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Abstract

Background: Pairwise relationships extracted from biomedical literature are insufficient in formulating biomolecular
interactions. Extraction of complex relations (namely, biomedical events) has become the main focus of the text-
mining community. However, there are two critical issues that are seldom dealt with by existing systems. First, an
annotated corpus for training a prediction model is highly imbalanced. Second, supervised models trained on only
a single annotated corpus can limit system performance. Fortunately, there is a large pool of unlabeled data
containing much of the domain background that one can exploit.

Results: In this study, we develop a new semi-supervised learning method to address the issues outlined above.
The proposed algorithm efficiently exploits the unlabeled data to leverage system performance. We furthermore
extend our algorithm to a two-phase learning framework. The first phase balances the training data for initial
model induction. The second phase incorporates domain knowledge into the event extraction model. The
effectiveness of our method is evaluated on the Genia event extraction corpus and a PubMed document pool. Our
method can identify a small subset of the majority class, which is sufficient for building a well-generalized
prediction model. It outperforms the traditional self-training algorithm in terms of f-measure. Our model, based on
the training data and the unlabeled data pool, achieves comparable performance to the state-of-the-art systems
that are trained on a larger annotated set consisting of training and evaluation data.

Background
As biomedical literature on servers grows exponentially in
the form of semi-structured documents, biomedical text
mining has been intensively investigated in order to find
information in a more accurate and efficient manner. The
previous efforts have focused on recognition of entity
mentions, such as genes, proteins, diseases, or drug names
[1-6], and on extraction of pairwise relationships, such as
protein-protein interaction [7] and gene-disease associa-
tion [8]. The named entities recognized, and pairwise rela-
tionships extracted, are insufficient for understanding
biomolecular interactions [9]. Therefore, extraction of
complex relations (namely, biomedical events) has
received increasing attention. According to the BioNLP

series challenges [10-12], a biomedical event is formulated
as follows: an event has a trigger, a type and a set of argu-
ments. An element of the argument set has a role and can
be a protein mention or another event, depending on the
event type. For example, ‘RFLAT-1 activates RANTES
gene expression’ (PMID: 10023774) describes two events,
one is simple gene expression of RANTES and the other is
complex positive-regulation event which is caused by
RFLAT-1, anchored by ‘activates’ and has the gene expres-
sion event as its argument. The BioNLP GE’09 and
‘11 challenges target three subtasks addressing event
extraction at different levels of specificity: event detection,
event enrichment and negation, and speculation detection.
As solutions to the BioNLP challenges, many methods have
been proposed to predict biomedical events from text. The
solutions include rule-based and machine learning (ML)
approaches. Rule-based event extraction systems rely on a
rule set that is manually collected or automatically induced
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from training data [13-16]. The rule-based systems tend to
achieve high precision with low recall and to perform better
on prediction of simple events. To increase the recall, a
rule-generation process has to process a huge amount of
text to collect the rule set with high coverage. Since most
computation is for matching pre-generated rules against
text, such systems show good performance in terms of
computation efficiency.
An ML-based event extraction system sees the task as a

classification problem. The proposed approaches can be
divided into three groups, depending on how recognition
of the event trigger and argument is designed. The sys-
tems belonging to the first group are based on a text-
mining pipeline approach [17-20]. Björne et al. [17] first
adopted the pipeline approach in their Turku event
extraction system. The first version of the Turku system
consists of three stages: trigger detection, edge detection,
and event duplication. The first two stages solve ML clas-
sification problems, and the last relies on a rule set. Miwa
et al. [18] later improve the pipeline approach in their
EventMine system by introducing an additional classifica-
tion model for the rule-based event duplication task. In
general, each stage in the extraction pipeline solves
multi-class and multi-label classification problems based
on an imbalanced dataset with a high dimensional feature
space. A linear support vector machine (SVM) with one-
versus-rest label decoding has been a main tool for this.
For this group of approaches, errors made in a former
step propagate into subsequent steps, introducing an
error cascade. To overcome this issue, the second ML-
based group uses global models that solve the whole task
at once [21,22]. Riedel et al. [21] encoded graph struc-
tures of events using a set of binary variables representing
the type of token nodes and the relations between them.
The state of these variables is predicted by maximizing
the global likelihood of integer linear programming. This
joint model achieves good performance, but could be
overly complicated for finding optimal states because it
has to include every combination of tokens in the search
space. To reduce the search space, they use a dictionary
of triggers from the training data. This might in turn
decrease the overall recall. McClosky et al. [22] aimed at
solving the task as dependency parsing by exploiting glo-
bal properties of event structures. The third ML-based
group combines the global and pipeline approaches by
using a pairwise model [23]. The pairwise model jointly
predicts the trigger and the argument of an event as a
pair of text parts, in contrast to the pipeline approach.
However, such a model still has subsequent steps for
prediction of events with more than one argument, and
is unable to extract nested events.
There are two critical issues that are seldom dealt with

by the aforementioned systems. First, training data is
highly imbalanced. From traditional sampling [24]

(under-sampling or over-sampling) to active learning
[25], solutions have been tooled to induce prediction
models on such imbalanced datasets [26]. In Björne et al.
[27] and the EventMine system, a simple class weighting
method with an SVM [28] is used. Second, the supervised
models trained on only a single annotated corpus can
limit system coverage and scalability. Besides merging
multiple annotated corpora into one [29], semi-super-
vised learning (SSL) is applied to overcome this issue
[30]. SSL has received significant attention for two rea-
sons. First, annotating data for training is time- and
labor-intensive. For instance, annotating the Genia event
corpus consisting of 9372 sentences required 1.5 years
with five part-time annotators and two coordinators [31].
Second, because SSL exploits unlabeled data, the accu-
racy of classifiers is generally improved.
In this study, we combine the approaches of active

learning and self-training and develop a new semi-super-
vised learning method to address the issues outlined
above. Our algorithm is built upon the foundation of sig-
nificance space construction [32]. The training data are
augmented by a new example set from unlabeled data, so
model learning with them captures patterns from domain
background. The new example set is formed based on its
significance and confidence score for self-labelling.
Furthermore, we extend the algorithm to a two-phase

learning framework. The first phase balances the train-
ing data for initial model induction, whereas the second
phase incorporates domain knowledge into the model
by querying the example set from the unlabeled data. In
both phases, the model is built in an online fashion. We
evaluated the proposed method on the GE’11 corpus.
First, we compared the method against the approaches
used to solve the data imbalance problem. Our method
can identify a small subset of the majority class that is
sufficient for building a well-generalized prediction model.
Second, we contrasted it against the traditional self-train-
ing algorithm as an evaluation of the semi-supervised
learning perspective. Finally, we investigated the event
extraction system performance, relying on our proposed
method to report the different values of the evaluation
measures along with the GE’11 shared task entries. Our
model, which learned only on the training data, achieves
comparable performance to the state-of-the-art systems
that are trained on both GE evaluation and training data.

Methods
We combine the approaches of active learning and self-
training to develop a new semi-supervised learning
method, which we call self-training in significance space
(STSS). An STSS-based two-phase learning framework is
also proposed in this study, in order to leverage system
performance and to solve the data imbalance issue by
exploiting unlabeled data.
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Text preprocessing and feature extraction
Text preprocessing where text data is cleaned and pro-
cessed via natural language processing (NLP) tools is a
preparatory task for the feature extraction step. We adopt
the Turku system [27] for preprocessing and feature
extraction. Turku allows extracting a rich number of fea-
tures, and is well tuned for processing PubMed abstracts
for the purpose of event extraction.
In preprocessing, the text data is cleaned by removing

non-standard characters, and is then processed with
NLP tools to have its sentences split and parts of speech
(POS) tagged and parsed. We use the Genia Sentence
Splitter (GeniaSS) [33] and the Charniak-Johnson parser
[34] with McClosky’s biomedical parsing model [35].
The GeniaSS relies on the maximum entropy models
and is optimized for bio text data. McClosky’s model
was built with self-training, incorporating the domain
knowledge from PubMed abstracts.
In addition to the preprocessing step, we recognize bio-

medical named entities in the unlabeled text. We use the
Bayesian finite state model (BFSM) with the Bayesian
classifier from our previous study [36] and the BANNER
tool [37] for biomedical named entity recognition, in
order to improve recognition accuracy. Our named entity
recognition system solves the name boundary issue and
achieves a high precision, whereas the BANNER tool uti-
lizes a sequence labeling model, conditional random
fields, and shows reliable performance on the task.
Once a graph representation of the full dependency

within a sentence is obtained, we extract features for the
event extraction model with the Turku system. The fol-
lowing four different feature sets are extracted.
Token features: orthographic features, POS tags, base

words with the Porter stemmer, and character n-grams
(n = {1, 2, 3})
Sentence features: the number of entities and bag-of-

words
Sentence dependency features: n-grams of the words

on the shortest path between two entities, and features
based on triggers present
External resource features: WordNet hypernyms [38],

and a similarity measure against lexicons of biomedical
terms.

Self-training in significance space of support vectors
The proposed semi-supervised learning method relies on
the concept of significance space, which could be con-
structed by the different approaches from the original train-
ing data. Significance space with an SVM classifier depends
on the feature space of the support vectors (SVs). The flow
chart of the proposed method is shown in Figure 1.
First, the original training set is used to build the base

classifier, the SVM1 model. STSS then forms the signifi-
cance training set, S, by labeling the training examples

that are SVs of SVM1 for significance and the remaining
examples of the training set for non-significance. In the
next step of the current round, the SVM2 model is trained
via S in order to query the significant subset, U, from
unlabeled or labeled data. Different usages of STSS in the
learning framework are discussed in the next section The
SVM2 model can be applied to either labeled data, to
select most informative labeled examples, or to unlabeled
data, to let the SVM1 model give class labels to the infor-
mative subset. If the SVM model classifies the significance
examples of the unlabeled data, then the confidence-based
filtering module is employed to select the confidently
labeled examples, Lc, with a threshold criterion. We inves-
tigate various instance selection strategies, most of which
are based on the probability outcome from the classifica-
tion model:

1. Top-k example, e.g. the labeled instances are
ranked according to the confidence score, and the
top-k number of examples from the top are added
to the training set
2. Top-k percentage, e.g. the labeled instances are
ranked according to confidence score, and the k per-
centage of all instances from the top are selected
3. Examples satisfying a confidence threshold, e.g. a
set of examples where probability outcomes for a
particular class are higher than a threshold
4. Randomly selected examples

The first and third strategies can be seen as a hard
threshold, whereas the second strategy defines flexible
thresholds because the number of examples to be selected
depends on the total number of labeled examples at the
moment.

STSS-based two-phase learning framework
We propose a two-phase learning framework based on the
STSS algorithm to solve the imbalanced data problem,
while exploiting unlabeled data efficiently. The first phase
solves the data imbalance problem by selecting only a
small and informative subset of the majority class. First
the original training data, D, is partitioned into two parts:
Di to be initial training data, and Du to be used as the
unlabeled data (Di << Du) for the STSS algorithm. Then,
the STSS runs to build the SVM1 model while drawing a
balanced subset of the original training data: Ds. Since
each instance in the Du set already has a true class label,
the self-labeling schema with SVM1 is not utilized for the
first run of the STSS (the STSS run of Phase I).
The second phase is designed to exploit unlabeled data in

order to improve the performance of the SVM1 model out-
putted by the previous stage. The SVM1 model, a balanced
subset of training data Ds and previously prepared unla-
beled data U, is the input for this phase. We simply run the
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STSS and update the SVM1 model with the self-labeled
informative examples chosen from the unlabeled data. For
each running iteration of the STSS, the SVM1 model is
updated and stored for further evaluation.

Base classifier
The dataset extracted from a biomedical event corpus
simply becomes high-dimensional, having hundreds of
thousands of attributes, and needs a solution to the
multi-label and multi-class classification problem. An
SVM classifier with a linear kernel is a benchmark in
classifying such high-dimensional data.
The linear SVM classifier is well suited to a binary clas-

sification problem, and thus requires additional wrapper
methods to deal with the multi-label and multi-class clas-
sification task. We use a one-versus-rest approach with
linear SVM. The one-versus-rest approach builds the
same number of classifiers as the classes in the dataset,
treating each classifier as an individual component to dis-
criminate between the instances of one class and the
instances of other classes, and combines the classifiers in
a simple voting schema to make the class decision on a
test instance. In the experiment, we train the classifiers in
a parallel manner, running a per-core learning process to
speed up the model induction process.

Results
We evaluated the proposed method on the GE’11 data-
set by comparing its performance with state-of-the-art
systems. First, we compared the method against the
approaches used to solve the data imbalance problem.
Second, in order to observe the effectiveness of the
method from the semi-supervised learning perspective,
we contrasted it against the traditional self-training algo-
rithm. These comparisons were accomplished by using a
dataset generated for the edge detection subtask. Finally,
we investigated the event extraction system perfor-
mance, relying on our proposed method to report the
different values of the evaluation measures along with
the GE’11 shared task entries. Our source code for the
algorithm, the two-phase learning framework, and the

other benchmarks are available at https://bitbucket.org/
tsendeemts/stss.

Text corpus and dataset
Because the STSS method is a semi-supervised learning
method and is able to exploit raw text data, we prepared
a PubMed document collection in addition to the GE’11
dataset. Therefore, we used the GE’11 dataset as labeled
data and the PubMed collection consisting of around
1,400,000 abstracts as unlabeled data for this experi-
ment. The GE’11 dataset is a super-set of the GE’09
dataset [11] and is split into training, development and
testing sets, consisting of 800 abstracts (+5 full papers),
150 abstracts (+5 full papers), and 260 abstracts (+4 full
papers), respectively. We applied the training set for
model induction and the development set for evaluation
of models for the subtasks throughout the experiment
in this study. Finally, the test set was used to report the
whole-system performance based on the STSS method.
We adopted the pipeline approach, so the three differ-

ent datasets (for trigger detection, edge detection or
event construction) were extracted from the original set.
Table 1 provides the class label distribution over the
instances in the training set for edge detection. The first
column and the second column contain the class label
representing trigger-entity connection and the number of
instances belonging to every class, respectively. The third
column reports the class imbalance ratio to demonstrate
one of our main concerns in this study: that the event
extraction datasets are highly imbalanced. In fact, event
detection and trigger detection are considered to be chal-
lenging classification problems in machine learning,
caused by the data imbalance nature and the high dimen-
sionality. The trigger detection dataset extracted in this
experiment consists of 19,614 positive examples (belong-
ing to 31 different problem-specific classes) and 141,564
negative examples and has 412,753 features.

STSS for the imbalanced data problem
We compared the performance of the STSS method
against the baseline approaches, under-sampling and the

Figure 1 The flow chart of the STSS method.
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class weighting methods on the edge detection dataset.
The class weighting method is tightly integrated with
SVM classifiers and has been used previously in many
event extraction systems [17,18,23].
Since there are only three instances of the Site-Theme

class in the training dataset, we removed this class and
reduced the number of distinct class labels to 7. The dif-
ferent settings for each baseline were evaluated on devel-
opment to tune the corresponding hyper-parameters, and
the best setting giving the highest accuracy was selected.
We under-sampled the negative examples so that the class
distribution remained in ratios of 1/3, 1/4, 1/5 and 1/6,
and the best sampling reported in this experiment was the
dataset with a ratio of 1/4. For the class weighting run,
every class received a weight that is inversely proportional
to the class frequency; therefore, the minor classes
received a higher score than the major classes. The second
strategy among the instance selection strategies defined in
Section 2.2 worked slightly better than the others in our
STSS implementation.
The overall performance of the different approaches is

shown in Table 2. As we expected, STSS performed best
on this imbalanced dataset, followed by the class weighting
method. Surprisingly, none of the methods were able to
classify instances of the AtLoc class, showing 0.0% for the
f-measure. This might be due to non-representative fea-
tures for the class. We used the SVM classifier with a linear
kernel that is able to train on the dataset with a large num-
ber of attributes, even though arbitrary classifiers could be
applied to the under-sampled and class-weighted datasets.
Finally, we investigated the data efficiency of STSS by

comparing original and STSS-training datasets constructed
especially for one-versus-rest SVM model induction.
The STSS training dataset is an informative subset of

the original, effectively sampled through the first phase of
the STSS-based two-phase learning. We started the
learning process by feeding all the positive examples with
the same number of randomly chosen negative examples,
and STSS proceeds further by sampling an informative
set of the negative examples in every iteration.

The comparison is shown in Table 3 which reports
the statistics for the original and the STSS training data-
sets. Sampling the informative subset dramatically
increases the imbalance ratio (an imbalance ratio close
to 1.0 is preferred). We can see that the only a small
subset of the negative examples in the original dataset
can represent the others, and our STSS method can
identify them effectively. For example, for the Cause
class, STSS sampled 27,505 negative examples out of the
3,660,458 examples.

Comparison with traditional self-training
In the second phase of the STSS-based learning frame-
work, the STSS algorithm was employed on both labeled
and unlabeled data, acting as a typical semi-supervised
learning method. Since STSS could be viewed as a varia-
tion of self-training, we compared our method with tra-
ditional self-training.
We ran the methods five times by using the edge

detection training dataset for training and the develop-
ment dataset for evaluation, and reported the best per-
formance of both methods in contrast.
The overall performance of the two methods is shown

in Table 4. We see that our method achieves a higher
recall value without losing precision, improving the
f-measure in general. The STSS algorithm outperforms
self-training by 14.18% for f-measure in the Cause-
Theme class. Since the dataset is highly imbalanced, gen-
eral measurements like precision, recall, and f-measure
reported a value of 100% for the negative class.

Performance Evaluation
In this section, we evaluated the performance of the
event extraction system based on the proposed method
and compared it with GE’11 entries. We trained the
classification models of the system with the GE’11 train-
ing corpus and then tested the system performance with
the GE’11 test corpus (Task 1).
Table 5 shows the results of the extraction method

evaluated on the test dataset using the Approximate
Span/Approximate Recursive matching criteria. The eva-
luation results of the abstract and full text documents are
separately reported to show the type of document on
which our method performs better. Our method tends to
perform better on full-text documents. This can also be
seen from Table 6 where we compare the evaluation
results with other GE’11 entries. Our results in terms of
f-measure are slightly higher than Turku’s result on the
full-text documents.
The overall evaluation results are closer to that of Turku

because we injected the classification models trained using
STSS into Turku’s pipeline, sharing the same preproces-
sing and feature extraction stages. However, our STSS
model uses the training dataset and the unlabeled data,

Table 1 Class distribution in the training set for edge
detection.

Class label Number of instances Imbalance ratio

AtLoc 48 1:76282

Cause 1117 1:3277

Cause-Theme 6 1:610261

Site 425 1:8614

Site-Theme 3 1:1220524

Theme 9246 1:395

ToLoc 50 1:73231

Negative 3650680 1:0.002
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whereas the Turku model uses a larger annotated set con-
sisting of the training and evaluation datasets.

Event extraction-based applications
Event extraction from biomedical text benefits a broad
range of applications in systems biology, namely litera-
ture searching, interaction network generation and path-
way construction. Biomedical events extracted from
literature are indexed to support a deeper semantic
search in comparison to traditional keyword-based
search engines. Thus, such a search system can provide
results with a high precision to a user. BioContext [39]
and MEDIE [40] systems are example of event-based
search engines. MEDIE has an intelligent interface for
retrieving biomedical events referenced with their litera-
ture from the entire MEDLINE. In MEDIA, the user
can even use a partial query to have a rich number of
results and browse through them. Like MEDIE, BioCon-
text integrates a several different text mining tools,
including named entity recognition, entity normaliza-
tion, full dependency parsing and event extraction to
build up. BioContext system processed 10.9 million
MEDLINE abstracts and 234 000 full-text articles and
made 11.4 million distinct events searchable.

One of the applications based on event extraction is
the generation of interaction network. Sufficient accu-
rate event graphs can be used for inferring complex reg-
ulatory relationship networks and other biologically
relevant tasks [27]. Björne et al. [27] applied their
Turku system to 1% of MEDLINE and constructed con-
nected components of the event graph. While there is a
wide range of application areas where the event extrac-
tion can be useful, many issues remained to be solved in
practice. The system performance is still lower in terms
of F-measure. The best performing system for GE’11
challenge task showed 53.14% F-measure. Another issue
to be addressed is computational requirements. ML-
based systems require a large computation time, mostly
devoted by full dependency parser in preprocessing step.
Björne et al. [27] reported that their Turku system took
98 processor hours (411 processor days for the entire
MEDLINE) to extracts events from only 1% of MED-
LINE. Even using a cluster of 100 processors, BioCon-
text required 2-3 months to process the full document
collection [39]. We used a cluster of 12 processor cores,
4 of which for ML example construction from unlabeled
data and the others for training of SVM models. It took
~3 months to complete the experiments.

Table 2 Comparison of solutions to the data imbalance issue on the edge detection dataset.

Class label Precision (%) Recall (%) F-measure (%)

Under-sampling Class weighting STSS Under-sampling Class weighting STSS Under-sampling Class weighting STSS

AtLoc 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Cause 100.0 42.24 47.36 4.48 25.95 43.67 8.51 32.14 45.44

Cause-Theme 100.0 63.07 76.4 40.47 63.32 50.21 57.62 63.19 60.59

Site 0.0 20.78 29.3 0.0 12.37 33.21 0.0 15.5 31.13

Theme 53.87 60.91 57.16 42.21 62.37 90.83 47.33 61.63 70.16

ToLoc 26.91 57.39 48.2 99.74 54.33 96.11 42.38 55.81 64.2

Negative 89.66 92.35 100.0 100.0 100.0 100.0 94.54 96.02 100.0

Table 3 Data efficiency of the STSS algorithm.

Class label Original training dataset STSS training dataset (Ds)

Number of instances Imbalance ratio Number of instances Imbalance ratio

AtLoc Pos: 48
Neg: 3661527

1:76282 Pos: 48
Neg: 128761

1:2682

Cause Pos: 1117
Neg: 366045

1:3277 Pos: 1117
Neg: 27505

1:24

Cause-Theme Pos: 6
Neg: 3661521

1:610261 Pos: 6
Neg: 6000

1:1000

Site Pos: 425
Neg: 36661150

1:8614 Pos: 425
Neg: 36627

1:86

Theme Pos: 9246
Neg: 3652329

1:395 Pos: 9246
Neg: 30915

1:3

ToLoc Pos: 50
Neg: 3661525

1:73231 Pos: 50
Neg: 167120

1:3342

An imbalance ratio close to 1.0 is preferred.
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Conclusions
In this study, we proposed a new semi-supervised
method and its two-phase framework to build a biome-
dical event extraction model with imbalanced data. Our
method iteratively constructs significance space from
training data and augments it with a self-labeled exam-
ple set that falls into that space. Based on this online
process, our learning framework in its first phase forms
a balanced subset of the original data for initial model
induction, and then in the second phase, incorporates
domain knowledge from unlabeled data into the model.
Consequently, the framework not only solves the data
imbalance problem, but also exploits the unlabeled data
to leverage system performance.
Experimental results demonstrated the efficiency of

our method from multiple perspectives. Our method
can identify a small and sufficient subset of the majority
class. It outperforms the traditional self-training algo-
rithm in terms of f-measure. Our method builds a well-

generalized prediction model with a small training set
and additional unlabeled data. The proposed method
can be applied to other real-world applications where
training data might be small and imbalanced, and unla-
beled data is less expensive to collect.
For future work, we will explore representation learn-

ing to integrate external resources into biomedical event
extraction. We will also investigate methods to avoid
complex preprocessing (e.g. full dependency parsing)
and to address error cascading. Deep learning methods
might help in this.
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AtLoc 0.0 0.0 0.0 0.0 0.0 0.0

Cause 47.36 49.21 43.54 43.61 45.36 46.24

Cause-
Theme

76.2 67.85 53.72 80.6 63.01 73.67

Site 29.82 29.25 33.2 33.0 31.4 31.01

Theme 57.11 57.72 90.33 90.92 69.97 70.61

ToLoc 48.42 48.94 96.42 96.68 64.46 64.98

Negative 100.0 100.0 100.0 100.0 100.0 100.0

Table 5 Evaluation results of the test dataset.

Event class Abstract Full text

R P F R P F

Gene_expression 73.68 78.68 75.78 81.43 74.51 77.82

Transcription 53.28 65.18 58.63 35.14 56.52 43.33

Protein_catabolism 42.86 85.71 57.14 100.00 100.00 100.00

Phosphorylation 82.96 79.43 81.16 90.00 93.75 91.84

Localization 25.86 75.00 38.46 82.35 70.00 75.68

SVT-TOTAL 64.97 76.65 70.33 78.18 75.63 76.88

Binding 45.24 49.84 47.43 37.50 31.58 34.29

EVT-TOTAL 60.50 70.24 65.00 67.11 62.39 64.66

Regulation 29.55 41.95 34.68 27.66 34.21 30.59

Pos_regulation 42.12 50.49 45.92 38.04 48.61 42.68

Neg_regulation 44.33 48.98 46.54 31.25 40.54 35.29

REG-TOTAL 40.41 48.83 44.22 34.99 44.69 39.25

ALL-TOTAL 50.06 59.33 54.30 48.31 53.43 50.74

P: Precision, R: Recall, F: F-measure.

Table 6 Performance comparison with GE’11 entries.

System Abstract Full text

R P F R P F

UMass[21] 48.74 65.94 56.05 47.84 59.76 53.14

Turku [27] 50.06 59.48 54.37 48.31 53.38 50.72

MSR-NLP [20] 48.52 56.47 52.20 44.71 57.57 50.40

Concord U [13] 43.09 60.37 50.28 48.94 50.77 49.84

Ours 50.06 59.33 54.30 48.31 53.43 50.74

P: Precision, R: Recall, F: F-measure.
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