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Abstract

Background: Short-read aligners have recently gained a lot of speed by exploiting the massive parallelism of GPU.
An uprising alterative to GPU is Intel MIC; supercomputers like Tianhe-2, currently top of TOP50Q0, is built with
48,000 MIC boards to offer ~55 PFLOPS. The CPU-like architecture of MIC allows CPU-based software to be
parallelized easily; however, the performance is often inferior to GPU counterparts as an MIC card contains only
~60 cores (while a GPU card typically has over a thousand cores).

Results: To better utilize MIC-enabled computers for NGS data analysis, we developed a new short-read aligner
MICA that is optimized in view of MIC's limitation and the extra parallelism inside each MIC core. By utilizing the
512-bit vector units in the MIC and implementing a new seeding strategy, experiments on aligning 150 bp paired-
end reads show that MICA using one MIC card is 4.9 times faster than BWA-MEM (using 6 cores of a top-end CPU),
and slightly faster than SOAP3-dp (using a GPU). Furthermore, MICA’s simplicity allows very efficient scale-up when
multiple MIC cards are used in a node (3 cards give a 14.1-fold speedup over BWA-MEM).

Summary: MICA can be readily used by MIC-enabled supercomputers for production purpose. We have tested
MICA on Tianhe-2 with 90 WGS samples (17.47 Tera-bases), which can be aligned in an hour using 400 nodes.
MICA has impressive performance even though MIC is only in its initial stage of development.

Availability and implementation: MICA’s source code is freely available at http://sourceforge.net/projects/mica-
aligner under GPL v3.

Supplementary information: Supplementary information is available as “Additional File 1”. Datasets are available
at www.bio8.cs.hku.hk/dataset/mica.

Introduction

With the rapid advance of sequencing technologies,
there is continuously demand for faster and faster analy-
sis. The recently announced Illumina HiSeq x Ten
sequencing system promises to sequence 18,000 whole

human genomes (30x) in one year (four such systems
can sequence more genomes than in all of history),
while cutting the cost to $1,000 each. To cater to such
capacity, it is important to develop new analysis soft-
ware to fully utilize available acceleration hardware in
addition to the CPU. For example, SOAP3-dp [1] uses a
graphics processing unit (GPU) and is a few times faster
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than mainstream CPU aligners and delivers higher sensi-
tivity. Besides GPU, attention has also fallen on Intel’s
new product Many Integrated Core (MIC), a.k.a. Xeon
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Phi Co-processor. MIC was introduced in 2011. It is an
acceleration device whose hardware and system-software
architecture support its use for general purpose comput-
ing. It is well suited to software implementations where
computations on many thousands of data items can be
carried out independently in parallel. The latest product
has 57-61 cores and 8 GB of memory in one board, pro-
viding ~1 TFlops. Two of the top ten supercomputers in
TOP500 (which ranks the world’s 500 most powerful
supercomputers) are equipped with MIC (Tianhe-2 has
48,000 MIC boards, and Stampede has 6,400 boards).
Experience has shown, however, that it is not easy to
build useful read alignment software using massive core
architectures such as GPU and MIC. The apparent pro-
blem is that the most biologically relevant sequence-
alignment algorithm [2,3] involves dynamic program-
ming dependencies that are awkward to compute effi-
ciently in parallel. The fastest GPU implementations of
the algorithm to date relies on task parallelism [1],
where each thread of execution computes an entire
alignment independently of all other parallel threads.
This, however, requires sequences to be aligned to have
similar lengths to ensure balanced tasks distribution
among cores. Another typical sequence alignment pro-
blem is that a short query sequence (100 to 250 bp)
must be aligned with a comparatively long (3 Gbp or
longer) reference sequence. Since a brute-force search
for all candidate alignments in this setting would be
computationally prohibitive, read aligners typically con-
struct a list of candidate reference sequence locations
within which potential alignments might be discovered.
The size of a list depends on the complexity of the
sequence to be aligned and this accounts for a signifi-
cant proportion of the computational imbalance
involved in read alignment using massive core architec-
tures. Several high-throughput read aligners including
BarraCUDA [4], CUSHAW [5] and SOAP3-dp [1] that
utilize GPU acceleration have been developed in the
past few years, but to this date, limited studies have
been carried out on short read alignment using MIC.
This paper introduces MICA, a new short-read aligner
designed to fully utilize the computing power of MIC.

Method

MICA accepts input reads in FASTA/FASTQ format and
outputs alignment results in SAM/BAM format. In a typi-
cal setting, MICA runs on a server (host) equipped with 1
to 3 MIC cards. MICA runs each MIC using the offload
mode (instead of native mode) to exploit the host’'s mem-
ory and provide better I/O performance. The latter is
important when dealing with large volume of sequencing
data. For each MIC card, MICA maintains a CPU thread
in the host called an MIC-controller, which feeds the MIC
with around million reads each time and spawns 224 MIC
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threads (running on 56 cores) to align the reads in parallel.
At the end, the alignment results are copied to the MIC-
controller for output (Figure 1). Note that reads with
different complexities vary in aligning time. To achieve
maximum throughput, MICA dynamically balances the
load of the threads to avoid unnecessary idling.

Algorithmically, MICA maintains a BWT index in
each MIC, and it adopts SOAP3-dp’s approach to align
reads shorter than 150 bp, and uses a new approach to
handle longer reads. SOAP3-dp was designed for HiSeq
2000 paired-end reads of 100 bp; its efficiency stems
from the fact that a GPU, with a 2 way-BWT index [6],
can efficiently align at least one end of a paired-end
read with 0-2 mismatches; the other end can be aligned
using dynamic programming in the GPU. For longer
reads (150 bp or more), SOAP3-dp deteriorates in sensi-
tivity and speed because GPU is inefficient to align with
more mismatches using the index. Thus, we need a new
approach. In the following, we divide the discussion into
two parts: the first part describes the techniques on how
to utilize the resources of MIC to match the perfor-
mance of SOAP3-dp on GPU, and the second part is
about the new techniques for aligning reads.

Our experiment revealed that an MIC core was 4 to 6
times slower than a CPU core when running programs
designed for CPU, and an MIC with 57 cores might be
comparable to a 12-core CPU when used for brute-force
parallelization of a CPU program. Noteworthy, each
MIC core has thirty-two 512-bit registers; each allows
sixteen 32-bit data to be operated in parallel. Such extra
parallelism, if exploited properly, can boost the effi-
ciency dramatically. This requires a lot of engineering
work, though. Our first success is on the BWT index,
MICA exploits 512-bit operations to speed up different
arithmetic and memory transaction operations when
querying the BWT (SOAP3-dp is based on 64-bit opera-
tions). Next, we turn to dynamic programming, which is
for aligning reads allowing indels and soft clipping.
Below we give the details of a new parallel algorithm for
dynamic programming that can utilize the 512-bit
registers.

A. Highly parallel dynamic programming.

To align a read of length m and a reference region of
length n by DP, the traditional approach (Figure 2)
needs to fill a 2-dimenional table (denoted T[n,m]), in
which TTi, j] is determined by TT[i-1,/-1], T[i-1,j] and TTi,
j-1] (upper, upper-left and left dependencies). Such
dependencies force us to compute consecutive entries
on a row (or a column) one by one.

To circumvent sequential dependencies, we represent
this table in the diagonal order as a single array (Figure 3),
i.e., TTi, j] is followed by TTi-1,j+1], TTi-2,j+2], and so on.
This representation allows us to fill 16 entries of the table
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Figure 1 MICA’s architecture: interaction between the host and MIC cards.

in one step. To fill T{;, j], T[i-1, j+1],..., T[i-15, j+15] in a
single iteration, we need to load 16 entries from 3 memory
locations beginning from TTi-1, j-i], T[i-1, j] and TTi, j-1].
Another concern is that the number of memory transac-
tions in each core is an important factor to the overall effi-
ciency. To minimize the number of memory transactions,
for each entry, we pack all the necessary information
(including the read and reference nucleotide) required for
calculation into a 32-bit entry in the DP table and the
memory transactions are reduced to loading only three
512-bit vectors of the DP table; The number “three”
comes from the affine gap penalty model, which requires
to compute three DP tables M, I, D to store the optimal
score when aligning up to each position with the last char-
acter being a Match, Insert or Delete, respectively. To
reduce memory transactions by increasing locality, the M,
1, D values for each i, j are packed into TTj, j].

0 1 4 2 3
NI
2 2 3 [
Dependency Memory representation
— -
Figure 2 Traditional approach to Dynamic Programming.

B. New seeding strategies.

For longer reads, we can only afford to use the BWT to
align short fragments of a read (i.e., the seeds) and then
count on dynamic programming to verify the candidate
positions of the seed. Ideally we want fewer seeds (to
save time on seed alignment) and the seeds should
return correct candidate positions without too many
incorrect ones (to save time on dynamic programming).
MICA attempts to improve SOAP3-dp and other
aligners by using as few seeds as possible, while main-
tains a balance between efficiency (fast & do not give
too many candidates) and sensitivity (capture correct
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Figure 3 MICA’s approach to Dynamic Programming.




Luo et al. BMC Bioinformatics 2015, 16(Suppl 7):510
http://www.biomedcentral.com/1471-2105/16/S7/5S10

candidate positions for more reads). MICA uses a com-
bination of the following strategies.

a) Non-branching mismatches

MICA allows more mismatches during seed alignment
but without sacrificing efficiency. SOAP3-dp allows only
one mismatch as the time for seed alignment increases
exponentially with the number of mismatches (due to
the branching of the search tree). We observe that very
often a mismatch is unambiguous and there is exactly
one way to correct it according to the reference genome.
MICA allows 1-2 “non-branching” mismatches in addi-
tion to one “branching” mismatch for seed alignment.

In details, when performing alignment, we take a sin-
gle character in the read and extend it character by
character and check if the pattern exists in the reference
genome. We call it a mismatch when we try to extend it
such that the character in the read does not match the
corresponding character in the reference genome. We
can classify the mismatches into two types, branching
mismatches (BM) and non-branching mismatches
(NBM) (Figure 4). (a) When a NBM occurs, the current
character in the read does not allow an extension, but
there is another unique character that allows an exten-
sion. (b) When a BM occurs, there are at least 2 charac-
ters allowing an extension, one of them can be the
character in the read, and we choose to extend it with a
mismatch character.

For computing purposes, a BM increases the number of
possible extensions much more than a NBM, and is more
time-consuming to handle. Yet, we observed that very
often a mismatch is unambiguous and there is exactly
one way to correct it according to the reference genome
(i.e. it is a NBM). Therefore, we allow MICA to find
alignments with up to 2 non-branching mismatches, in
addition to the 1 branching mismatch for seed alignment.
This approach discovers more seeds than the “1 mis-
match only” approach.

b) Read-sensitive seed length
MICA dynamically adjusts the seed length depending on
the content of the read. If a region of the read appears
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to be non-repetitive, it uses a shorter seed to avoid
missing critical candidate positions; for a region that
appears to be repetitive, we choose a long seed to
reduce the number of candidates.

More specifically, MICA follows SOAP3-dp’s design
for rapidly aligning those reads with < 3 mismatches
and without an Indel, leaving those reads failed to
be aligned (with > 3 mismatches or with > 1 Indel) to
the Dynamic Programming (DP) module. This rapid
mode works efficiently with 100 bp paired-end reads,
where the slower DP module handles only about 10% of
the reads. However, new sequencers such as Illumina
HiSeq x Ten, produces paired-end reads 150 bp in
length. The probability of a 150 bp read to span = 3
mismatches or an Indel is higher than that of 100 bp,
empirically forcing the DP module to handle 30-40% of
the reads, which slows down the performance of MICA
significantly. To enable MICA to work with 150 bp or
longer reads efficiently, we have redesigned the work-
flow by disabling the rapid mode and using multiple
rounds of seed discovery in the DP module to catch up
to the speed. The longer seed lengths required in the
former rounds limit the number of candidate alignment
regions, where the shorter seed lengths in the latter
rounds ensure the sensitivity, but requiring much more
computation due to the large number of candidate
alignment regions to be verified. Most reads with fewer
mismatches and Indels thus could be aligned in the for-
mer rounds, leaving complicated reads for the latter
rounds, which are more computationally demanding.

Table 1 gives the implementation details of each
round as in the latest version of MICA. The details of
SOAP3-dp are also provided for comparison.
¢) Breaking seeds at variant positions
MICA also tries to exclude read positions that are suspi-
cious to be errors or variants (especially Indels) as part
of a seed.

The above seeding strategies are used in multiple
rounds with different parameters to attain better speed
without sacrificing sensitivity. The superior sensitivity of

Referenc

1. AACGGTA...

Non-branching mismatch (NBM)
Reference suggests an unique alternative base
that enables the extension of string matching.

Figure 4 lllustration of branching mismatches (BM) and non-branching mismatches (NBM).

AACGGTA...
2 ...AACCGTA..
s ... AACAGTA...

A

Branching mismatch (BM)
Reference suggests multiple alternative bases
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Table 1. MICA and SOAP3-dp seeding details
MICA:

Round Seed Length Seed Overlap Seed # Limit

Round 0 140 0 1,000

Round 1 80 0 1,000

Round 2 46 0 100
SOAP3-dp DP module:

Round 1 28 20 100

Round 2 32 28 1,000

“Seed Overlap” means the maximum overlap between two seeds when
extracting seeds from a read.

the seeds allows MICA to pair up the candidate posi-
tions from both ends of almost all reads before the DP.
This saves a lot of time on verifying incorrect positions.

Results

A. Software settings and machine specifications.
a) MICA: Version r178. Compiled with Intel C/C++
Compiler version 13.1; one to three 57-core MIC
cards (8G, ECC enabled), each coupled with a CPU
core; and one CPU core for output (in SAM format).
b) SOAP3-dp: Version r176. Compiled with GCC
4.7.2 and CUDA SDK 5.5; one nVidia GeForce
GTX680 (4G); 4 CPU cores; serial BAM output.
¢) BWA-MEM: Version 0.7.5a. Compiled with GCC
4.7.2; 6 CPU cores. SAM output.
d) In general: Besides the acceleration devices (MIC/
GPU), all other hardware is the same for all experi-
ments. Specifically, Intel i7-3730k, 6-core @3.2 GHz,
64G memory

B. Real data comparison with other aligners.
We used 77-fold depth of 150 bp Illumina paired-end
reads of the YH samples [7] (PE150) to benchmark
MICA and other state-of-the-art aligners including
GPU-based SOAP3-dp [1] and CPU-based BWA-MEM
[8]. The results are shown in Table 2. The figures were
calculated as the average of three repeated runs, and a
tailor-made setting was used for each aligner to ensure
the best performance. For the PE150 dataset, MICA
using one card is ~4.9 times faster than BWA-MEM
and slightly faster than SOAP3-dp. The speed of MICA
can be scaled up almost linearly with additional cards.
When using three cards, MICA is ~14.1 times faster
than BWA-MEM. MICA'’s sensitivity is 3.1% and 0.47%
higher than BWA-MEM and SOAP3-dp, respectively.
We have also benchmarked 100 bp paired-end reads
[7] (PE100, ~49-fold). Interestingly, MICA’s acceleration
on PE150 is slightly more significant than on PE100. For
the latter, MICA is ~3.4 and ~9.9 times faster than
BWA-MEM when using one and three MIC cards,
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respectively. When processing many shorter reads,
MICA has a bottleneck in accessing the memory.

A. Simulated data comparison with other aligners.

We carried out simulated data test with short read simu-
lator Mason [9] to assess the accuracy and sensitivity of
MICA. We tested with 2 sets (100 bp and 150 bp) of 6M
[lumina-style paired-end (PE) reads with 500 bp insert
size from GRCh37 major build.

Bowtie2 [10], SeqAlto [11] and GEM [12] allow users
to sacrifice accuracy and sensitivity for speed with
switches. We applied “very-fast”, “sensitive”, and “very-
sensitive” switches to Bowtie2, “fast (-f)” to SeqAlto, and
“fast adaptive (—fast-mapping)”, “fastest (—fast-mapping =
0)” to GEM. We used indices with full suffix array (SA)
for SOAP3-dp. All parameters of MICA, SOAP3-dp and
SOAP3 were set to default, and parameters for other
aligners including BWAaln and CUSHAW?2 [13,14] were
set to favor the two read types and length. 13 sets of pro-
grams and parameters were compared in total.

In both 100 bp and 150 bp datasets, MICA is compar-
able to SOAP3-dp. MICA has advantage over other
tools with higher speed, higher sensitivity and lower
FDR results (Table 3 for 100 bp PE, and 150 bp table in
supplementary).

For 100 bp reads, MICA takes 178 seconds to align
6M read pairs, which is 16 seconds slower than SOAP3-
dp (due to the increasing time in loading the index), but
1.67 to 11.09 times faster than other tools. MICA’s sen-
sitivity is 99.60% which is 0.06% lower than SOAP3-dp
but 0.07-1.83% higher than other tools. MICA’s FDR is
0.40%, which is 0.07-0.79% lower than other tools except
being 0.06% higher than SOAP3-dp.

B. Production test on Tianhe-2 supercomputer.

Tianhe-2 is currently the champion of the Top500 list of
supercomputers. It has in total 16,000 computing nodes,
each equipped with two 6-core Intel E5-2692 v2 @ 2.20
Hz CPU, 64 GB main memory and 3 MIC cards. Each
MIC card has 57 cores and 8 GB on-board memory
with ECC enabled.

To test Tianhe-2 with the workload of a population
scale study, we used whole genome sequencing data of
45 CHB and 45 CHS samples (Supplementary Details)
from the 1000 genomes project; a sample had 64.68-fold
depth on average. In total, we had 932 lanes of 100 bp
paired-end reads with size varying from 1.82- to 12.7-
fold per lane.

The alignments of 932 lanes were carried out with 5
different settings. All alignment jobs were submitted
simultaneously using one node per lane, occupying 4660
nodes in total at the very beginning. The results are
shown in Table 4. 19 jobs failed to complete due to
node or card failure, thus excluded from calculation.



Page 6 of 8

Luo et al. BMC Bioinformatics 2015, 16(Suppl 7):510

http://www.biomedcentral.com/1471-2105/16/S7/5S10

(Y S671) (4 009) (Y 1S (Y sz Oy L)
%Y. S6 S 7€8'€S %8026 S T86'/L %ECL6 X16C S €SY'S X96'L S €608 S 6/8SL 86l olerL €8yl 00l3d
(Y 61'87) Yy 612 (4 007) (4s6D (Y 189)
%CETO S 99%'10L %1056 S 8/8'SC %856 X16C S €8l X/6'L  $8l90L S6l60c 8€/L €8°¢LL Slege 0513d
dn-sjess
paJied Ajiadoad sa10> 9  poadied Kuadosd paed | pasied Apadoid dn-sjeds spied € spied €  spied g spied g pied |
WIN-YME dp-€dvOsS VOIN PIod (W) siied peay jJo # (dgD) awnjop 19seleq

ejep [eyuawniddxa uo WIW-YMg pue dp-£dvVOS ‘VDIW JO 9duewiopdd *Z 3|qel



Page 7 of 8

Luo et al. BMC Bioinformatics 2015, 16(Suppl 7):510

http://www.biomedcentral.com/1471-2105/16/S7/5S10

191199 ay1 Jamo| 3y *,speas paubile ||y,/,speal paubije Ada1iodul, se palended st Yad o

191199 Yy Jaybiy ayy *,speas pajenwis ||y,/,speas paubije A13a110), se palendjed si AUAINSUSS

"wn buipeo| xapul pajewnsa snuiw dwn pasded 2303 Aq paie|ndjed 1o (wil Indino/indul pue Buissadoud synsal spnpul) sidublje sy Aq papiaoid Apdijdxs asem sawin Juswublie ayy

‘palendjed Jou sem xapul 9y buissadoid awil 9yl djIym pajewilsalapun aghew awil buipeo| Xapul aY] JUSWUOIIAUD Busal ayl Jo paads walsAs 3|1y yiomiau abesane ayy sI Ydiym ‘s

/9W 001 Aq papIaIp ‘xapul Jo 3zis [e301 3Y3 Aq pajejndjed aie VMG Pue ZMYHSND ‘7anmog Joy swi Buipeol xapul ay] ‘uondwnsuod swi buipeol xapul apiroid Apidijdxa sisubije WID pue 01)ybas ‘edv0s ‘dp-€dv0S ¢
*3NpoW Ju3Wubi[e Y} YUM JUSISISUOD Ul SPeRIYY ¥ UM UNJ SeM SNPOW UOISISAUOD 3] *,JeWIO) NYS O} MSAUOD, + Judwiublle, se pajendjed st W39 jo uondwnsuod awi juswublje ayy ,

Juswublfe Buunp ayded 3yl ysnjj [Im Klowaw 1soy ayy ueyy Jabie| syaselep I9aAdIMOH °,speal Y3| ubije, Buunp payded

DI9M S3|1} XSPUI IRy} UOSEdI By} 0} dNP PUOd3S | 3Je sajnpow ,adwes, pue speal 3ybu ubije, jo sswn Buipeo| xapur ay] -, 2dwes,+,speal Wybu ubie,+,speas Y| ublje, se pareindled st yMg Jo uondwinsuod awil dyy |

%C1L0 %L10 %.0°0 %EH0 %EH0 %010 %LE0 %€80 %820 %6£°0 %/L°0 %900~ - Hd
%S0 %150 %/%0 %€E80 %€E80 %080 %L20 %ECL %81l %611 %LLL %t€0 %0Y'0 % M4
%G 1°0- %CL°0- %00~ %€ 0- %910~ %0t 0- %CE0- %580~ %82 °0- %6£°0- %€8'L- %900 - Hd
%5Y'66 %8766 %ES66 %/ 166 %t 1'66 %0266 %866 %G5/'86 %C8'86 %1886 %LLL6 %9966 %09'66 % ANANISUSS
€0s'cl 8St'cl 0£€'8 650'LS 650'LS 881 /v el 085'66 681'¢6 8786 L/¥'06 €C9'L- - Hd
paublly
/88'19 w9'L9 71695 £V'66 £V'66 719'56 /6758 oL Lyl €LE'1pL Loyl GS9'8EL 195 0v vsL'sy #  Aposwoduy|
9/9¢- 9961~ ¥/9- 0Syee- 85¢- 80¢ vlve- orle- yee- 9G/-  99/9S¢- 80¢- - Hd
palied
T66'L66'LL TOL'L66'LL v66'866'LL  8LTLL6'LL OL¥'G66'LL 9/6'666'LL ¥ST'/66'LL 8TS966'LL  ¥hE666'LL  TLE'8E6'LL T06'Tr/LL 09V'666'LL 8996661 L # Apadoid
88¢Y- oce- L= 991 8€6'c- 06l 900'L- ¥85'L- ol - 0/06CL- Ll - Hd
SINEN
TTY'S66'LL ¥8Y666'LL €9/'666'LL  S/6'666'LL T/8'S66'LL 000'000CL ¥08'866'LL 9TT'866'LL  9¢6'666'LL  €9/'666'LL 0v/'0/8'LL [C8'666'LL 018'666'LL # paubily Wby
STeIVETN]
£y 1% 94 9¢ L [ 8t Se G¢ S el '8l 6'6C 99 yesd
Klowsy
194 94 94 9¢ 69 L e €€ €¢e €€ /1L Ll (4 TANN D) Bay
LSC 04 SLE €9l €8¢ 66'€ 6601 v€9 9ce6l 8C6 850 880 S6°0 PIo4
09¢+
[91+06  /91+8eC  9/l+661 €9¢!L €8¢ 66€  69€+0/E ¥€9 961 86 85 88 S6 D35 Juswublly
xopul
1+0v L+0v L+0v (04 9% 9% L+1+€S 8¢ 8¢ 8¢ 1A v €8 oS Buipeot
9t 8€'¢ SL'E /86 /8T SLE v/'8 60'S Sevl [4v4 00'L el 9’0 pI°S
pasde|3 $9DIN0SY
86¢ ot oly €0el 6/€ 54 PSlLL /9 v/61 996 el 9l 8LL oS |exol  |euoneindwiod
(089X19
0 0 0 0 0 0 0 0 0 0 l L 0 ‘2DINSP) NdO
(Mog6E-£! 2100
4 4 4 ¥ ¥ 4 4 4 ¥ 4 ¥ 14 L ‘peaiy)) Ndd  uoneinbyuod
(0 (9nndepe (spea4y3
:buiddeyy :buiddepy (3uswaubije (3sey (@AMISUDS ove
1sed) 1sed) 1sed) -A1ap\) -Kiap) dp  ‘pied DN
W3O N3O JNID TMYHSND ojybag  oyybas \YMg 7anmog  zanmog €dVOS  -€dVOS LIVDIW

‘uonjeinap paepuels dq gz ‘azis
uasul dq 00s ‘saseq dgo 'L
ndd ndo JIN ‘speas pua-paied dq 00L W9

speas pajejnwis pua-padied dq oL Huisn sia1dwesed pue swesboad jo syas €L uo uosuedwo) ‘g s|qeL




Luo et al. BMC Bioinformatics 2015, 16(Suppl 7):510
http://www.biomedcentral.com/1471-2105/16/57/510

Page 8 of 8

Table 4. Results of experiments on Tianhe-2 using 5 different settings

Setting MIC card used Output Format Finished lane Longest (sec) Mean (sec) Median (sec)
1 3 SAM 923 3,425 1,303 1,220
2 3 BAM 929 6,012 2,777 2,666
3 3 6-thread BAM 928 4,484 1,371 1,321
4 2 6-thread BAM 931 4,269 1,508 1475
5 1 6-thread BAM 930 6,915 2,943 2,879

Using 3 cards per node and SAM output, the mean time
consumption for 923 completed lanes is 1,303 seconds,
with the largest lane finished within an hour. By stack-
ing up the alignment jobs to minimize the idle time of
computing nodes involved, we anticipate that all 923
jobs could be finished in an hour using less than 400
nodes.

Using 3 cards and 6-thread BAM output, the mean
time consumption is about the same but the maximum
time consumption is ~18 minutes longer. Interestingly,
alignment using 2 cards is almost twice as fast as using
1 card, but using 3 cards is only slightly faster than
using 2 cards, since the computation was throttled by
the slow compression algorithm in the BAM output
module. Splitting the output into two or more files to
enable non-blocking parallel compression will help in
exploiting the full power of all three cards.
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