harbin, China

2HKU-BGI Bioinformatics Algorithms & Core Technology Research Lab,
Computer Science Department, University of Hong Kong, Hong Kong, China
Full list of author information is available at the end of the article

follows. For any two sequences, the percent identity of
these two sequences is defined to be

PID = Nldentity

LAlignment

where Nigentity is the number of identities in the opti-
mal pairwise alignment of the two sequences, and Ljign-
ment 18 the length of this alignment. The average percent
identity PID of the input sequences is the average of
the PIDs over every pair of the sequences. In [2], we
noted that if PID is greater than 40%, the input
sequences are very similar, and we showed how to
exploit the properties of similar sequences and align
the sequences globally. If PID is between 25% and 40%,
the input are moderately similar, and we can exploit the
corresponding properties to align them locally. For
input below 25%, we do not know which alignment
methods is better; hence we suggested trying different
methods (e.g., using global alignment methods as well as
local alignment methods) and using their consensus to
determine the final alignment.

To test the effectiveness of our idea, we developed a
software tool called GLProbs, which implements our
adaptive approach for multiple sequence alignment. We
have done extensive testings and empirical comparisons
for GLProbs, and the results showed that GLProbs has
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significantly better accuracy than a dozen of other lead-
ing MSA tools (see [2] for more details).

In this paper, we study why GLProbs can achieve such
a high accuracy, and exploit ways to further improve the
software tool. In particular, we are interested in finding
out the impact of the adaptive guide tree construction
method used in GLProbs. This also leads us to study
the following fundamental question:

Are guide trees really important to obtain high qual-
ity multiple sequence alignments, and if yes, how to
construct the best guide trees.

We note that there are already studies suggesting that
guide trees are important. For example, Penn et al. [3]
showed that uncertainties in the guide tree lead to a
major source of alignment uncertainty, and Capella-
Gutierrez and Gabaldon[4] showed that most gaps are
inserted in patterns that follow the guide tree.

To study the guide trees of GLProbs, we have done
the following tests.

First, we modified GLProbs to GLProbs-Random in
which the adaptive guide tree construction step of
GLProbs was replaced by a step that just generates a
random guide tree. Then we compared the performance
of GLProbs and GLProbs-Random empirically.

Second, we modified GLProbs to a new tool GLProbs-
Reference and compared their performance of aligning
families of protein sequences whose correct multiple
sequence alignments are generally agreed by the biologists.
The modification done to get GLProbs-Reference is that
the guide tree generated by GLProbs is replaced by the
phylogenetic tree constructed as follows: Based on the
known correct alignment of the input sequences we
construct their phylogenetic trees using the maximum-
likelihood method [5], and then use these phylogenetic
trees as the guide trees. Intuitively these phylogenetic trees
should be the best guide trees for the alignments. The aim
of this test is to find out whether the guide trees con-
structed by the adaptive method are competitive among
the best.

Finally, we study whether the adaptive guide tree con-
struction method of GLProbs can bring similar improve-
ment to other MSA tools. We have modified five
leading multiple sequence alignment tools, namely
MSArobs [6], Probalign [7], Prob-Cons [8], T-Coffee [9],
ClustalW [10], by replacing their original guide trees
construction steps with the adaptive guide tree con-
struction step, and keeping other steps intact. Then we
compare their performance on aligning protein sequence
families obtained from three popular benchmark
datasets.

We will detail the results of our tests in Sections 2, 3
and 4. Below, we summarise our conclusions.
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+ For sequences with high similarity, the guide tree
construction method is not critical; many reasonable
methods can generate good enough guide trees leading
to satisfactory alignments.

« For sequences with moderate similarity, better guide
trees are very important for generating good alignments.
Our study showed that the guide trees constructed by
the adaptive method of GLProbs are usually among the
best, and they can be used to improve the performance
of other MSA tools.

« For sequences with very low similarity, the adaptive
guide tree construction method can also improve the
accuracy of other MSA tools; in fact, the improvements
are larger than those obtained for other more similar
sequences. However, the accuracy of these alignments is
still very low. We found that for sequences with very
low similarity, it is very difficult to generate good guide
trees, and using a bad guide tree will have serious detri-
mental effect on the quality of the resulting alignment.
For these sequences, we suggest using other methods,
such as the non-progressive alignment method, that do
not rely on guide trees for generating better alignments.

Comparing adaptive guide trees with random
trees

As aforementioned, the progressive multiple sequence
alignment method needs to construct a guide tree to
determine the order of the progressive alignments.
Intuitively, the accuracy of the alignments depends
much on the quality of the guide trees; if the aligned
orders are wrong, the accuracy may be low.

To confirm this intuition, we have modified GLProbs
to GLProbs-Random, which replaces the guide tree con-
structed in GLProbs by a random guide tree. We have
used them to align protein sequences families obtained
from the benchmark database OXBench. Figure 1 shows
their alignments’ sum-of-pairs (SP) scores and total col-
umn (TC) scores, two of the most commonly used scores
for measuring the quality of MSA. Each dot (x, y) in the
figure shows the scores obtained by GLProbs and
GLProbs-Random for one testing sample, where x is the
score obtained by GLProbs and y by GLProbs-Random.
Unsurprisingly, we note that most points are below the
diagonals, which means GLProbs outperformed
GLProbs-Random. This confirms the importance of
guide trees. However, it is interesting to observe that
there are also many points above the diagonals, which
means that for these inputs, random guide trees are bet-
ter than the guide trees elaborately generated by
GLProbs. After a careful study of the inputs, we found
that most of these inputs have low similarities. We
believe that to generate better alignments for these
inputs, we should abandon the progressive method, and
try other methods such as the non-progressive alignment
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Figure 1 GLProbs vs GLProbs-Random on OXBench in term of SP and TC scores.

method [11], that do not rely on guide trees to generate
their alignments.

Using adaptive guide trees to improve other
leading MSA tools

To study whether the adaptive guide tree construction
method of GLProbs can improve the accuracy of other
MSA tools, we have applied it to five leading multiple
sequence alignment tools: MSArobs [6], Probalign [7],
ProbCons [8], T-Coffee [9] and ClustalW [10], by modi-
fying these tools so that they used the adaptive guides
trees constructed by GLProbs. We note that these five
tools have their own special features. ClustalW is among
the first tools using progressive alignment, and has
become one of the most popular MSA tools since its
release in 1994. MSAProbs, Probalign and ProbCons
apply the consistency-based method to improve the accu-
racy of the progressive alignment. T-Coffee provides a
simple and flexible means of producing multiple
sequence alignments by using heterogeneous data
sources given by a library of global and local pairwise
alignments.

In our tests, we used samples from three popular
benchmark datasets, namely BAIiBASE [12], OXBench
[13], and SABmark [14]. In particular, we use the two
subsets RV11 and RV12 in BALIiBASE, where RV11 con-
tains distant sequences with < 20% identity while RV12
consists of medium to divergent sequences with identities
between 20% and 40%. For SABmark we used its two
subsets: Twilight Zone and Superfamily. Twilight Zone

represents different SCOP folds subsets, where each sub-
set contains sequences with no more than 25% identity.
Superfamily contains different SCOP superfamilies,
which have no more than 50% identity. For OXBench,
the families of sequences we used ranging from 0% to
100% similarity.

Table 1 shows the average SP and TC scores obtained
from the original alignment tools (listed in the columns
labeled with “Original”), and those obtained by the mod-
ified tools, in which their guide trees are replaced by the
ones constructed by the adaptive method of GLProbs
(listed in the columns labeled with “Adpative”). Note
that the average SP scores of all of the five aligners with
guide tree generated by the adaptive method outperform
those generated by original aligners on all of the three
benchmarks. For TC scores, we can see that using guide
tree generated by the adaptive method can improve
the average score in most cases.

We also divided OXBench’s input families into four
categories according to their similarities. For example,
the “0%-20%" category contains the families that the
similarities of which are between 0% and 20%. Category
“0%-100%" contains all of the families. In Table 2 it can
be seen that the adaptive method can improve most
aligners in most cases, especially in the low similarity
categories.

Table 3 and Table 4 show the results on SABmark
and BAIiBASE, in which the results are divided into two
categories according to the similarity of the input
families. All of the aligners have improvement in the
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Table 1 Mean SP and TC scores on BAIIBASE, OXBench and SABmark

SP TC

Adaptive Original Adaptive Original

BAIIBASE Clustalw 71.277 69.578 51.865 49.121
MSAProbs 82.683 82370 67.449 67.274

Probalign 83.153 82991 68.054 67.691

ProbCons 82.007 81.541 66.284 65618

T-Coffee 81.646 80.759 66.457 64.894

OXBench ClustalWw 89.833 89.446 80.409 80.189
MSAProbs 90.092 90.062 81.696 81.703

Probalign 89.997 89.966 81.642 81.680

ProbCons 89.719 89.680 80.895 80.880

T-Coffee 89.534 89.519 80.680 80.513

SABmark Clustalw 52.472 51957 31.927 31.495
MSAProbs 60.280 60.245 39.946 40.044

Probalign 59.666 59.532 38.941 38.626

ProbCons 59.826 59.690 39.437 39.166

T-Coffee 59.377 59.158 39.291 39.597

Average SP score and average TC score of the alignments on the three benchmarks generated by the five aligners with guide tree generated by adaptive
method and by aligners’ own. Rows show the average sum of pairs scores (SP) and total column scores (TC) multiplied by 100. The best results in each pair are
shown in bold.

Table 2 Mean SP and TC scores on OXBench

Clustalw MSAProbs Probalign ProbCons T-Coffee
Adaptive  Original Adaptive  Original Adaptive Original Adaptive Original Adaptive  Original
SP - 0%-100% 89.833 89.446 90.092 90.062 89.997 89.966 89.719 89.680 89.534 89.519
0%-20% 48.219 42944 45.140 44.840 44.308 43576 45.390 44140 44.883 43818
20%-40% 77.364 77.061 77.874 77.839 77.261 77.259 77.026 77.049 76.545 76.667
40%-70% 93.982 93.778 94.569 94.542 94.691 94.688 94.220 94.233 94.146 94.139
70%-100% 99.274 99.236 99.25 99.260 99.319 99.319 99.138 99.138 99.055 99.070
TC  0%-100% 80.409 80.189 81.696 81.703 81.642 81.680 80.895 80.880 80.680 80513
0%-20% 20.883 18233 22.078 22.078 20462 20.518 20.988 20.301 19.663 19.108
20%-40% 57.570 57.255 59.863 59.817 59.107 59.379 58277 58.340 57.968 57.938
40%-70% 86.403 86.363 87.966 87.933 88.255 88.204 87.309 87.307 87.212 86.941
70%-100% 98.005 97913 97.972 98.093 98.135 98.135 97.616 97.616 97.442 97.402

Average SP score and average TC score of the alignments on OXBench generated by the five aligners with guide tree generated by adaptive method and by
aligners’ own. Rows show the average sum of pairs scores (SP) and total column scores (TC) multiplied by 100. The best results in each pair are shown in bold.

Table 3 Mean SP and TC scores on BAIiBASE

Clustalw MSAProbs Probalign ProbCons T-Coffee
Adaptive  Original  Adaptive  Original Adaptive  Original Adaptive Original  Adaptive  Original
SP 0%-60% 71.277 69.578 82.683 82.370 83.153 82.991 82.007 81.541 81.646 80.759
0%-30% 52.878 51573 69.251 68.584 70.183 69.826 68.289 67.300 67.543 65.676
30%-60% 86.404 84.382 93.727 93.704 93.818 93.816 93.287 93.251 93.242 93.160
TC  0%-60% 51.865 49.121 67.449 67.274 68.054 67.691 66.284 65.618 66.457 64.894
0%-30% 26.754 26014 46.546 46.143 47.989 47.178 44.776 43.332 45.122 42.346
30%-60% 72511 68.120 84.636 84.649 84.551 84.558 83.969 83.942 84.000 83433

Average SP score and average TC score of the alignments on BaliBASE3 generated by the five aligners with guide tree generated by adaptive method and by
aligners’ own. Rows show the average sum of pairs scores (SP) and total column scores (TC) multiplied by 100. The best results in each pair are shown in bold.
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Table 4 Mean SP and TC scores on SABmark
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Clustalw MSAProbs Probalign ProbCons T-Coffee
Adaptive  Original = Adaptive  Original Adaptive  Original Adaptive Original Adaptive  Original
SP 0%-60% 52.472 51957 60.280 60.245 59.666 59.532 59.826 59.690 59.377 59.158
0%-30% 44.504 43.907 52.081 51.99 51.251 51.161 51.601 51459 51.266 50.799
30%-60% 81.954 81.739 90616 90.766 90.802 90.507 90.258 90.146 89.388 90.087
TC  0%-60% 31.927 31495 39.946 40.044 38.941 38626 39.437 39.166 39.291 39.597
09%-30% 22.398 22.020 29.132 29.043 27.894 27.702 28.559 28.198 28518 28.599
30%-60% 67.183 66.551 79.954 80.748 79.816 79.044 79.687 79.747 79.151 80.291

Average SP score and average TC score of the alignments on SABmark generated by the five aligners with guide tree generated by adaptive method and by
aligners’ own. Rows show the average sum of pairs scores (SP) and total column scores (TC) multiplied by 100. The best results in each pair are shown in bold.

low similarity “0%-30%" category, except the average TC
score of T_Coffee’s alignments on SABmark.

Comparing adaptive guide trees with reference
guide trees

To compare the adaptive guide trees with the best ones,
we modified GLProbs to GLProbs-Reference, in which
the guide tree generated by GLProbs is replaced by
the phylogenetic tree constructed by applying the

maximum-likelihood method [5] on the correct MSA of
the input sequences. Figure 2 compares the SP and TC
scores of the alignments constructed by GLProbs and
GLProbs-Reference for the sequence families obtained
from the three benchmark databases BAIiBASE, OXBench
and SABmark. The figure shows that most points located
around the diagonal, which suggests the performances of
using the reference (best) guide tree and that generated by
the adaptive scheme are similar.

A. SP score on BAIIBASE B. SP score on OXBench C. SP score on SABmark
e | o | o |
o) - o -
.
.
g - . g - . g - ok
.
.
o | ” o | o | 2
& © % 2 © 8 °
<} S S
o a o e e’ .
- - - ) -
o = | © = C = .
(=] o . o
> 4
.
.
o o~ | I s
o o o .
i,
o | o | o |
o o o
T T T I T I T T T T T T T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
GLProbs-Reference GLProbs-Reference GLProbs-Reference
D. TC score on BAIiIBASE E. TC score on OXBench F. TC score on SABmark
e | o | . o |
= a - . =
. .
o o ] i o . .
[=] o o .
. -
o _| o _| 7 © .
& ° g © 2 < .
° <] . <] .
o o -8
- -d -
o = | v g = | o = | .
(=] e o . (=]
e . . .
o~ L o * o~ .
S . s S e .
e . .
. : -
g | g - g = e . . . .
T T T T T T T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 08 1.0 0.0 0.2 0.4 0.6 0.8 1.0
GLProbs-Reference GLProbs-Reference GLProbs-Reference
Figure 2 GLProbs vs GLProbs-Reference on BAIiIBASE, OXBench, SABmark. Dots above diagonal represent GLProbs outperformed GLProbs-
Reference.




Zhan et al. BMC Bioinformatics 2015, 16(Suppl 5):S4
http://www.biomedcentral.com/1471-2105/16/55/54

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

HFT conceived the project, QZ, YY and HFT designed the project, QZ, YY
implemented the project, TWL, SMY and YW provided feedbacks on the
implementation.

Acknowledgements
Lam was partially supported by GRF Grant HKU-716412E. Ting was partially
supported by GRF Grant HKU-713512E.

Declarations

Publication costs for this article were funded by the authors’ departmental
resources.

This article has been published as part of BMC Bioinformatics Volume 16
Supplement 5, 2015: Selected articles from the 10th International
Symposium on Bioinformatics Research and Applications (ISBRA-14):
Bioinformatics. The full contents of the supplement are available online at
http://www.biomedcentral.com/bmcbioinformatics/supplements/16/S5.

Authors’ details

'School of Computer Science and Technology, Harbin Institute of
Technology, Harbin, China. ?HKU-BGI Bioinformatics Algorithms & Core
Technology Research Lab, Computer Science Department, University of
Hong Kong, Hong Kong, China.

Published: 18 March 2015

References

1. Feng D, Doolittle R: Progressive sequence alignment as a prerequisite to
correct phylogenetic trees. J Mol Evol 1987, 15:351-360.

2. YeY, Cheung DW, Wang Y, Yiu S-M, Zhan Q, Lam T-W, Ting H-F: GLProbs:
Aligning Multiple Sequences Adaptively. Proceedings of the International
Conference on Bioinformatics, Computational Biology and Biomedical
Informatics, (A journal version of the paper was invited and accepted for
publication in the IEEE/ACM Transactions on Computational Biology and
Bioinformatics,) 2013, 152-152.

3. Penn O, Privman E, Landan G, Graur D, Pupko T: An Alignment Confidence
Score Capturing Robustness to Guide Tree Uncertainty. Mo/ Biol Evol
2010, 27:1759-1767.

4. Capella-Gutierrez S, Gabaldon T: Measuring guide-tree dependency of
inferred gaps in progressive aligners. Bioinformatics 2013, 29:1011-1017.

5. Tamura K, Peterson D, et al: MEGA 5: Molecular evolutionary genetics
analysis using maximum likelihood, evolutionary distance, and
maximum parsimony methods. Molecular Biology and Evolution 2011,
28:2731-2739.

6. Liu'Y, Schmidt B, Maskell D: MSAProbs: multiple sequence alignment
based on pair hidden markov models and partition function posterior
probabilities. Bioinformatics 2010, 26:1958-964.

7. Roshan U, Livesay D: Probalign: multiple sequence alignment using
partition function posterior probabilities. Bioinformatics 2006,
22:2715-2721.

8. Do G, et al: ProbCons: probabilistic consistency-based multiple sequence
alignment. Genome Res 2005, 15:330-340.

9. Notredame C, Higgins D, Heringa J: T-Coffee: A novel method for multiple
sequence alignments. J Mol Biol 2000, 302:205-217.

10.  Thompson J, et al: CLUSTAL W: improving the sensitivity of progressive
multiple sequence alignment through sequence weighting, position-
specific gap penalties and weight matrix choice..

11, Sahraeian S, Yoon B: PicXAA: greedy probabilistic construction of
maximum expected accuracy alignment of multiple sequences. Nucleic
Acids Research 2010, 38(15):4917-4928.

12. Thompson J, Plewniak F, Poch O: BAIIBASE: A benchmark alignment
database for the evaluation of multiple alignment programs.
Bioinformatics 1999, 15:87-98.

13. Raghava G, et al: OXBench: a benchmark for evaluation of protein
multiple sequence alignment accuracy. BMC Bioinformatics 2003, 4:47.

14. Walle V, et al: Align-m: a new algorithm for multiple alignment of highly
divergent sequences. Bioinformatics 2004, 20:1428-1435.

Page 6 of 6

doi:10.1186/1471-2105-16-S5-54
Cite this article as: Zhan et al: Improving multiple sequence alignment
by using better guide trees. BMC Bioinformatics 2015 16(Suppl 5):54.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

* Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BioMed Central



http://www.biomedcentral.com/bmcbioinformatics/supplements/16/S5
http://www.ncbi.nlm.nih.gov/pubmed/3118049?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3118049?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20207713?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20207713?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23435067?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23435067?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21546353?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21546353?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21546353?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20576627?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20576627?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20576627?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16954142?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16954142?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15687296?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15687296?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10964570?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10964570?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20413579?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20413579?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10068696?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10068696?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14552658?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14552658?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14962914?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14962914?dopt=Abstract

	Abstract
	Introduction
	Comparing adaptive guide trees with random trees
	Using adaptive guide trees to improve other leading MSA tools
	Comparing adaptive guide trees with reference guide trees
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	Authors’ details
	References

