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Abstract

Background: T-cells are key players in regulating a specific immune response. Activation of
cytotoxic T-cells requires recognition of specific peptides bound to Major Histocompatibility
Complex (MHC) class | molecules. MHC-peptide complexes are potential tools for diagnosis and
treatment of pathogens and cancer, as well as for the development of peptide vaccines. Only one
in 100 to 200 potential binders actually binds to a certain MHC molecule, therefore a good
prediction method for MHC class | binding peptides can reduce the number of candidate binders
that need to be synthesized and tested.

Results: Here, we present a novel approach, SYMHC, based on support vector machines to
predict the binding of peptides to MHC class | molecules. This method seems to perform slightly
better than two profile based methods, SYFPEITHI and HLA_BIND. The implementation of
SVMHC is quite simple and does not involve any manual steps, therefore as more data become
available it is trivial to provide prediction for more MHC types. SYMHC currently contains
prediction for 26 MHC class | types from the MHCPEP database or alternatively 6 MHC class |
types from the higher quality SYFPEITHI database. The prediction models for these MHC types are
implemented in a public web service available at [http://www.sbc.su.se/svmhc/].

Conclusions: Prediction of MHC class | binding peptides using Support Vector Machines, shows
high performance and is easy to apply to a large number of MHC class | types. As more peptide
data are put into MHC databases, SVMHC can easily be updated to give prediction for additional
MHC class | types. We suggest that the number of binding peptides needed for SVM training is at
least 20 sequences.

Background

As the genome projects proceed, we are presented with an
exponentially increasing number of known protein se-
quences. Sequences from pathogens provide a huge
amount of potential vaccine candidates, as the activation
of cytotoxic T-cells requires recognition of specific pep-

tides bound to Major Histocompatibility Complex
(MHC) class I molecules (for humans the term Human
Leukocyte Antigens, HLA, is often used instead of MHC).
MHC-binding peptides (MHC-peptides) are also poten-
tial tools for diagnosis and treatment of cancer [1]. How-
ever, it is estimated that only one in 100 to 200 peptides
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actually binds to a particular MHC [2]. Therefore, a good
computational prediction method could significantly re-
duce the number of peptides that have to be synthesized
and tested.

Prediction of MHC-peptides can be divided into two
groups: sequence based and structure based methods. Al-
lele specific sequence motifs can be identified by studying
the frequencies of amino acids in different positions of
identified MHC-peptides. The peptides that bind to HLA-
A*0201 are often 9 amino acids long (nonamers), and fre-
quently have two anchor residues, a lysine in position 2
and a Valine in position 9 [3]. This type of sequence pat-
terns has been used as a simple prediction method [4]. Be-
sides the anchor residues, there are also weaker
preferences for specific amino acids in other positions.
One method to include this information is to use a pro-
file, where a score is given for each type of amino acid in
each position [5]. The scores can be calculated from ob-
served amino-acid frequencies in each position or be set
manually. The sum of the scores for a given peptide is then
used to make predictions. One frequently used profile
based prediction method is SYFPEITHI [6], which is freely
available as a web service at [http://www.syfpeithi.de/].
The matrices in SYFPEITHI were adjusted manually, by as-
signing a high score (10) for frequently occurring anchor
residues, a score of 8 to amino acids that occur in a signif-
icant amount and a score of 6 to rarely occurring residues.
Preferred amino acids in other positions have scores that
range from 1 to 6 and amino acids regarded as unfavora-
ble have scores ranging from -3 to -1. SYFPEITHI predic-
tion can be done for 13 different MHC class I types.
Another profile based MHC-peptide predictor is
HLA_BIND at [http://bimas.dcrt.nih.gov/molbio/
hla_bind/]. This method estimates the half-time of disso-
ciation of a given MHC-peptide complex [7]. HLA_BIND
provides prediction for more than 40 different MHC class
I types. It has been shown that profile based methods are
correct in about 30% of the time, in the sense that one
third of the predicted binders actually bind [8].

A profile based method does not take into account corre-
lations between frequencies in different positions, neither
they consider information from peptides that do not
bind. This information can be used by machine learning
methods [9]. Prediction of MHC-peptides has been made
by using machine learning approaches such as artificial
neural networks [10] and hidden Markov models [11].
Gulukota et al. (1997) [8] showed that one advantage of
machine learning algorithms compared to profile meth-
ods seems to be that they have a higher specificity. This is
possible due to the inclusion of non-binding data in the
training. A machine learning approach extracts useful in-
formation from a large amount of data and creates a good
probabilistic model [9]. In the case of MHC-peptide pre-
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diction, a data set of known binders and known (or sup-
posed) non-binders is used. This set is then used to build
a model that discriminates between binding peptides and
non-binding peptides. This model can then be used to
predict whether a novel peptide binds or not. Brusic re-
ported a total accuracy of 88% on predictions for the
mouse MHC H-2K9, using an artificial neural networks
and hidden Markov models have been reported to per-
form 2-15% better than artificial neural networks
[11,12].

Structural approaches for prediction evaluate how well a
peptide fit in the binding groove of a MHC molecule. A
peptide is threaded through a structural template to ob-
tain a rough estimate of the binding energy. The energy es-
timation is based on the interactions defined in the
binding pocket of a particular MHC molecule [13]. To our
knowledge no comparisons of the performance between
structural and sequence based methods has been pub-
lished. Obviously, a structural approach is limited to
MHC types with a known structure. However, the advan-
tage of a structural approach is that one known structure
alone might be sufficient for creating a prediction model.

Results and Discussion

The amount of known binding data for different MHC
molecules varies significantly. For some MHC molecules
only a few MHC-peptides are known, while for others,
there are several hundred verified binders. Since all ma-
chine learning methods need a sufficient amount of data
for training, we investigated the number of known bind-
ers needed for training, using three examples with a large
set of known binders. A varying number of training exam-
ples was tested using the nonamers in MHCPEP binding
to HLA-A*0201, HLA-A3 and HLA-B*2705. The ratio of
positive/negative examples was kept constant at 1:2. The
test sets for each of the three HLA types consisted of 20
binders and 40 non-binders, unrelated from the training
sets. The Mc for the test set was calculated for each size of
the training set. A significant improvement of Mc was ob-
served when the size of the training set was increased up
to about 20 MHC-peptides, see figure 1. Further, a smaller
improvement was observed for up to 50 peptides. From
the similar behavior of these three examples we conclud-
ed that it seemed necessary to include at least 20 known
peptides for successful predictions. This resulted in that
the current version of SVMHC can make predictions for
26 different MHC molecules, using MHCPEP data. If SYF-
PEITHI data was used prediction could only be done for 6
different MHC molecules.

The overall performance of SVMHC was compared to SYF-
PEITHI and HLA_BIND for the six MHC types common
between the methods. In Table 1 it can be seen that SVM-
HC in general performs slightly better than SYFPEITHI
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Performance of SVMHC for the MHC type HLA-A*020l,
HLA-A3 and HLA-B*2705, measured by the Matthews corre-
lation coefficient, Mc, versus the number of peptides used for
training. For all sizes of the training-set the test-set was iden-
tical and no part of the test-set was contained in the training-
set.
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Specificity/sensitivity plots for SYMHC HLA_BIND and SYF-
PEITHI. Sensitivity is defined as the number of correctly pre-
dicted binders (TP) found at a given cutoff, divided with the
total number of binders, i.e. Sens = TP/(TP+FN), where FN is
the number of . The specificity is defined as the fraction of
the hits above this cutoff that is correct, i.e. Spec = TP/
(TP+FP). It can be seen that the sensitivity of SYMHC is
higher than of SYFPEITHI and HLA_BIND at any specificity.

and HLA_BIND. SVMHC correctly identified 95% of the
peptides, while SYFPEITHI and HLA_BIND only classified
91% and 87% of the peptides correctly. In figure 2, it can
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also be seen that 90% of all MHC-peptides can be identi-
fied at a specificity of 90% by SVMHC, while this sensitiv-
ity is only reached at a specificity of 75% by SYFPEITHI
and at 50% for HLA_BIND. It seems as if the hand-tuned
profiles from SYFPEITHI performs slightly better than
HLA_BIND and in agreement with earlier studies machine
learning based methods, such as SVWMHC, show a higher
specificity than profile based methods [8]. When studying
the performance of the individual alleles it can be seen
that in five of these cases SVMHC show the best perform-
ance, only for HLA-B*8 HLA_BIND performs slightly bet-
ter. HLA-B*8 is also the allele with the lowest number of
known binders.

In addition to the overall performance we have studied
the performance of all MHC classes in SVMHC, see table
3. It can be seen that the prediction quality varies between
MC = 0.59 and 1.0. The worse predictions are for two da-
tasets with few data-points, decamers for HLA-A2 and
HLA-A11.

Finally, we tested SVMHC by performing a prediction for
four proteins with recently identified known MHC-pep-
tides. All possible binding nonamers were run through
the predictors and a ranked list of candidate binders was
produced from the output (the SVMHC models used were
trained on SYFPEITHI data). In table 2 it can be seen that
for all four proteins SVMHC ranks the known binders
higher than the other two methods. This also indicates
that fewer non-binders are given high scores when using
SVMHC.

This example further supports the suggestion that ma-
chine learning methods might improve the specificity
over profile based methods. However, the increase over
SYFPEITHI, seems quite marginal and the major advan-
tage of SVMHC might be that it (a) contains more MHC-
types, (b) the scores are comparable between different
MHC types (c) a slightly higher specificity.

Conclusions

Here, we present a novel approach based on support vec-
tor machines to predict the binding of peptides to MHC
class I molecules, SVMHC. This method seems to perform
slightly better than profile based methods. Most impor-
tantly the scoring is more comparable between different
MHC types and therefore provides a higher overall specif-
icity. Moreover, the implementation of SVMHC was done
in such way that so that it will be easy to update when new
binding peptides are identified. Better methods for purifi-
cation and sequencing of MHC-binding peptides are de-
veloped all the time, giving more accurate databases.
Therefore, the use of more "high quality" data will in-
crease the performance of SVMHC prediction in the fu-
ture, and predictions of a larger number of MHC-I classes
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Table I: Comparison between SVMHC, SYFPEITHI (SYF) and HLA_BIND (HLA) of the six alleles common between them.

Dataset Mc percentage correct predictions
MHC Length Size SVMHC SYF HLA SVMHC SYF HLA
Overall - - 0.85 0.75 0.62 95% 91% 87%
HLA-A*0201 9 113 0.78 0.77 0.77 90% 89% 89%
HLA-A*0201 10 40 0.70 0.61 0.61 87% 80% 83%
HLA-AI 9 28 0.96 0.93 0.96 98% 97% 98%
HLA-A3 9 73 0.80 0.73 0.71 91% 86% 84%
HLA-B*8 9 25 0.79 0.79 0.82 91% 91% 92%
HLA-B*2705 9 29 1.00 0.92 0.93 100% 95% 97%

The tables shows the MHC-type, the length of the binding peptides, the number of experimentally verified binders, the Matthew correlation coeffi-

cient (Mc) and the percentage correct predictions.
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Figure 3
The dependency of Matthew correlation coefficient on the
reduction level for two HLA alleles (HLA-A*0201 and HLA-
A3). The reduction level is measured as the maximum
number of allowed identical measures between two peptides
in the set.

should also be available. SVWMHC currently contains pre-
diction models for 26 MHC class 1 types from the MH-
CPEP database and 6 MHC class I types from the
SYFPEITHI database. The prediction models for these
MHC types are implemented in a public web service avail-
able at [http://www.sbc.su.se/svmhc/].

Methods

This paper presents a support vector machine based meth-
od (SVMHC) to predict peptides that bind MHC class 1
molecules. Support vector machines are a class of ma-
chine learning methods that recently has been applied for

classification of microarray data, protein structure predic-
tion and other biological problems [14-16]. In prelimi-
nary studies, it was indicated that support vector
machines performed better than neural networks for
MHC-peptide predictions. SVMHC is based on the sup-
port vector machine package SVM-LIGHT [17].

Support vector machines

A full coverage of the use of SVM for pattern recognition
is given by Vapnik [18], but some basic concepts are intro-
duced here. Lets assume that we have a series of examples
(orinputvectors) X; € Rd(i=1,2 ..., N) with correspond-
inglabelsy; € {+1,-1} (i=1, 2, ..., N). In the case of MHC
class 1 binding peptides, x; corresponds to the amino
acid sequence of the peptide and y; (+1 or -1) represents
binder/non-binder. The amino acid sequence of a peptide
is represented by sparse encoding [9].

This task is carried out by (i) mapping of the input vectors

X; into a high dimensional feature space ®(X)e H and
(ii) construction of an optimal separating hyperplane
(OSH) in the new feature space. The OSH is the hyper-
plane with the maximum distance to the nearest data
points of each class in the feature space H. One of the
most central points in using SVM is the choice of mapping
¢ (), which is defined by a kernel function K(X;, Xj ).
The decision function used by SVM can be written:

N
f(X)ZSgH zyi(li'K(J_Ci,Ej‘f'b) (1)
i=1

The coefficients a; are given by the solution of the quad-
ratic programming task: Maximize
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Table 2: Performance of SVMHC for different HLA alleles, using MHCPEP- or SYFPEITHI-data.

MHC Length Size Mc Kernel

Predictions using MHCPEP

HLA-AI 9 28 0.95 lin
HLA-A*1 101 9 40 0.74 poly
HLA-AI 9 46 0.75 rbf
HLA-AI 10 21 0.59 poly
HLA-A2 9 118 0.76 poly
HLA-A2 10 35 0.65 poly
HLA-A*2402 9 73 0.90 poly
HLA-A3 9 73 0.76 rbf
HLA-A*0201 9 184 0.73 rbf
HLA-A*0201 10 96 0.78 poly
HLA-A*3301 9 32 0.72 lin
HLA-A*0301 9 38 0.72 rbf
HLA-A*0301 10 32 0.77 lin
HLA-A3I 9 39 0.79 poly
HLA-A*6801 9 42 0.84 poly
HLA-B7 9 32 0.95 lin
HLA-B8 9 26 0.77 poly
HLA-B*2705 9 41 0.93 lin
HLA-B*3501 9 67 0.93 lin
HLA-B*3501 10 34 0.96 poly
HLA-B35 9 23 0.71 lin
HLA-B*2703 9 22 0.90 lin
HLA-B*5301 9 41 0.95 lin
HLA-B27 9 34 091 rbf
HLA-B*2706 9 20 0.93 lin
HLA-B5 1 9 67 0.82 poly
HLA-B*5102 9 29 0.79 poly
HLA-B*0702 9 52 0.96 poly
HLA-B*5103 9 29 0.84 rbf
HLA-B*5401 9 42 0.98 lin
HLA-B*5101 9 35 0.89 lin
Predictions using SYFPEITHI
HLA-A*0201 9 13 0.78 rbf
HLA-A*0201 10 40 0.70 poly
HLA-AI 9 28 0.96 lin
HLA-A3 9 73 0.80 lin
HLA-B*8 8 14 0.89 lin
HLA-B*8 9 25 0.79 lin
HLA-B*2705 9 29 1.00 lin
HLA-B7 9 23 0.93 lin

The first column explains shows the HLA allele, the second the length of the binding peptides, the third the number of binders included in the train-
ing set, the fourth the performance as measured by the Matthews correlation coefficient. The final column shows what type of kernel was used in
the Support Vector Machine.
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¢ in equation (2) is a parameter controlling the trade off
between the margin and and the training error. It is the
kernel function that determines the dimension of the fea-
ture space, meaning that different kernels will represent
the input vectors in different ways. The aim of the SVM is
then to find an OSH without loosing the ability of gener-
alization, often referred to as over-training. The kernels
tested for MHC class I peptide predictions were linear,
polynomial and radial basis function.

Equation (3) is an example of the radial basis function
and equation (4) shows the polynomial kernel function.

The problem of choosing the most suitable kernel for a
SVM is analogous to the problem of choosing the architec-
ture for a neural network [15]. One main feature of SVM
is that the quadratic programming task is a convex optimi-
zation problem, which ensure a global optimum. This can
be compared to ANN that uses gradient based training
functions with the risk of getting stuck in a local mini-
mum.

SYMHC performance and parameter optimization

A central part of the process of developing a prediction
method is to have a good measure of the prediction per-
formance. The main goal is to have a prediction method
that can generalize and correctly classify unseen data.
Therefore, four-fold cross validation was used to verify
SVM performance [19]. Further we have used redundancy
reduction, such that no two peptides share more than four
amino acids, see below. The main measure of perform-
ance used for SVMHC parameter optimization was Mat-
thews Correlation coefficients (Mc) [20].

http://www.biomedcentral.com/1471-2105/3/25

For each MHC-type the optimal kernel and trade off ¢ was
optimized by a systematic variation of the parameters and
evaluation of prediction performance using Matthews
Correlation coefficients. For the linear kernel the parame-
ters j, a cost factor between errors on binding and non-
binding peptides was also optimized. In the case of a pol-
ynomial and radial basis kernel the parameters describing
the form of the function were optimized as well. The pa-
rameters chosen for each MHC class I type, were the ones
that gave the best Matthews Correlation coefficient. For a
more detailed explanation of the parameters, see the SVM-
LIGHT documentation at [http://svmlight.joachims.org/

|

MHC databases

In this study we have used two databases SYFPEITHI [6]
and MHCPEP [21] to create MHC class I predictors for dif-
ferent alleles. MHCPEP is a curated database comprising
over 13000 peptide sequences known to bind MHC mol-
ecules. Entries are compiled from published reports as
well as from direct submissions of experimental data. SYF-
PEITHI is supposed to be of a higher quality and is restrict-
ed to published data and only contain sequences that are
natural ligands to T-cell epitopes. The two databases have
different advantages, MHCPEP contains signicantly more
data (13000 vs 3500), while the quality of the data in SYF-
PEITHI is assumed to be higher. Therefore, using MH-
CPEP data for SVM training, it is possible to make
predictions for 26 different MHC types. This can be com-
pared with only 6 MHC types when SYFPEITHI data is
used for SVM training. However, the predictions from
SYFPEITHI might be more reliable and should therefore
be used when enough data exists.

Peptide sequences known to bind a MHC class I alleles
were extracted from one of the databases. All peptides
from the two databases are considered as binding pep-
tides, i.e. no difference between strong and weak binders
is considered. Unfortunately, there are very few experi-
mentally verified examples of peptides that do not bind to
a particular MHC. Therefore, the non-binding training ex-
amples were extracted randomly from the ENSEMBL data-
base of human proteins [22]. Protein sequences from the
ENSEMBL database were chopped up into the length of
interest and known MHC-peptides were removed. Obvi-
ously, there is a risk that some of the non-binders actually
binds, but since less than 1% of the peptides are expected
to bind to a MHC molecule, we do not expect this to cause
any major problems. The ratio of binder/non-binders was
kept to 1:2 for all MHC types.

Redundancy reduction

When utilizing machine learning methods it is important
that the training data reproduces well what can be expect-
ed for unseen data. If the training data only contains a
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Table 3: Study of recently detected binding peptides from proteins P17944, P17451, P31952 and P17944, binding to HLA-A*0201. The
known binding nonamers and the rank of these with the different predictors are shown. Although all three methods detects these pep-
tides, they are found at higher ranks using SVMHC than with the other methods.

Protein No. SVMHC HLA_BIND SYFPEITHI

P78395 2 1,6 3,23 2,8

P17944 2 1,2 1,3 4,6

P31952 | 2 4 14

P17451 3 2,34 1,4,12 1,6,10
subset of what can be expected there is a risk for over-  Acknowledgements

training, i.e. that the obtained performance is not repre-
sentative for unseen data. One method to avoid over-
training is to use a "redundancy reduced" test-set. To un-
derstand the risk of over-training the data we used two al-
leles to study the change in performance using different
reduction levels. We examined the performance on cross
validated test-sets using different reduction levels for two
different MHC alleles. For HLA-A*0201 the performance
is not dependent on the reduction level, while a small in-
crease is seen for HLA-A3 (from Mc = 0.60 to 0.74) when
a looser cutoff is used, see figure 3. Using a stricter redun-
dancy reduction might improve future predictions but as
the dataset is limited it makes less alleles available for pre-
diction. Therefore, in all studied below we choose to in-
clude a restriction that no two peptides in the dataset
should share more than 4 identical residues.

Comparison of different prediction methods

The performance of SVMHC was compared to the per-
formance of two public prediction servers, SYFPEITHI and
HLA_BIND. The prediction performances were measured
using Matthews Correlation coefficients (Mc) [20], Specif-
icity-Sensitivity plots [23] and the percentage correct pre-
dictions. For SYFPEITHI and HLA_BIND the cutoff
distinguishing between binders and non-binders was op-
timized, while for SVMHC it was kept constant and 0.
There are six MHC types common between the three
methods and all of these were used for comparing the per-
formance. Each binding and non-binding peptide tested
was submitted to the public prediction servers and the dif-
ferent prediction performances were calculated. The
threshold for binder/non-binder for the public prediction
servers, were chosen to give the maximum Mc on the test
set.
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